
The RISC-V Instruction Set Manual:
Volume II

Privileged Architecture

Version 20241101

Table of Contents

Preamble ... 1

Preface.. 2

1. Introduction.. 9

1.1. RISC-V Privileged Software Stack Terminology.. 9

1.2. Privilege Levels .. 10

1.3. Debug Mode.. 11

2. Control and Status Registers (CSRs)... 12

2.1. CSR Address Mapping Conventions ... 12

2.2. CSR Listing .. 13

2.3. CSR Field Specifications ... 20

2.3.1. Reserved Writes Preserve Values, Reads Ignore Values (WPRI) ... 20

2.3.2. Write/Read Only Legal Values (WLRL) ... 21

2.3.3. Write Any Values, Reads Legal Values (WARL) .. 21

2.4. CSR Field Modulation .. 21

2.5. Implicit Reads of CSRs.. 22

2.6. CSR Width Modulation... 22

2.7. Explicit Accesses to CSRs Wider than XLEN.. 22

3. Machine-Level ISA, Version 1.13 ... 24

3.1. Machine-Level CSRs .. 24

3.1.1. Machine ISA (misa) Register .. 24

3.1.2. Machine Vendor ID (mvendorid) Register .. 27

3.1.3. Machine Architecture ID (marchid) Register ... 27

3.1.4. Machine Implementation ID (mimpid) Register .. 28

3.1.5. Hart ID (mhartid) Register.. 28

3.1.6. Machine Status (mstatus and mstatush) Registers... 29

3.1.6.1. Privilege and Global Interrupt-Enable Stack in mstatus register...................................... 29

3.1.6.2. Double Trap Control in mstatus Register... 30

3.1.6.3. Base ISA Control in mstatus Register.. 32

3.1.6.4. Memory Privilege in mstatus Register ... 32

3.1.6.5. Endianness Control in mstatus and mstatush Registers .. 33

3.1.6.6. Virtualization Support in mstatus Register .. 34

3.1.6.7. Extension Context Status in mstatus Register ... 35

3.1.6.8. Previous Expected Landing Pad (ELP) State in mstatus Register 39

3.1.7. Machine Trap-Vector Base-Address (mtvec) Register... 39

3.1.8. Machine Trap Delegation (medeleg and mideleg) Registers .. 40

3.1.9. Machine Interrupt (mip and mie) Registers ... 41

3.1.10. Hardware Performance Monitor .. 44

3.1.11. Machine Counter-Enable (mcounteren) Register... 45

3.1.12. Machine Counter-Inhibit (mcountinhibit) Register ... 46

3.1.13. Machine Scratch (mscratch) Register.. 46

3.1.14. Machine Exception Program Counter (mepc) Register .. 47

3.1.15. Machine Cause (mcause) Register ... 47

3.1.16. Machine Trap Value (mtval) Register .. 51

3.1.17. Machine Configuration Pointer (mconfigptr) Register ... 52

3.1.18. Machine Environment Configuration (menvcfg) Register... 53

3.1.19. Machine Security Configuration (mseccfg) Register .. 55

3.2. Machine-Level Memory-Mapped Registers ... 56

3.2.1. Machine Timer (mtime and mtimecmp) Registers... 56

3.3. Machine-Mode Privileged Instructions.. 57

3.3.1. Environment Call and Breakpoint .. 57

3.3.2. Trap-Return Instructions .. 58

3.3.3. Wait for Interrupt.. 58

3.3.4. Custom SYSTEM Instructions .. 59

3.4. Reset ... 59

3.5. Non-Maskable Interrupts .. 60

3.6. Physical Memory Attributes .. 60

3.6.1. Main Memory versus I/O Regions ... 61

3.6.2. Supported Access Type PMAs .. 62

3.6.3. Atomicity PMAs .. 62

3.6.3.1. AMO PMA ... 62

3.6.3.2. Reservability PMA .. 63

3.6.4. Misaligned Atomicity Granule PMA .. 63

3.6.5. Memory-Ordering PMAs ... 64

3.6.6. Coherence and Cacheability PMAs .. 65

3.6.7. Idempotency PMAs .. 66

3.7. Physical Memory Protection .. 66

3.7.1. Physical Memory Protection CSRs ... 67

3.7.1.1. Address Matching ... 68

3.7.1.2. Locking and Privilege Mode ... 70

3.7.1.3. Priority and Matching Logic.. 70

3.7.2. Physical Memory Protection and Paging... 70

4. "Smstateen/Ssstateen" Extensions, Version 1.0.. 72

4.1. State Enable Extensions... 72

4.2. State Enable 0 Registers ... 74

4.3. Usage .. 76

5. "Smcsrind/Sscsrind" Indirect CSR Access, Version 1.0.. 78

5.1. Introduction ... 78

5.2. Machine-level CSRs... 78

5.3. Supervisor-level CSRs ... 79

5.4. Virtual Supervisor-level CSRs .. 81

5.5. Access control by the state-enable CSRs.. 82

6. "Smepmp" Extension for PMP Enhancements for memory access and execution

prevention in Machine mode, Version 1.0... 83

6.1. Introduction ... 83

6.1.1. Threat model ... 83

6.2. Proposal .. 84

6.2.1. Truth table when mseccfg.MML is set... 85

6.2.2. Visual representation of the proposal... 86

6.3. Smepmp software discovery ... 86

6.4. Rationale ... 87

7. "Smcntrpmf" Cycle and Instret Privilege Mode Filtering, Version 1.0 90

7.1. Introduction ... 90

7.2. CSRs.. 90

7.2.1. Machine Counter Configuration (mcyclecfg, minstretcfg) Registers.. 90

7.3. Counter Behavior ... 91

8. "Smrnmi" Extension for Resumable Non-Maskable Interrupts, Version 1.0 92

8.1. RNMI Interrupt Signals.. 92

8.2. RNMI Handler Addresses .. 92

8.3. RNMI CSRs ... 92

8.4. MNRET Instruction ... 94

8.5. RNMI Operation.. 94

9. "Smcdeleg" Counter Delegation Extension, Version 1.0 ... 95

9.1. Counter Delegation.. 95

9.2. Supervisor Counter Inhibit (scountinhibit) Register .. 96

9.3. Virtualizing scountovf ... 97

9.4. Virtualizing Local Counter Overflow Interrupts ... 97

10. "Smdbltrp" Double Trap Extension, Version 1.0... 98

11. "Smctr" Control Transfer Records Extension, Version 1.0 ... 99

11.1. CSRs ... 99

11.1.1. Machine Control Transfer Records Control Register (mctrctl) .. 99

11.1.2. Supervisor Control Transfer Records Control Register (sctrctl).. 101

11.1.3. Virtual Supervisor Control Transfer Records Control Register (vsctrctl)............................. 101

11.1.4. Supervisor Control Transfer Records Depth Register (sctrdepth).. 102

11.1.5. Supervisor Control Transfer Records Status Register (sctrstatus)...................................... 103

11.2. Entry Registers.. 104

11.2.1. Control Transfer Record Source Register (ctrsource) .. 104

11.2.2. Control Transfer Record Target Register (ctrtarget) .. 105

11.2.3. Control Transfer Record Metadata Register (ctrdata)... 105

11.3. Instructions .. 106

11.3.1. Supervisor CTR Clear Instruction ... 106

11.4. State Enable Access Control .. 106

11.5. Behavior .. 107

11.5.1. Privilege Mode Transitions ... 107

11.5.1.1. Virtualization Mode Transitions.. 108

11.5.1.2. External Traps .. 108

11.5.2. Transfer Type Filtering.. 110

11.5.3. Cycle Counting .. 111

11.5.4. RAS (Return Address Stack) Emulation Mode... 113

11.5.5. Freeze ... 113

11.6. Custom Extensions .. 114

12. Supervisor-Level ISA, Version 1.13... 115

12.1. Supervisor CSRs .. 115

12.1.1. Supervisor Status (sstatus) Register .. 115

12.1.1.1. Base ISA Control in sstatus Register... 116

12.1.1.2. Memory Privilege in sstatus Register .. 116

12.1.1.3. Endianness Control in sstatus Register ... 117

12.1.1.4. Previous Expected Landing Pad (ELP) State in sstatus Register................................... 117

12.1.1.5. Double Trap Control in sstatus Register.. 117

12.1.2. Supervisor Trap Vector Base Address (stvec) Register .. 118

12.1.3. Supervisor Interrupt (sip and sie) Registers ... 119

12.1.4. Supervisor Timers and Performance Counters ... 121

12.1.5. Counter-Enable (scounteren) Register .. 121

12.1.6. Supervisor Scratch (sscratch) Register .. 121

12.1.7. Supervisor Exception Program Counter (sepc) Register... 121

12.1.8. Supervisor Cause (scause) Register... 122

12.1.9. Supervisor Trap Value (stval) Register ... 123

12.1.10. Supervisor Environment Configuration (senvcfg) Register... 124

12.1.11. Supervisor Address Translation and Protection (satp) Register ... 126

12.2. Supervisor Instructions .. 128

12.2.1. Supervisor Memory-Management Fence Instruction ... 128

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems... 132

12.3.1. Addressing and Memory Protection ... 132

12.3.2. Virtual Address Translation Process .. 136

12.4. Sv39: Page-Based 39-bit Virtual-Memory System.. 138

12.4.1. Addressing and Memory Protection ... 138

12.5. Sv48: Page-Based 48-bit Virtual-Memory System ... 139

12.5.1. Addressing and Memory Protection ... 140

12.6. Sv57: Page-Based 57-bit Virtual-Memory System .. 140

12.6.1. Addressing and Memory Protection... 140

13. "Svnapot" Extension for NAPOT Translation Contiguity, Version 1.0..................................... 142

14. "Svpbmt" Extension for Page-Based Memory Types, Version 1.0 .. 144

15. "Svinval" Extension for Fine-Grained Address-Translation Cache Invalidation, Version

1.0.. 146

16. "Svadu" Extension for Hardware Updating of A/D Bits, Version 1.0....................................... 148

17. "Svvptc" Extension for Obviating Memory-Management Instructions after Marking PTEs

Valid, Version 1.0 ... 149

18. "Ssqosid" Extension for Quality-of-Service (QoS) Identifiers, Version 1.0 150

18.1. Supervisor Resource Management Configuration (srmcfg) register .. 150

19. "Sstc" Extension for Supervisor-mode Timer Interrupts, Version 1.0 152

19.1. Machine and Supervisor Level Additions .. 152

19.1.1. Supervisor Timer (stimecmp) Register... 152

19.1.2. Machine Interrupt (mip and mie) Registers .. 153

19.1.3. Supervisor Interrupt (sip and sie) Registers... 153

19.1.4. Machine Counter-Enable (mcounteren) Register .. 153

19.2. Hypervisor Extension Additions .. 153

19.2.1. Virtual Supervisor Timer (vstimecmp) Register ... 153

19.2.2. Hypervisor Interrupt (hvip, hip, and hie) Registers ... 154

19.2.3. Hypervisor Counter-Enable (hcounteren) Register... 154

19.3. Environment Config (menvcfg and henvcfg) Support ... 154

20. "Sscofpmf" Extension for Count Overflow and Mode-Based Filtering, Version 1.0 155

20.1. Count Overflow Control .. 155

20.2. Supervisor Count Overflow (scountovf) Register ... 156

21. "H" Extension for Hypervisor Support, Version 1.0 ... 157

21.1. Privilege Modes... 157

21.2. Hypervisor and Virtual Supervisor CSRs ... 158

21.2.1. Hypervisor Status (hstatus) Register ... 159

21.2.2. Hypervisor Trap Delegation (hedeleg and hideleg) Registers .. 160

21.2.3. Hypervisor Interrupt (hvip, hip, and hie) Registers ... 162

21.2.4. Hypervisor Guest External Interrupt Registers (hgeip and hgeie).. 163

21.2.5. Hypervisor Environment Configuration Register (henvcfg).. 164

21.2.6. Hypervisor Counter-Enable (hcounteren) Register... 166

21.2.7. Hypervisor Time Delta (htimedelta) Register .. 166

21.2.8. Hypervisor Trap Value (htval) Register... 167

21.2.9. Hypervisor Trap Instruction (htinst) Register .. 168

21.2.10. Hypervisor Guest Address Translation and Protection (hgatp) Register 168

21.2.11. Virtual Supervisor Status (vsstatus) Register... 169

21.2.12. Virtual Supervisor Interrupt (vsip and vsie) Registers ... 171

21.2.13. Virtual Supervisor Trap Vector Base Address (vstvec) Register .. 172

21.2.14. Virtual Supervisor Scratch (vsscratch) Register... 172

21.2.15. Virtual Supervisor Exception Program Counter (vsepc) Register 172

21.2.16. Virtual Supervisor Cause (vscause) Register .. 172

21.2.17. Virtual Supervisor Trap Value (vstval) Register ... 173

21.2.18. Virtual Supervisor Address Translation and Protection (vsatp) Register 173

21.3. Hypervisor Instructions... 174

21.3.1. Hypervisor Virtual-Machine Load and Store Instructions ... 174

21.3.2. Hypervisor Memory-Management Fence Instructions ... 175

21.4. Machine-Level CSRs... 176

21.4.1. Machine Status (mstatus and mstatush) Registers .. 176

21.4.2. Machine Interrupt Delegation (mideleg) Register ... 178

21.4.3. Machine Interrupt (mip and mie) Registers ... 178

21.4.4. Machine Second Trap Value (mtval2) Register ... 179

21.4.5. Machine Trap Instruction (mtinst) Register.. 179

21.5. Two-Stage Address Translation ... 180

21.5.1. Guest Physical Address Translation ... 180

21.5.2. Guest-Page Faults ... 182

21.5.3. Memory-Management Fences ... 182

21.6. Traps .. 183

21.6.1. Trap Cause Codes .. 183

21.6.2. Trap Entry... 187

21.6.3. Transformed Instruction or Pseudoinstruction for mtinst or htinst 188

21.6.4. Trap Return.. 192

22. Control-flow Integrity (CFI) ... 194

22.1. Landing Pad (Zicfilp) .. 194

22.1.1. Landing-Pad-Enabled (LPE) State .. 194

22.1.2. Preserving Expected Landing Pad State on Traps ... 195

22.2. Shadow Stack (Zicfiss) ... 196

22.2.1. Shadow Stack Pointer (ssp) CSR access control .. 196

22.2.2. Shadow-Stack-Enabled (SSE) State... 196

22.2.3. Shadow Stack Memory Protection ... 197

23. "Ssdbltrp" Double Trap Extension, Version 1.0 ... 200

24. Pointer Masking Extensions, Version 1.0.0 .. 201

24.1. Introduction ... 201

24.2. Background.. 201

24.2.1. Definitions ... 201

24.2.2. The “Ignore” Transformation.. 202

24.2.3. Example.. 203

24.2.4. Determining the Value of PMLEN... 203

24.2.5. Pointer Masking and Privilege Modes .. 204

24.2.6. Memory Accesses Subject to Pointer Masking .. 205

24.2.7. Pointer Masking Extensions ... 206

24.3. ISA Extensions .. 207

24.3.1. Ssnpm ... 207

24.3.2. Smnpm... 208

24.3.3. Smmpm.. 208

24.3.4. Interaction with SFENCE.VMA ... 208

24.3.5. Interaction with Two-Stage Address Translation ... 208

24.3.6. Number of Masked Bits.. 209

25. RISC-V Privileged Instruction Set Listings.. 210

26. History .. 212

26.1. Research Funding at UC Berkeley .. 212

Bibliography ... 213

Preamble

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest
corrections): Krste Asanović, Peter Ashenden, Rimas Avižienis, Jacob Bachmeyer, Allen J. Baum,
Jonathan Behrens, Paolo Bonzini, Ruslan Bukin, Christopher Celio, Chuanhua Chang, David Chisnall,
Anthony Coulter, Palmer Dabbelt, Monte Dalrymple, Paul Donahue, Greg Favor, Dennis Ferguson, Marc
Gauthier, Andy Glew, Gary Guo, Mike Frysinger, John Hauser, David Horner, Olof Johansson, David
Kruckemyer, Yunsup Lee, Daniel Lustig, Andrew Lutomirski, Martin Maas, Prashanth Mundkur,
Jonathan Neuschäfer, Rishiyur Nikhil, Stefan O’Rear, Albert Ou, John Ousterhout, David Patterson,
Dmitri Pavlov, Kade Phillips, Josh Scheid, Colin Schmidt, Michael Taylor, Wesley Terpstra, Matt
Thomas, Tommy Thorn, Ray VanDeWalker, Megan Wachs, Steve Wallach, Andrew Waterman, Claire
Wolf, Adam Zabrocki, and Reinoud Zandijk..

This document is released under a Creative Commons Attribution 4.0 International License.

This document is a derivative of the RISC-V privileged specification version 1.9.1 released under
following license: ©2010-2017 Andrew Waterman, Yunsup Lee, Rimas Avižienis, David Patterson, Krste
Asanović. Creative Commons Attribution 4.0 International License.

Preamble | Page 1

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Preface

Preface to Version 20241101

This document describes the RISC-V privileged architecture. This release, version 20241101, contains
the following versions of the RISC-V ISA modules:

Module Version Status

Machine ISA
Smstateen Extension

Smcsrind/Sscsrind Extension
Smepmp Extension

Smcntrpmf Extension
Smrnmi Extension

Smcdeleg Extension
Smdbltrp Extension

Supervisor ISA
Svade Extension

Svnapot Extension
Svpbmt Extension
Svinval Extension
Svadu Extension
Sstc Extension

Sscofpmf Extension
Ssdbltrp Extension
Ssqosid Extension

Hypervisor ISA
Shlcofideleg Extension

Svvptc Extension

1.14
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.14
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Draft
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified

Draft
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified

The following changes have been made since version 1.13 of the Machine and Supervisor ISAs, which,
while not strictly backwards compatible, are not anticipated to cause software portability problems in
practice:

⚫ (None yet)

Additionally, the following compatible changes have been made to the Machine and Supervisor ISAs
since version 1.13:

⚫ Defined the mstateen0 P1P14 field.

Finally, the following clarifications and document improvements have been made since the last
document release:

⚫ (None yet)

Preface to Version 20241017

This document describes the RISC-V privileged architecture. This release, version 20241017, contains
the following versions of the RISC-V ISA modules:

Preface | Page 2

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Module Version Status

Machine ISA
Smstateen Extension

Smcsrind/Sscsrind Extension
Smepmp

Smcntrpmf
Smrnmi Extension

Smcdeleg
Smdbltrp

Supervisor ISA
Svade Extension

Svnapot Extension
Svpbmt Extension
Svinval Extension
Svadu Extension

Sstc
Sscofpmf
Ssdbltrp

Hypervisor ISA
Shlcofideleg

Svvptc

1.13
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.13
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified
Ratified

The following changes have been made since version 1.12 of the Machine and Supervisor ISAs, which,
while not strictly backwards compatible, are not anticipated to cause software portability problems in
practice:

⚫ Redefined misa.MXL to be read-only, making MXLEN a constant.

⚫ Added the constraint that SXLEN≥UXLEN.

Additionally, the following compatible changes have been made to the Machine and Supervisor ISAs
since version 1.12:

⚫ Defined the misa.B field to reflect that the B extension has been implemented.

⚫ Defined the misa.V field to reflect that the V extension has been implemented.

⚫ Defined the RV32-only medelegh and hedelegh CSRs.

⚫ Defined the misaligned atomicity granule PMA, superseding the proposed Zam extension.

⚫ Allocated interrupt 13 for Sscofpmf LCOFI interrupt.

⚫ Defined hardware error and software check exception codes.

⚫ Specified synchronization requirements when changing the PBMTE fields in menvcfg and henvcfg.

⚫ Exposed count-overflow interrupts to VS-mode via the Shlcofideleg extension.

⚫ Relaxed behavior of some HINTs when MXLEN > XLEN.

Finally, the following clarifications and document improvements have been made since the last
document release:

⚫ Transliterated the document from LaTeX into AsciiDoc.

⚫ Included all ratified extensions through March 2024.

⚫ Clarified that "platform- or custom-use" interrupts are actually "platform-use interrupts", where the
platform can choose to make some custom.

Preface | Page 3

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Clarified semantics of explicit accesses to CSRs wider than XLEN bits.

⚫ Clarified that MXLEN≥SXLEN.

⚫ Clarified that WFI is not a HINT instruction.

⚫ Clarified that VS-stage page-table accesses set G-stage A/D bits.

⚫ Clarified ordering rules when PBMT=IO is used on main-memory regions.

⚫ Clarified ordering rules for hardware A/D bit updates.

⚫ Clarified that, for a given exception cause, xtval might sometimes be set to a nonzero value but
sometimes not.

⚫ Clarified exception behavior of unimplemented or inaccessible CSRs.

⚫ Clarified that Svpbmt allows implementations to override additional PMAs.

⚫ Replaced the concept of vacant memory regions with inaccessible memory or I/O regions.

⚫ Clarified that timer and count-overflow interrupts' arrival in interrupt-pending registers is not
immediate.

⚫ Clarified that MXR affects only explicit memory accesses.

Preface to Version 20211203

This document describes the RISC-V privileged architecture. This release, version 20211203, contains
the following versions of the RISC-V ISA modules:

Module Version Status

Machine ISA
Supervisor ISA

Svnapot Extension
Svpbmt Extension
Svinval Extension
Hypervisor ISA

1.12
1.12
1.0
1.0
1.0
1.0

Ratified
Ratified
Ratified
Ratified
Ratified
Ratified

The following changes have been made since version 1.11, which, while not strictly backwards
compatible, are not anticipated to cause software portability problems in practice:

⚫ Changed MRET and SRET to clear mstatus.MPRV when leaving M-mode.

⚫ Reserved additional satp patterns for future use.

⚫ Stated that the scause Exception Code field must implement bits 4–0 at minimum.

⚫ Relaxed I/O regions have been specified to follow RVWMO. The previous specification implied that
PPO rules other than fences and acquire/release annotations did not apply.

⚫ Constrained the LR/SC reservation set size and shape when using page-based virtual memory.

⚫ PMP changes require an SFENCE.VMA on any hart that implements page-based virtual memory,
even if VM is not currently enabled.

⚫ Allowed for speculative updates of page table entry A bits.

⚫ Clarify that if the address-translation algorithm non-speculatively reaches a PTE in which a bit
reserved for future standard use is set, a page-fault exception must be raised.

Additionally, the following compatible changes have been made since version 1.11:

Preface | Page 4

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Removed the N extension.

⚫ Defined the mandatory RV32-only CSR mstatush, which contains most of the same fields as the
upper 32 bits of RV64’s mstatus.

⚫ Defined the mandatory CSR mconfigptr, which if nonzero contains the address of a configuration
data structure.

⚫ Defined optional mseccfg and mseccfgh CSRs, which control the machine’s security configuration.

⚫ Defined menvcfg, henvcfg, and senvcfg CSRs (and RV32-only menvcfgh and henvcfgh CSRs), which
control various characteristics of the execution environment.

⚫ Designated part of SYSTEM major opcode for custom use.

⚫ Permitted the unconditional delegation of less-privileged interrupts.

⚫ Added optional big-endian and bi-endian support.

⚫ Made priority of load/store/AMO address-misaligned exceptions implementation-defined relative
to load/store/AMO page-fault and access-fault exceptions.

⚫ PMP reset values are now platform-defined.

⚫ An additional 48 optional PMP registers have been defined.

⚫ Slightly relaxed the atomicity requirement for A and D bit updates performed by the
implementation.

⚫ Clarify the architectural behavior of address-translation caches

⚫ Added Sv57 and Sv57x4 address translation modes.

⚫ Software breakpoint exceptions are permitted to write either 0 or the pc to xtval.

⚫ Clarified that bare S-mode need not support the SFENCE.VMA instruction.

⚫ Specified relaxed constraints for implicit reads of non-idempotent regions.

⚫ Added the Svnapot Standard Extension, along with the N bit in Sv39, Sv48, and Sv57 PTEs.

⚫ Added the Svpbmt Standard Extension, along with the PBMT bits in Sv39, Sv48, and Sv57 PTEs.

⚫ Added the Svinval Standard Extension and associated instructions.

Finally, the hypervisor architecture proposal has been extensively revised.

Preface to Version 1.11

This is version 1.11 of the RISC-V privileged architecture. The document contains the following versions
of the RISC-V ISA modules:

Module Version Status

Machine ISA
Supervisor ISA
Hypervisor ISA

1.11
1.11
0.3

Ratified
Ratified

Draft

Changes from version 1.10 include:

⚫ Moved Machine and Supervisor spec to Ratified status.

⚫ Improvements to the description and commentary.

⚫ Added a draft proposal for a hypervisor extension.

Preface | Page 5

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Specified which interrupt sources are reserved for standard use.

⚫ Allocated some synchronous exception causes for custom use.

⚫ Specified the priority ordering of synchronous exceptions.

⚫ Added specification that xRET instructions may, but are not required to, clear LR reservations if A
extension present.

⚫ The virtual-memory system no longer permits supervisor mode to execute instructions from user
pages, regardless of the SUM setting.

⚫ Clarified that ASIDs are private to a hart, and added commentary about the possibility of a future
global-ASID extension.

⚫ SFENCE.VMA semantics have been clarified.

⚫ Made the mstatus.MPP field WARL, rather than WLRL.

⚫ Made the unused xip fields WPRI, rather than WIRI.

⚫ Made the unused misa fields WARL, rather than WIRI.

⚫ Made the unused pmpaddr and pmpcfg fields WARL, rather than WIRI.

⚫ Required all harts in a system to employ the same PTE-update scheme as each other.

⚫ Rectified an editing error that misdescribed the mechanism by which mstatus.xIE is written upon an
exception.

⚫ Described scheme for emulating misaligned AMOs.

⚫ Specified the behavior of the misa and xepc registers in systems with variable IALIGN.

⚫ Specified the behavior of writing self-contradictory values to the misa register.

⚫ Defined the mcountinhibit CSR, which stops performance counters from incrementing to reduce
energy consumption.

⚫ Specified semantics for PMP regions coarser than four bytes.

⚫ Specified contents of CSRs across XLEN modification.

⚫ Moved PLIC chapter into its own document.

Preface to Version 1.10

This is version 1.10 of the RISC-V privileged architecture proposal. Changes from version 1.9.1 include:

⚫ The previous version of this document was released under a Creative Commons Attribution 4.0
International License by the original authors, and this and future versions of this document will be
released under the same license.

⚫ The explicit convention on shadow CSR addresses has been removed to reclaim CSR space.
Shadow CSRs can still be added as needed.

⚫ The mvendorid register now contains the JEDEC code of the core provider as opposed to a code
supplied by the Foundation. This avoids redundancy and offloads work from the Foundation.

⚫ The interrupt-enable stack discipline has been simplified.

⚫ An optional mechanism to change the base ISA used by supervisor and user modes has been
added to the mstatus CSR, and the field previously called Base in misa has been renamed to MXL for
consistency.

Preface | Page 6

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Clarified expected use of XS to summarize additional extension state status fields in mstatus.

⚫ Optional vectored interrupt support has been added to the mtvec and stvec CSRs.

⚫ The SEIP and UEIP bits in the mip CSR have been redefined to support software injection of
external interrupts.

⚫ The mbadaddr register has been subsumed by a more general mtval register that can now capture
bad instruction bits on an illegal instruction fault to speed instruction emulation.

⚫ The machine-mode base-and-bounds translation and protection schemes have been removed from
the specification as part of moving the virtual memory configuration to sptbr (now satp). Some of
the motivation for the base and bound schemes are now covered by the PMP registers, but space
remains available in mstatus to add these back at a later date if deemed useful.

⚫ In systems with only M-mode, or with both M-mode and U-mode but without U-mode trap support,
the medeleg and mideleg registers now do not exist, whereas previously they returned zero.

⚫ Virtual-memory page faults now have mcause values distinct from physical-memory access faults.
Page-fault exceptions can now be delegated to S-mode without delegating exceptions generated
by PMA and PMP checks.

⚫ An optional physical-memory protection (PMP) scheme has been proposed.

⚫ The supervisor virtual memory configuration has been moved from the mstatus register to the sptbr
register. Accordingly, the sptbr register has been renamed to satp (Supervisor Address Translation
and Protection) to reflect its broadened role.

⚫ The SFENCE.VM instruction has been removed in favor of the improved SFENCE.VMA instruction.

⚫ The mstatus bit MXR has been exposed to S-mode via sstatus.

⚫ The polarity of the PUM bit in sstatus has been inverted to shorten code sequences involving MXR.
The bit has been renamed to SUM.

⚫ Hardware management of page-table entry Accessed and Dirty bits has been made optional;
simpler implementations may trap to software to set them.

⚫ The counter-enable scheme has changed, so that S-mode can control availability of counters to U-
mode.

⚫ H-mode has been removed, as we are focusing on recursive virtualization support in S-mode. The
encoding space has been reserved and may be repurposed at a later date.

⚫ A mechanism to improve virtualization performance by trapping S-mode virtual-memory
management operations has been added.

⚫ The Supervisor Binary Interface (SBI) chapter has been removed, so that it can be maintained as a
separate specification.

Preface to Version 1.9.1

This is version 1.9.1 of the RISC-V privileged architecture proposal. Changes from version 1.9 include:

⚫ Numerous additions and improvements to the commentary sections.

⚫ Change configuration string proposal to be use a search process that supports various formats
including Device Tree String and flattened Device Tree.

⚫ Made misa optionally writable to support modifying base and supported ISA extensions. CSR
address of misa changed.

Preface | Page 7

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Added description of debug mode and debug CSRs.

⚫ Added a hardware performance monitoring scheme. Simplified the handling of existing hardware
counters, removing privileged versions of the counters and the corresponding delta registers.

⚫ Fixed description of SPIE in presence of user-level interrupts.

Preface | Page 8

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 1. Introduction

This document describes the RISC-V privileged architecture, which covers all aspects of RISC-V
systems beyond the unprivileged ISA, including privileged instructions as well as additional
functionality required for running operating systems and attaching external devices.



Commentary on our design decisions is formatted as in this paragraph, and can be
skipped if the reader is only interested in the specification itself.

We briefly note that the entire privileged-level design described in this document
could be replaced with an entirely different privileged-level design without changing
the unprivileged ISA, and possibly without even changing the ABI. In particular, this
privileged specification was designed to run existing popular operating systems, and
so embodies the conventional level-based protection model. Alternate privileged
specifications could embody other more flexible protection-domain models. For
simplicity of expression, the text is written as if this was the only possible privileged
architecture.

1.1. RISC-V Privileged Software Stack Terminology

This section describes the terminology we use to describe components of the wide range of possible
privileged software stacks for RISC-V.

Figure 1 shows some of the possible software stacks that can be supported by the RISC-V architecture.
The left-hand side shows a simple system that supports only a single application running on an
application execution environment (AEE). The application is coded to run with a particular application
binary interface (ABI). The ABI includes the supported user-level ISA plus a set of ABI calls to interact
with the AEE. The ABI hides details of the AEE from the application to allow greater flexibility in
implementing the AEE. The same ABI could be implemented natively on multiple different host OSs, or
could be supported by a user-mode emulation environment running on a machine with a different
native ISA.


Our graphical convention represents abstract interfaces using black boxes with white
text, to separate them from concrete instances of components implementing the
interfaces.

Figure 1. Different implementation stacks supporting various forms of privileged execution.

The middle configuration shows a conventional operating system (OS) that can support
multiprogrammed execution of multiple applications. Each application communicates over an ABI with
the OS, which provides the AEE. Just as applications interface with an AEE via an ABI, RISC-V
operating systems interface with a supervisor execution environment (SEE) via a supervisor binary

1.1. RISC-V Privileged Software Stack Terminology | Page 9

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

interface (SBI). An SBI comprises the user-level and supervisor-level ISA together with a set of SBI
function calls. Using a single SBI across all SEE implementations allows a single OS binary image to
run on any SEE. The SEE can be a simple boot loader and BIOS-style IO system in a low-end hardware
platform, or a hypervisor-provided virtual machine in a high-end server, or a thin translation layer over
a host operating system in an architecture simulation environment.


Most supervisor-level ISA definitions do not separate the SBI from the execution
environment and/or the hardware platform, complicating virtualization and bring-up
of new hardware platforms.

The rightmost configuration shows a virtual machine monitor configuration where multiple
multiprogrammed OSs are supported by a single hypervisor. Each OS communicates via an SBI with
the hypervisor, which provides the SEE. The hypervisor communicates with the hypervisor execution
environment (HEE) using a hypervisor binary interface (HBI), to isolate the hypervisor from details of
the hardware platform.


The ABI, SBI, and HBI are still a work-in-progress, but we are now prioritizing
support for Type-2 hypervisors where the SBI is provided recursively by an S-mode
OS.

Hardware implementations of the RISC-V ISA will generally require additional features beyond the
privileged ISA to support the various execution environments (AEE, SEE, or HEE).

1.2. Privilege Levels

At any time, a RISC-V hardware thread (hart) is running at some privilege level encoded as a mode in
one or more CSRs (control and status registers). Three RISC-V privilege levels are currently defined as
shown in Table 1.

Table 1. RISC-V privilege levels.

Level Encoding Name Abbreviation

0
1
2
3

00
01
10
11

User/Application
Supervisor
Reserved
Machine

U
S

M

Privilege levels are used to provide protection between different components of the software stack,
and attempts to perform operations not permitted by the current privilege mode will cause an
exception to be raised. These exceptions will normally cause traps into an underlying execution
environment.



In the description, we try to separate the privilege level for which code is written,
from the privilege mode in which it runs, although the two are often tied. For
example, a supervisor-level operating system can run in supervisor-mode on a
system with three privilege modes, but can also run in user-mode under a classic
virtual machine monitor on systems with two or more privilege modes. In both cases,
the same supervisor-level operating system binary code can be used, coded to a
supervisor-level SBI and hence expecting to be able to use supervisor-level
privileged instructions and CSRs. When running a guest OS in user mode, all
supervisor-level actions will be trapped and emulated by the SEE running in the
higher-privilege level.

1.2. Privilege Levels | Page 10

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The machine level has the highest privileges and is the only mandatory privilege level for a RISC-V
hardware platform. Code run in machine-mode (M-mode) is usually inherently trusted, as it has low-
level access to the machine implementation. M-mode can be used to manage secure execution
environments on RISC-V. User-mode (U-mode) and supervisor-mode (S-mode) are intended for
conventional application and operating system usage respectively.

Each privilege level has a core set of privileged ISA extensions with optional extensions and variants.
For example, machine-mode supports an optional standard extension for memory protection. Also,
supervisor mode can be extended to support Type-2 hypervisor execution as described in Chapter 21.

Implementations might provide anywhere from 1 to 3 privilege modes trading off reduced isolation for
lower implementation cost, as shown in Table 2.

Table 2. Supported combination of privilege modes.

Number of levels Supported Modes Intended Usage

1
2
3

M
M, U
M, S, U

Simple embedded systems
Secure embedded systems
Systems running Unix-like operating systems

All hardware implementations must provide M-mode, as this is the only mode that has unfettered
access to the whole machine. The simplest RISC-V implementations may provide only M-mode, though
this will provide no protection against incorrect or malicious application code.


The lock feature of the optional PMP facility can provide some limited protection
even with only M-mode implemented.

Many RISC-V implementations will also support at least user mode (U-mode) to protect the rest of the
system from application code. Supervisor mode (S-mode) can be added to provide isolation between a
supervisor-level operating system and the SEE.

A hart normally runs application code in U-mode until some trap (e.g., a supervisor call or a timer
interrupt) forces a switch to a trap handler, which usually runs in a more privileged mode. The hart will
then execute the trap handler, which will eventually resume execution at or after the original trapped
instruction in U-mode. Traps that increase privilege level are termed vertical traps, while traps that
remain at the same privilege level are termed horizontal traps. The RISC-V privileged architecture
provides flexible routing of traps to different privilege layers.


Horizontal traps can be implemented as vertical traps that return control to a
horizontal trap handler in the less-privileged mode.

1.3. Debug Mode

Implementations may also include a debug mode to support off-chip debugging and/or manufacturing
test. Debug mode (D-mode) can be considered an additional privilege mode, with even more access
than M-mode. The separate debug specification proposal describes operation of a RISC-V hart in
debug mode. Debug mode reserves a few CSR addresses that are only accessible in D-mode, and may
also reserve some portions of the physical address space on a platform.

1.3. Debug Mode | Page 11

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 2. Control and Status Registers (CSRs)

The SYSTEM major opcode is used to encode all privileged instructions in the RISC-V ISA. These can
be divided into two main classes: those that atomically read-modify-write control and status registers
(CSRs), which are defined in the Zicsr extension, and all other privileged instructions. The privileged
architecture requires the Zicsr extension; which other privileged instructions are required depends on
the privileged-architecture feature set.

In addition to the unprivileged state described in Volume I of this manual, an implementation may
contain additional CSRs, accessible by some subset of the privilege levels using the CSR instructions
described in Volume I. In this chapter, we map out the CSR address space. The following chapters
describe the function of each of the CSRs according to privilege level, as well as the other privileged
instructions which are generally closely associated with a particular privilege level. Note that although
CSRs and instructions are associated with one privilege level, they are also accessible at all higher
privilege levels.

Standard CSRs do not have side effects on reads but may have side effects on writes.

2.1. CSR Address Mapping Conventions

The standard RISC-V ISA sets aside a 12-bit encoding space (csr[11:0]) for up to 4,096 CSRs. By
convention, the upper 4 bits of the CSR address (csr[11:8]) are used to encode the read and write
accessibility of the CSRs according to privilege level as shown in Table 3. The top two bits (csr[11:10])
indicate whether the register is read/write (00,01, or 10) or read-only (11). The next two bits (csr[9:8])
encode the lowest privilege level that can access the CSR.



The CSR address convention uses the upper bits of the CSR address to encode
default access privileges. This simplifies error checking in the hardware and provides
a larger CSR space, but does constrain the mapping of CSRs into the address space.

Implementations might allow a more-privileged level to trap otherwise permitted
CSR accesses by a less-privileged level to allow these accesses to be intercepted.
This change should be transparent to the less-privileged software.

Instructions that access a non-existent CSR are reserved. Attempts to access a CSR without
appropriate privilege level raise illegal-instruction exceptions or, as described in Section 21.6.1, virtual-
instruction exceptions. Attempts to write a read-only register raise illegal-instruction exceptions. A
read/write register might also contain some bits that are read-only, in which case writes to the read-
only bits are ignored.

Table 3 also indicates the convention to allocate CSR addresses between standard and custom uses.
The CSR addresses designated for custom uses will not be redefined by future standard extensions.

Machine-mode standard read-write CSRs 0x7A0-0x7BF are reserved for use by the debug system. Of
these CSRs, 0x7A0-0x7AF are accessible to machine mode, whereas 0x7B0-0x7BF are only visible to debug
mode. Implementations should raise illegal-instruction exceptions on machine-mode access to the
latter set of registers.



Effective virtualization requires that as many instructions run natively as possible
inside a virtualized environment, while any privileged accesses trap to the virtual
machine monitor. (Goldberg, 1974) CSRs that are read-only at some lower privilege
level are shadowed into separate CSR addresses if they are made read-write at a

2.1. CSR Address Mapping Conventions | Page 12

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

higher privilege level. This avoids trapping permitted lower-privilege accesses while
still causing traps on illegal accesses. Currently, the counters are the only shadowed
CSRs.

2.2. CSR Listing

Table 4-Table 8 list the CSRs that have currently been allocated CSR addresses. The timers, counters,
and floating-point CSRs are standard unprivileged CSRs. The other registers are used by privileged
code, as described in the following chapters. Note that not all registers are required on all
implementations.

Table 3. Allocation of RISC-V CSR address ranges.

CSR Address Hex Use and Accessibility

[11:10] [9:8] [7:4]

Unprivileged and User-Level CSRs

00 00 XXXX 0x000-0x0FF Standard read/write

01 00 XXXX 0x400-0x4FF Standard read/write

10 00 XXXX 0x800-0x8FF Custom read/write

11 00 0XXX 0xC00-0xC7F Standard read-only

11 00 10XX 0xC80-0xCBF Standard read-only

11 00 11XX 0xCC0-0xCFF Custom read-only

Supervisor-Level CSRs

00 01 XXXX 0x100-0x1FF Standard read/write

01 01 0XXX 0x500-0x57F Standard read/write

01 01 10XX 0x580-0x5BF Standard read/write

01 01 11XX 0x5C0-0x5FF Custom read/write

10 01 0XXX 0x900-0x97F Standard read/write

10 01 10XX 0x980-0x9BF Standard read/write

10 01 11XX 0x9C0-0x9FF Custom read/write

11 01 0XXX 0xD00-0xD7F Standard read-only

11 01 10XX 0xD80-0xDBF Standard read-only

11 01 11XX 0xDC0-0xDFF Custom read-only

Hypervisor and VS CSRs

00 10 XXXX 0x200-0x2FF Standard read/write

01 10 0XXX 0x600-0x67F Standard read/write

01 10 10XX 0x680-0x6BF Standard read/write

01 10 11XX 0x6C0-0x6FF Custom read/write

10 10 0XXX 0xA00-0xA7F Standard read/write

10 10 10XX 0xA80-0xABF Standard read/write

2.2. CSR Listing | Page 13

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

10 10 11XX 0xAC0-0xAFF Custom read/write

11 10 0XXX 0xE00-0xE7F Standard read-only

11 10 10XX 0xE80-0xEBF Standard read-only

11 10 11XX 0xEC0-0xEFF Custom read-only

Machine-Level CSRs

00 11 XXXX 0x300-0x3FF Standard read/write

01 11 0XXX 0x700-0x77F Standard read/write

01 11 100X 0x780-0x79F Standard read/write

01 11 1010 0x7A0-0x7AF Standard read/write debug CSRs

01 11 1011 0x7B0-0x7BF Debug-mode-only CSRs

01 11 11XX 0x7C0-0x7FF Custom read/write

10 11 0XXX 0xB00-0xB7F Standard read/write

10 11 10XX 0xB80-0xBBF Standard read/write

10 11 11XX 0xBC0-0xBFF Custom read/write

11 11 0XXX 0xF00-0xF7F Standard read-only

11 11 10XX 0xF80-0xFBF Standard read-only

11 11 11XX 0xFC0-0xFFF Custom read-only

2.2. CSR Listing | Page 14

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 4. Currently allocated RISC-V unprivileged CSR addresses.

Number Privilege Name Description

Unprivileged Floating-Point CSRs

0x001
0x002
0x003

URW
URW
URW

fflags
frm
fcsr

Floating-Point Accrued Exceptions.
Floating-Point Dynamic Rounding Mode.
Floating-Point Control and Status Register (frm +fflags).

Unprivileged Vector CSRs

0x008
0x009
0x00A
0x00F
0xC20
0xC21
0xC22

URW
URW
URW
URW
URO
URO
URO

vstart
vxsat
vxrm
vcsr
vl
vtype
vlenb

Vector start position.
Fixed-point accrued saturation flag.
Fixed-point rounding mode.
Vector control and status register.
Vector length.
Vector data type register.
Vector register length in bytes.

Unprivileged Zicfiss extension CSR

0x011 URW ssp Shadow Stack Pointer.

Unprivileged Counter/Timers

0xC00
0xC01
0xC02
0xC03
0xC04

0xC1F
0xC80
0xC81
0xC82
0xC83
0xC84

0xC9F

URO
URO
URO
URO
URO

URO
URO
URO
URO
URO
URO

URO

cycle
time
instret
hpmcounter3
hpmcounter4
⋮
hpmcounter31
cycleh
timeh
instreth
hpmcounter3h
hpmcounter4h
⋮
hpmcounter31h

Cycle counter for RDCYCLE instruction.
Timer for RDTIME instruction.
Instructions-retired counter for RDINSTRET instruction.
Performance-monitoring counter.
Performance-monitoring counter.

Performance-monitoring counter.
Upper 32 bits of cycle, RV32 only.
Upper 32 bits of time, RV32 only.
Upper 32 bits of instret, RV32 only.
Upper 32 bits of hpmcounter3, RV32 only.
Upper 32 bits of hpmcounter4, RV32 only.

Upper 32 bits of hpmcounter31, RV32 only.

2.2. CSR Listing | Page 15

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 5. Currently allocated RISC-V supervisor-level CSR addresses.

Number Privilege Name Description

Supervisor Trap Setup

0x100
0x104
0x105
0x106

SRW
SRW
SRW
SRW

sstatus
sie
stvec
scounteren

Supervisor status register.
Supervisor interrupt-enable register.
Supervisor trap handler base address.
Supervisor counter enable.

Supervisor Configuration

0x10A SRW senvcfg Supervisor environment configuration register.

Supervisor Counter Setup

0x120 SRW scountinhibit Supervisor counter-inhibit register.

Supervisor Trap Handling

0x140
0x141
0x142
0x143
0x144
0xDA0

SRW
SRW
SRW
SRW
SRW
SRO

sscratch
sepc
scause
stval
sip
scountovf

Supervisor scratch register.
Supervisor exception program counter.
Supervisor trap cause.
Supervisor trap value.
Supervisor interrupt pending.
Supervisor count overflow.

Supervisor Protection and Translation

0x180 SRW satp Supervisor address translation and protection.

Debug/Trace Registers

0x5A8 SRW scontext Supervisor-mode context register.

Supervisor State Enable Registers

0x10C
0x10D
0x10E
0x10F

SRW
SRW
SRW
SRW

sstateen0
sstateen1
sstateen2
sstateen3

Supervisor State Enable 0 Register.
Supervisor State Enable 1 Register.
Supervisor State Enable 2 Register.
Supervisor State Enable 3 Register.

2.2. CSR Listing | Page 16

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 6. Currently allocated RISC-V hypervisor and VS CSR addresses.

Number Privilege Name Description

Hypervisor Trap Setup

0x600
0x602
0x603
0x604
0x606
0x607
0x612

HRW
HRW
HRW
HRW
HRW
HRW
HRW

hstatus
hedeleg
hideleg
hie
hcounteren
hgeie
hedelegh

Hypervisor status register.
Hypervisor exception delegation register.
Hypervisor interrupt delegation register.
Hypervisor interrupt-enable register.
Hypervisor counter enable.
Hypervisor guest external interrupt-enable register.
Upper 32 bits of hedeleg, RV32 only.

Hypervisor Trap Handling

0x643
0x644
0x645
0x64A
0xE12

HRW
HRW
HRW
HRW
HRO

htval
hip
hvip
htinst
hgeip

Hypervisor trap value.
Hypervisor interrupt pending.
Hypervisor virtual interrupt pending.
Hypervisor trap instruction (transformed).
Hypervisor guest external interrupt pending.

Hypervisor Configuration

0x60A
0x61A

HRW
HRM

henvcfg
henvcfgh

Hypervisor environment configuration register.
Upper 32 bits of henvcfg, RV32 only.

Hypervisor Protection and Translation

0x680 HRW hgatp Hypervisor guest address translation and protection.

Debug/Trace Registers

0x6A8 HRW hcontext Hypervisor-mode context register.

Hypervisor Counter/Timer Virtualization Registers

0x605
0x615

HRW
HRW

htimedelta
htimedeltah

Delta for VS/VU-mode timer.
Upper 32 bits of htimedelta, RV32 only.

Hypervisor State Enable Registers

0x60C
0x60D
0x60E
0x60F
0x61C
0x61D
0x61E
0x61F

HRW
HRW
HRW
HRW
HRW
HRW
HRW
HRW

hstateen0
hstateen1
hstateen2
hstateen3
hstateen0h
hstateen1h
hstateen2h
hstateen3h

Hypervisor State Enable 0 Register.
Hypervisor State Enable 1 Register.
Hypervisor State Enable 2 Register.
Hypervisor State Enable 3 Register.
Upper 32 bits of Hypervisor State Enable 0 Register, RV32 only.
Upper 32 bits of Hypervisor State Enable 1 Register, RV32 only.
Upper 32 bits of Hypervisor State Enable 2 Register, RV32 only.
Upper 32 bits of Hypervisor State Enable 3 Register, RV32 only.

Virtual Supervisor Registers

0x200
0x204
0x205
0x240
0x241
0x242
0x243
0x244
0x280

HRW
HRW
HRW
HRW
HRW
HRW
HRW
HRW
HRW

vsstatus
vsie
vstvec
vsscratch
vsepc
vscause
vstval
vsip
vsatp

Virtual supervisor status register.
Virtual supervisor interrupt-enable register.
Virtual supervisor trap handler base address.
Virtual supervisor scratch register.
Virtual supervisor exception program counter.
Virtual supervisor trap cause.
Virtual supervisor trap value.
Virtual supervisor interrupt pending.
Virtual supervisor address translation and protection.

2.2. CSR Listing | Page 17

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 7. Currently allocated RISC-V machine-level CSR addresses.

Number Privilege Name Description

Machine Information Registers

0xF11
0xF12
0xF13
0xF14
0xF15

MRO
MRO
MRO
MRO
MRO

mvendorid
marchid
mimpid
mhartid
mconfigptr

Vendor ID.
Architecture ID.
Implementation ID.
Hardware thread ID.
Pointer to configuration data structure.

Machine Trap Setup

0x300
0x301
0x302
0x303
0x304
0x305
0x306
0x310
0x312

MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW

mstatus
misa
medeleg
mideleg
mie
mtvec
mcounteren
mstatush
medelegh

Machine status register.
ISA and extensions
Machine exception delegation register.
Machine interrupt delegation register.
Machine interrupt-enable register.
Machine trap-handler base address.
Machine counter enable.
Additional machine status register, RV32 only.
Upper 32 bits of medeleg, RV32 only.

Machine Trap Handling

0x340
0x341
0x342
0x343
0x344
0x34A
0x34B

MRW
MRW
MRW
MRW
MRW
MRW
MRW

mscratch
mepc
mcause
mtval
mip
mtinst
mtval2

Machine scratch register.
Machine exception program counter.
Machine trap cause.
Machine trap value.
Machine interrupt pending.
Machine trap instruction (transformed).
Machine second trap value.

Machine Configuration

0x30A
0x31A
0x747
0x757

MRW
MRW
MRW
MRW

menvcfg
menvcfgh
mseccfg
mseccfgh

Machine environment configuration register.
Upper 32 bits of menvcfg, RV32 only.
Machine security configuration register.
Upper 32 bits of mseccfg, RV32 only.

Machine Memory Protection

0x3A0
0x3A1
0x3A2
0x3A3

0x3AE
0x3AF
0x3B0
0x3B1

0x3EF

MRW
MRW
MRW
MRW

MRW
MRW
MRW
MRW

MRW

pmpcfg0
pmpcfg1
pmpcfg2
pmpcfg3
⋯
pmpcfg14
pmpcfg15
pmpaddr0
pmpaddr1
⋯
pmpaddr63

Physical memory protection configuration.
Physical memory protection configuration, RV32 only.
Physical memory protection configuration.
Physical memory protection configuration, RV32 only.

Physical memory protection configuration.
Physical memory protection configuration, RV32 only.
Physical memory protection address register.
Physical memory protection address register.

Physical memory protection address register.

Machine State Enable Registers

2.2. CSR Listing | Page 18

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Number Privilege Name Description

0x30C
0x30D
0x30E
0x30F
0x31C
0x31D
0x31E
0x31F

MRW
MRW
MRW
MRW
MRW
MRW
MRW
MRW

mstateen0
mstateen1
mstateen2
mstateen3
mstateen0h
mstateen1h
mstateen2h
mstateen3h

Machine State Enable 0 Register.
Machine State Enable 1 Register.
Machine State Enable 2 Register.
Machine State Enable 3 Register.
Upper 32 bits of Machine State Enable 0 Register, RV32 only.
Upper 32 bits of Machine State Enable 1 Register, RV32 only.
Upper 32 bits of Machine State Enable 2 Register, RV32 only.
Upper 32 bits of Machine State Enable 3 Register, RV32 only.

2.2. CSR Listing | Page 19

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 8. Currently allocated RISC-V machine-level CSR addresses.

Number Privilege Name Description

Machine Non-Maskable Interrupt Handling

0x740
0x741
0x742
0x744

MRW
MRW
MRW
MRW

mnscratch
mnepc
mncause
mnstatus

Resumable NMI scratch register.
Resumable NMI program counter.
Resumable NMI cause.
Resumable NMI status.

Machine Counter/Timers

0xB00
0xB02
0xB03
0xB04

0xB1F
0xB80
0xB82
0xB83
0xB84

0xB9F

MRW
MRW
MRW
MRW

MRW
MRW
MRW
MRW
MRW

MRW

mcycle
minstret
mhpmcounter3
mhpmcounter4
⋮
mhpmcounter31
mcycleh
minstreth
mhpmcounter3h
mhpmcounter4h
⋮
mhpmcounter31h

Machine cycle counter.
Machine instructions-retired counter.
Machine performance-monitoring counter.
Machine performance-monitoring counter.

Machine performance-monitoring counter.
Upper 32 bits of mcycle, RV32 only.
Upper 32 bits of minstret, RV32 only.
Upper 32 bits of mhpmcounter3, RV32 only.
Upper 32 bits of mhpmcounter4, RV32 only.

Upper 32 bits of mhpmcounter31, RV32 only.

Machine Counter Setup

0x320
0x323
0x324

0x33F
0x723
0x724

0x73F

MRW
MRW
MRW

MRW
MRW
MRW

MRW

mcountinhibit
mhpmevent3
mhpmevent4
⋮
mhpmevent31
mhpmevent3h
mhpmevent4h
⋮
mhpmevent31h

Machine counter-inhibit register.
Machine performance-monitoring event selector.
Machine performance-monitoring event selector.

Machine performance-monitoring event selector.
Upper 32 bits of mhpmevent3, RV32 only.
Upper 32 bits of mhpmevent4, RV32 only.

Upper 32 bits of mhpmevent31, RV32 only.

Debug/Trace Registers (shared with Debug Mode)

0x7A0
0x7A1
0x7A2
0x7A3
0x7A8

MRW
MRW
MRW
MRW
MRW

tselect
tdata1
tdata2
tdata3
mcontext

Debug/Trace trigger register select.
First Debug/Trace trigger data register.
Second Debug/Trace trigger data register.
Third Debug/Trace trigger data register.
Machine-mode context register.

Debug Mode Registers

0x7B0
0x7B1
0x7B2
0x7B3

DRW
DRW
DRW
DRW

dcsr
dpc
dscratch0
dscratch1

Debug control and status register.
Debug program counter.
Debug scratch register 0.
Debug scratch register 1.

2.3. CSR Field Specifications

The following definitions and abbreviations are used in specifying the behavior of fields within the
CSRs.

2.3.1. Reserved Writes Preserve Values, Reads Ignore Values (WPRI)

2.3. CSR Field Specifications | Page 20

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Some whole read/write fields are reserved for future use. Software should ignore the values read from
these fields, and should preserve the values held in these fields when writing values to other fields of
the same register. For forward compatibility, implementations that do not furnish these fields must
make them read-only zero. These fields are labeled WPRI in the register descriptions.



To simplify the software model, any backward-compatible future definition of
previously reserved fields within a CSR must cope with the possibility that a non-
atomic read/modify/write sequence is used to update other fields in the CSR.
Alternatively, the original CSR definition must specify that subfields can only be
updated atomically, which may require a two-instruction clear bit/set bit sequence in
general that can be problematic if intermediate values are not legal.

2.3.2. Write/Read Only Legal Values (WLRL)

Some read/write CSR fields specify behavior for only a subset of possible bit encodings, with other bit
encodings reserved. Software should not write anything other than legal values to such a field, and
should not assume a read will return a legal value unless the last write was of a legal value, or the
register has not been written since another operation (e.g., reset) set the register to a legal value.
These fields are labeled WLRL in the register descriptions.


Hardware implementations need only implement enough state bits to differentiate
between the supported values, but must always return the complete specified bit-
encoding of any supported value when read.

Implementations are permitted but not required to raise an illegal-instruction exception if an
instruction attempts to write a non-supported value to a WLRL field. Implementations can return
arbitrary bit patterns on the read of a WLRL field when the last write was of an illegal value, but the
value returned should deterministically depend on the illegal written value and the value of the field
prior to the write.

2.3.3. Write Any Values, Reads Legal Values (WARL)

Some read/write CSR fields are only defined for a subset of bit encodings, but allow any value to be
written while guaranteeing to return a legal value whenever read. Assuming that writing the CSR has no
other side effects, the range of supported values can be determined by attempting to write a desired
setting then reading to see if the value was retained. These fields are labeled WARL in the register
descriptions.

Implementations will not raise an exception on writes of unsupported values to a WARL field.
Implementations can return any legal value on the read of a WARL field when the last write was of an
illegal value, but the legal value returned should deterministically depend on the illegal written value
and the architectural state of the hart.

2.4. CSR Field Modulation

If a write to one CSR changes the set of legal values allowed for a field of a second CSR, then unless
specified otherwise, the second CSR’s field immediately gets an UNSPECIFIED value from among its new
legal values. This is true even if the field’s value before the write remains legal after the write; the value
of the field may be changed in consequence of the write to the controlling CSR.

 As a special case of this rule, the value written to one CSR may control whether a

2.4. CSR Field Modulation | Page 21

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

field of a second CSR is writable (with multiple legal values) or is read-only. When a
write to the controlling CSR causes the second CSR’s field to change from previously
read-only to now writable, that field immediately gets an UNSPECIFIED but legal value,
unless specified otherwise.

Some CSR fields are, when writable, defined as aliases of other CSR fields. Let x be
such a CSR field, and let y be the CSR field it aliases when writable. If a write to a
controlling CSR causes field x to change from previously read-only to now writable,
the new value of x is not UNSPECIFIED but instead immediately reflects the existing
value of its alias y, as required.

A change to the value of a CSR for this reason is not a write to the affected CSR and thus does not
trigger any side effects specified for that CSR.

2.5. Implicit Reads of CSRs

Implementations sometimes perform implicit reads of CSRs. (For example, all S-mode instruction
fetches implicitly read the satp CSR.) Unless otherwise specified, the value returned by an implicit read
of a CSR is the same value that would have been returned by an explicit read of the CSR, using a CSR-
access instruction in a sufficient privilege mode.

2.6. CSR Width Modulation

If the width of a CSR is changed (for example, by changing SXLEN or UXLEN, as described in Section
3.1.6.3), the values of the writable fields and bits of the new-width CSR are, unless specified otherwise,
determined from the previous-width CSR as though by this algorithm:

1. The value of the previous-width CSR is copied to a temporary register of the same width.

2. For the read-only bits of the previous-width CSR, the bits at the same positions in the temporary
register are set to zeros.

3. The width of the temporary register is changed to the new width. If the new width W is narrower
than the previous width, the least-significant W bits of the temporary register are retained and the
more-significant bits are discarded. If the new width is wider than the previous width, the
temporary register is zero-extended to the wider width.

4. Each writable field of the new-width CSR takes the value of the bits at the same positions in the
temporary register.

Changing the width of a CSR is not a read or write of the CSR and thus does not trigger any side
effects.

2.7. Explicit Accesses to CSRs Wider than XLEN

If a standard CSR is wider than XLEN bits, then an explicit read of the CSR returns the register’s least-
significant XLEN bits, and an explicit write to the CSR modifies only the register’s least-significant
XLEN bits, leaving the upper bits unchanged.

Some standard CSRs, such as the counter CSRs of extension Zicntr, are always 64 bits, even when
XLEN=32 (RV32). For each such 64-bit CSR (for example, counter time), a corresponding 32-bit high-

2.5. Implicit Reads of CSRs | Page 22

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

half CSR is usually defined with the same name but with the letter ‘h’ appended at the end (timeh). The
high-half CSR aliases bits 63:32 of its namesake 64-bit CSR, thus providing a way for RV32 software to
read and modify the otherwise-unreachable 32 bits.

Standard high-half CSRs are accessible only when the base RISC-V instruction set is RV32 (XLEN=32).
For RV64 (when XLEN=64), the addresses of all standard high-half CSRs are reserved, so an attempt to
access a high-half CSR typically raises an illegal-instruction exception.

2.7. Explicit Accesses to CSRs Wider than XLEN | Page 23

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 3. Machine-Level ISA, Version 1.13

This chapter describes the machine-level operations available in machine-mode (M-mode), which is
the highest privilege mode in a RISC-V hart. M-mode is used for low-level access to a hardware
platform and is the first mode entered at reset. M-mode can also be used to implement features that
are too difficult or expensive to implement in hardware directly. The RISC-V machine-level ISA
contains a common core that is extended depending on which other privilege levels are supported and
other details of the hardware implementation.

3.1. Machine-Level CSRs

In addition to the machine-level CSRs described in this section, M-mode code can access all CSRs at
lower privilege levels.

3.1.1. Machine ISA (misa) Register

The misa CSR is a WARL read-write register reporting the ISA supported by the hart. This register must
be readable in any implementation, but a value of zero can be returned to indicate the misa register
has not been implemented, requiring that CPU capabilities be determined through a separate non-
standard mechanism.

MXLEN-1 MXLEN-2 MXLEN-3 26 25 0

MXL[1:0] (WARL) 0 (WARL) Extensions[25:0] (WARL)

2 MXLEN-28 26

Figure 2. Machine ISA register (misa)

The MXL (Machine XLEN) field encodes the native base integer ISA width as shown in Table 9. The
MXL field is read-only. If misa is nonzero, the MXL field indicates the effective XLEN in M-mode, a
constant termed MXLEN. XLEN is never greater than MXLEN, but XLEN might be smaller than MXLEN
in less-privileged modes.

Table 9. Encoding of MXL field in misa

MXL XLEN

1
2
3

32
64

128

The misa CSR is MXLEN bits wide.



The base width can be quickly ascertained using branches on the sign of the returned
misa value, and possibly a shift left by one and a second branch on the sign. These
checks can be written in assembly code without knowing the register width (MXLEN)
of the hart. The base width is given by MXLEN=2MXL+4.

The base width can also be found if misa is zero, by placing the immediate 4 in a
register, then shifting the register left by 31 bits at a time. If zero after one shift, then
the hart is RV32. If zero after two shifts, then the hart is RV64, else RV128.

The Extensions field encodes the presence of the standard extensions, with a single bit per letter of
the alphabet (bit 0 encodes presence of extension "A" , bit 1 encodes presence of extension "B",
through to bit 25 which encodes "Z"). The "I" bit will be set for RV32I, RV64I, and RV128I base ISAs,

3.1. Machine-Level CSRs | Page 24

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

and the "E" bit will be set for RV32E and RV64E. The Extensions field is a WARL field that can contain
writable bits where the implementation allows the supported ISA to be modified. At reset, the
Extensions field shall contain the maximal set of supported extensions, and "I" shall be selected over
"E" if both are available.

When a standard extension is disabled by clearing its bit in misa, the instructions and CSRs defined or
modified by the extension revert to their defined or reserved behaviors as if the extension is not
implemented.



For a given RISC-V execution environment, an instruction, extension, or other feature
of the RISC-V ISA is ordinarily judged to be implemented or not by the observable
execution behavior in that environment. For example, the F extension is said to be
implemented for an execution environment if and only if the instructions that the
RISC-V Unprivileged ISA defines for F execute as specified.

With this definition of implemented, disabling an extension by clearing its bit in misa
results in the extension being considered not implemented in M-mode. For example,
setting misa.F=0 results in the F extension being not implemented for M-mode,
because the F extension’s instructions will not act as the Unprivileged ISA requires
but may instead raise an illegal-instruction exception.

Defining the term implemented based strictly on the observable behavior might
conflict with other common understandings of the same word. In particular, although
common usage may allow for the combination "implemented but disabled," in this
document it is considered a contradiction of terms, because disabled implies
execution will not behave as required for the feature to be considered implemented.
In the same vein, "implemented and enabled" is redundant here; "implemented"
suffices.

Table 10. Encoding of Extensions field in misa. All bits that are reserved for future use must return zero
when read.

3.1. Machine-Level CSRs | Page 25

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Bit Character Description

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A
B
C
D
E
F
G
H
I
J
K
L

M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Atomic extension
B extension
Compressed extension
Double-precision floating-point extension
RV32E/64E base ISA
Single-precision floating-point extension
Reserved
Hypervisor extension
RV32I/64I/128I base ISA
Reserved
Reserved
Reserved
Integer Multiply/Divide extension
Tentatively reserved for User-Level Interrupts extension
Reserved
Tentatively reserved for Packed-SIMD extension
Quad-precision floating-point extension
Reserved
Supervisor mode implemented
Reserved
User mode implemented
Vector extension
Reserved
Non-standard extensions present
Reserved
Reserved

The design of the RV128I base ISA is not yet complete, and while much of the remainder of this
specification is expected to apply to RV128, this version of the document focuses only on RV32 and
RV64.

The "U" and "S" bits will be set if there is support for user and supervisor modes respectively.

The "X" bit will be set if there are any non-standard extensions.

When "B" bit is 1, the implementation supports the instructions provided by the Zba, Zbb, and Zbs
extensions. When "B" bit is 0, it indicates that the implementation may not support one or more of the
Zba, Zbb, or Zbs extensions.



The misa CSR exposes a rudimentary catalog of CPU features to machine-mode code.
More extensive information can be obtained in machine mode by probing other
machine registers, and examining other ROM storage in the system as part of the
boot process.

We require that lower privilege levels execute environment calls instead of reading
CPU registers to determine features available at each privilege level. This enables
virtualization layers to alter the ISA observed at any level, and supports a much richer
command interface without burdening hardware designs.

The "E" bit is read-only. Unless misa is all read-only zero, the "E" bit always reads as the complement of
the "I" bit. If an execution environment supports both RV32E and RV32I, software can select RV32E by
clearing the "I" bit.

3.1. Machine-Level CSRs | Page 26

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

If an ISA feature x depends on an ISA feature y, then attempting to enable feature x but disable
feature y results in both features being disabled. For example, setting "F"=0 and "D"=1 results in both
"F" and "D" being cleared.

An implementation may impose additional constraints on the collective setting of two or more misa
fields, in which case they function collectively as a single WARL field. An attempt to write an
unsupported combination causes those bits to be set to some supported combination.

Writing misa may increase IALIGN, e.g., by disabling the "C" extension. If an instruction that would write
misa increases IALIGN, and the subsequent instruction’s address is not IALIGN-bit aligned, the write
to misa is suppressed, leaving misa unchanged.

When software enables an extension that was previously disabled, then all state uniquely associated
with that extension is UNSPECIFIED, unless otherwise specified by that extension.



Although one of the bits 25—0 in misa being set to 1 implies that the corresponding
feature is implemented, the inverse is not necessarily true: one of these bits being
clear does not necessarily imply that the corresponding feature is not implemented.
This follows from the fact that, when a feature is not implemented, the corresponding
opcodes and CSRs become reserved, not necessarily illegal.

3.1.2. Machine Vendor ID (mvendorid) Register

The mvendorid CSR is a 32-bit read-only register providing the JEDEC manufacturer ID of the provider
of the core. This register must be readable in any implementation, but a value of 0 can be returned to
indicate the field is not implemented or that this is a non-commercial implementation.

31 7 6 0

Bank Offset

25 7

Figure 3. Vendor ID register (mvendorid)

JEDEC manufacturer IDs are ordinarily encoded as a sequence of one-byte continuation codes 0x7f,
terminated by a one-byte ID not equal to 0x7f, with an odd parity bit in the most-significant bit of each
byte. mvendorid encodes the number of one-byte continuation codes in the Bank field, and encodes the
final byte in the Offset field, discarding the parity bit. For example, the JEDEC manufacturer ID 0x7f
0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x7f 0x8a (twelve continuation codes followed by 0x8a)
would be encoded in the mvendorid CSR as 0x60a.



In JEDEC’s parlance, the bank number is one greater than the number of
continuation codes; hence, the mvendorid Bank field encodes a value that is one less
than the JEDEC bank number.

Previously the vendor ID was to be a number allocated by RISC-V International, but
this duplicates the work of JEDEC in maintaining a manufacturer ID standard. At time
of writing, registering a manufacturer ID with JEDEC has a one-time cost of $500.

3.1.3. Machine Architecture ID (marchid) Register

The marchid CSR is an MXLEN-bit read-only register encoding the base microarchitecture of the hart.
This register must be readable in any implementation, but a value of 0 can be returned to indicate the

3.1. Machine-Level CSRs | Page 27

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

field is not implemented. The combination of mvendorid and marchid should uniquely identify the type of
hart microarchitecture that is implemented.

MXLEN-1 0

Architecture ID

MXLEN

Figure 4. Machine Architecture ID (marchid) register

Open-source project architecture IDs are allocated globally by RISC-V International, and have non-
zero architecture IDs with a zero most-significant-bit (MSB). Commercial architecture IDs are
allocated by each commercial vendor independently, but must have the MSB set and cannot contain
zero in the remaining MXLEN-1 bits.



The intent is for the architecture ID to represent the microarchitecture associated
with the repo around which development occurs rather than a particular organization.
Commercial fabrications of open-source designs should (and might be required by
the license to) retain the original architecture ID. This will aid in reducing
fragmentation and tool support costs, as well as provide attribution. Open-source
architecture IDs are administered by RISC-V International and should only be
allocated to released, functioning open-source projects. Commercial architecture IDs
can be managed independently by any registered vendor but are required to have IDs
disjoint from the open-source architecture IDs (MSB set) to prevent collisions if a
vendor wishes to use both closed-source and open-source microarchitectures.

The convention adopted within the following Implementation field can be used to
segregate branches of the same architecture design, including by organization. The
misa register also helps distinguish different variants of a design.

3.1.4. Machine Implementation ID (mimpid) Register

The mimpid CSR provides a unique encoding of the version of the processor implementation. This
register must be readable in any implementation, but a value of 0 can be returned to indicate that the
field is not implemented. The Implementation value should reflect the design of the RISC-V processor
itself and not any surrounding system.

MXLEN-1 0

Implementation

MXLEN

Figure 5. Machine Implementation ID (mimpid) register



The format of this field is left to the provider of the architecture source code, but will
often be printed by standard tools as a hexadecimal string without any leading or
trailing zeros, so the Implementation value can be left-justified (i.e., filled in from
most-significant nibble down) with subfields aligned on nibble boundaries to ease
human readability.

3.1.5. Hart ID (mhartid) Register

The mhartid CSR is an MXLEN-bit read-only register containing the integer ID of the hardware thread
running the code. This register must be readable in any implementation. Hart IDs might not
necessarily be numbered contiguously in a multiprocessor system, but at least one hart must have a
hart ID of zero. Hart IDs must be unique within the execution environment.

3.1. Machine-Level CSRs | Page 28

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

MXLEN-1 0

Hart ID

MXLEN

Figure 6. Hart ID (mhartid) register



In certain cases, we must ensure exactly one hart runs some code (e.g., at reset), and
so require one hart to have a known hart ID of zero.

For efficiency, system implementers should aim to reduce the magnitude of the
largest hart ID used in a system.

3.1.6. Machine Status (mstatus and mstatush) Registers

The mstatus register is an MXLEN-bit read/write register formatted as shown in Figure 7 for RV32 and
Figure 8 for RV64. The mstatus register keeps track of and controls the hart’s current operating state. A
restricted view of mstatus appears as the sstatus register in the S-level ISA.

0123456789101112131415

WPRISIEWPRIMIEWPRISPIEUBEMPIESPPVS[1:0]MPP[1:0]FS[1:0]XS[1:0]

161718192021222324253031

XS[1:0]MPRVSUMMXRTVMTWTSRSPELPSDTWPRISD

Figure 7. Machine-mode status (mstatus) register for RV32

0123456789101112131415

WPRISIEWPRIMIEWPRISPIEUBEMPIESPPVS[1:0]MPP[1:0]FS[1:0]XS[1:0]

1617181920212223242531

XS[1:0]MPRVSUMMXRTVMTWTSRSPELPSDTWPRI

32333435363738394041424347

UXL[1:0]SXL[1:0]SBEMBEGVAMPVWPRIMPELPMDTWPRI

486263

WPRISD

Figure 8. Machine-mode status (mstatus) register for RV64

For RV32 only, mstatush is a 32-bit read/write register formatted as shown in Figure 9. Bits 30:4 of
mstatush generally contain the same fields found in bits 62:36 of mstatus for RV64. Fields SD, SXL, and
UXL do not exist in mstatush.

03456789101115

WPRISBEMBEGVAMPVWPRIMPELPMDTWPRI

1631

WPRI

Figure 9. Additional machine-mode status (mstatush) register for RV32.

3.1.6.1. Privilege and Global Interrupt-Enable Stack in mstatus register

Global interrupt-enable bits, MIE and SIE, are provided for M-mode and S-mode respectively. These
bits are primarily used to guarantee atomicity with respect to interrupt handlers in the current privilege
mode.


The global xIE bits are located in the low-order bits of mstatus, allowing them to be
atomically set or cleared with a single CSR instruction.

When a hart is executing in privilege mode x, interrupts are globally enabled when xIE=1 and globally

3.1. Machine-Level CSRs | Page 29

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

disabled when xIE=0. Interrupts for lower-privilege modes, w<x, are always globally disabled
regardless of the setting of any global wIE bit for the lower-privilege mode. Interrupts for higher-
privilege modes, y>x, are always globally enabled regardless of the setting of the global yIE bit for the
higher-privilege mode. Higher-privilege-level code can use separate per-interrupt enable bits to
disable selected higher-privilege-mode interrupts before ceding control to a lower-privilege mode.


A higher-privilege mode y could disable all of its interrupts before ceding control to a
lower-privilege mode but this would be unusual as it would leave only a synchronous
trap, non-maskable interrupt, or reset as means to regain control of the hart.

To support nested traps, each privilege mode x that can respond to interrupts has a two-level stack of
interrupt-enable bits and privilege modes. xPIE holds the value of the interrupt-enable bit active prior
to the trap, and xPP holds the previous privilege mode. The xPP fields can only hold privilege modes
up to x, so MPP is two bits wide and SPP is one bit wide. When a trap is taken from privilege mode y
into privilege mode x, xPIE is set to the value of xIE; xIE is set to 0; and xPP is set to y.



For lower privilege modes, any trap (synchronous or asynchronous) is usually taken at
a higher privilege mode with interrupts disabled upon entry. The higher-level trap
handler will either service the trap and return using the stacked information, or, if not
returning immediately to the interrupted context, will save the privilege stack before
re-enabling interrupts, so only one entry per stack is required.

An MRET or SRET instruction is used to return from a trap in M-mode or S-mode respectively. When
executing an xRET instruction, supposing xPP holds the value y, xIE is set to xPIE; the privilege mode
is changed to y; xPIE is set to 1; and xPP is set to the least-privileged supported mode (U if U-mode is
implemented, else M). If y≠M, xRET also sets MPRV=0.


Setting xPP to the least-privileged supported mode on an xRET helps identify
software bugs in the management of the two-level privilege-mode stack.



Trap handlers must be designed to neither enable interrupts nor cause exceptions
during the phase of handling where the trap handler preserves the critical state
information required to handle and resume from the trap. An exception or interrupt in
this critical phase of trap handling may lead to a trap that can overwrite such critical
state. This could result in the loss of data needed to recover from the initial trap.
Further, if an exception occurs in the code path needed to handle traps, then such a
situation may lead to an infinite loop of traps. To prevent this, trap handlers must be
meticulously designed to identify and safely manage exceptions within their
operational flow.

xPP fields are WARL fields that can hold only privilege mode x and any implemented privilege mode
lower than x. If privilege mode x is not implemented, then xPP must be read-only 0.



M-mode software can determine whether a privilege mode is implemented by writing
that mode to MPP then reading it back.

If the machine provides only U and M modes, then only a single hardware storage bit
is required to represent either 00 or 11 in MPP.

3.1.6.2. Double Trap Control in mstatus Register

A double trap typically arises during a sensitive phase in trap handling operations — when an exception

3.1. Machine-Level CSRs | Page 30

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

or interrupt occurs while the trap handler (the component responsible for managing these events) is in
a non-reentrant state. This non-reentrancy usually occurs in the early phase of trap handling, wherein
the trap handler has not yet preserved the necessary state to handle and resume from the trap. The
occurrence of a trap during this phase can lead to an overwrite of critical state information, resulting in
the loss of data needed to recover from the initial trap. The trap that caused this critical error
condition is henceforth called the unexpected trap. Trap handlers are designed to neither enable
interrupts nor cause exceptions during this phase of handling. However, managing Hardware-Error
exceptions, which may occur unpredictably, presents significant challenges in trap handler
implementation due to the potential risk of a double trap.

The M-mode-disable-trap (MDT) bit is a WARL field introduced by the Smdbltrp extension. Upon reset,
the MDT field is set to 1. When the MDT bit is set to 1 by an explicit CSR write, the MIE (Machine Interrupt
Enable) bit is cleared to 0. For RV64, this clearing occurs regardless of the value written, if any, to the
MIE bit by the same write. The MIE bit can only be set to 1 by an explicit CSR write if the MDT bit is
already 0 or, for RV64, is being set to 0 by the same write (For RV32, the MDT bit is in mstatush and the
MIE bit in mstatus register).

When a trap is to be taken into M-mode, if the MDT bit is currently 0, it is then set to 1, and the trap is
delivered as expected. However, if MDT is already set to 1, then this is an unexpected trap. When the
Smrnmi extension is implemented, a trap caused by an RNMI is not considered an unexpected trap
irrespective of the state of the MDT bit. A trap caused by an RNMI does not set the MDT bit. However, a
trap that occurs when executing in M-mode with mnstatus.NMIE set to 0 is an unexpected trap.

In the event of a unexpected trap, the handling is as follows:

⚫ When the Smrnmi extension is implemented and mnstatus.NMIE is 1, the hart traps to the RNMI
handler. To deliver this trap, the mnepc and mncause registers are written with the values that the
unexpected trap would have written to the mepc and mcause registers respectively. The privilege
mode information fields in the mnstatus register are written to indicate M-mode and its NMIE field is
set to 0.



The consequence of this specification is that on occurrence of double trap the RNMI
handler is not provided with information that a trap reports in the mtval and the mtval2
registers. This information, if needed, can be obtained by the RNMI handler by
decoding the instruction at the address in mnepc and examining its source register
contents.

⚫ When the Smrnmi extension is not implemented, or if the Smrnmi extension is implemented and
mnstatus.NMIE is 0, the hart enters a critical-error state without updating any architectural state,
including the pc. This state involves ceasing execution, disabling all interrupts (including NMIs),
and asserting a critical-error signal to the platform.


The actions performed by the platform when a hart asserts a critical-error signal are
platform-specific. The range of possible actions include restarting the affected hart
or restarting the entire platform, among others.

The MRET and SRET instructions, when executed in M-mode, set the MDT bit to 0. If the new privilege
mode is U, VS, or VU, then sstatus.SDT is also set to 0. Additionally, if it is VU, then vsstatus.SDT is also
set to 0.

The MNRET instruction, provided by the Smrnmi extension, sets the MDT bit to 0 if the new privilege mode
is not M. If it is U, VS, or VU, then sstatus.SDT is also set to 0. Additionally, if it is VU, then vsstatus.SDT
is also set to 0.

3.1. Machine-Level CSRs | Page 31

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

3.1.6.3. Base ISA Control in mstatus Register

For RV64 harts, the SXL and UXL fields are WARL fields that control the value of XLEN for S-mode and
U-mode, respectively. The encoding of these fields is the same as the MXL field of misa, shown in Table
9. The effective XLEN in S-mode and U-mode are termed SXLEN and UXLEN, respectively.

When MXLEN=32, the SXL and UXL fields do not exist, and SXLEN=32 and UXLEN=32.

When MXLEN=64, if S-mode is not supported, then SXL is read-only zero. Otherwise, it is a WARL field
that encodes the current value of SXLEN. In particular, an implementation may make SXL be a read-
only field whose value always ensures that SXLEN=MXLEN.

When MXLEN=64, if U-mode is not supported, then UXL is read-only zero. Otherwise, it is a WARL
field that encodes the current value of UXLEN. In particular, an implementation may make UXL be a
read-only field whose value always ensures that UXLEN=MXLEN or UXLEN=SXLEN.

If S-mode is implemented, the set of legal values that the UXL field may assume excludes those that
would cause UXLEN to be greater than SXLEN.

Whenever XLEN in any mode is set to a value less than the widest supported XLEN, all operations must
ignore source operand register bits above the configured XLEN, and must sign-extend results to fill the
entire widest supported XLEN in the destination register. Similarly, pc bits above XLEN are ignored,
and when the pc is written, it is sign-extended to fill the widest supported XLEN.



We require that operations always fill the entire underlying hardware registers with
defined values to avoid implementation-defined behavior.

To reduce hardware complexity, the architecture imposes no checks that lower-
privilege modes have XLEN settings less than or equal to the next-higher privilege
mode. In practice, such settings would almost always be a software bug, but machine
operation is well-defined even in this case.

Some HINT instructions are encoded as integer computational instructions that overwrite their
destination register with its current value, e.g., c.addi x8, 0. When such a HINT is executed with XLEN
< MXLEN and bits MXLEN..XLEN of the destination register not all equal to bit XLEN-1, it is
implementation-defined whether bits MXLEN..XLEN of the destination register are unchanged or are
overwritten with copies of bit XLEN-1.



This definition allows implementations to elide register writeback for some HINTs,
while allowing them to execute other HINTs in the same manner as other integer
computational instructions. The implementation choice is observable only by
privilege modes with an XLEN setting greater than the current XLEN; it is invisible to
the current privilege mode.

3.1.6.4. Memory Privilege in mstatus Register

The MPRV (Modify PRiVilege) bit modifies the effective privilege mode, i.e., the privilege level at which
loads and stores execute. When MPRV=0, loads and stores behave as normal, using the translation and
protection mechanisms of the current privilege mode. When MPRV=1, load and store memory
addresses are translated and protected, and endianness is applied, as though the current privilege
mode were set to MPP. Instruction address-translation and protection are unaffected by the setting of
MPRV. MPRV is read-only 0 if U-mode is not supported.

3.1. Machine-Level CSRs | Page 32

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

An MRET or SRET instruction that changes the privilege mode to a mode less privileged than M also
sets MPRV=0.

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 67) will succeed. When
MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed. MXR has no
effect when page-based virtual memory is not in effect. MXR is read-only 0 if S-mode is not supported.



The MPRV and MXR mechanisms were conceived to improve the efficiency of M-
mode routines that emulate missing hardware features, e.g., misaligned loads and
stores. MPRV obviates the need to perform address translation in software. MXR
allows instruction words to be loaded from pages marked execute-only.

The current privilege mode and the privilege mode specified by MPP might have
different XLEN settings. When MPRV=1, load and store memory addresses are
treated as though the current XLEN were set to MPP’s XLEN, following the rules in
Section 3.1.6.3.

The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode loads
and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode (U=1 in Figure 67) will fault. When SUM=1, these accesses are permitted. SUM
has no effect when page-based virtual memory is not in effect. Note that, while SUM is ordinarily
ignored when not executing in S-mode, it is in effect when MPRV=1 and MPP=S. SUM is read-only 0 if
S-mode is not supported or if satp.MODE is read-only 0.

The MXR and SUM mechanisms only affect the interpretation of permissions encoded in page-table
entries. In particular, they have no impact on whether access-fault exceptions are raised due to PMAs
or PMP.

3.1.6.5. Endianness Control in mstatus and mstatush Registers

The MBE, SBE, and UBE bits in mstatus and mstatush are WARL fields that control the endianness of
memory accesses other than instruction fetches. Instruction fetches are always little-endian.

MBE controls whether non-instruction-fetch memory accesses made from M-mode (assuming
mstatus.MPRV=0) are little-endian (MBE=0) or big-endian (MBE=1).

If S-mode is not supported, SBE is read-only 0. Otherwise, SBE controls whether explicit load and store
memory accesses made from S-mode are little-endian (SBE=0) or big-endian (SBE=1).

If U-mode is not supported, UBE is read-only 0. Otherwise, UBE controls whether explicit load and
store memory accesses made from U-mode are little-endian (UBE=0) or big-endian (UBE=1).

For implicit accesses to supervisor-level memory management data structures, such as page tables,
endianness is always controlled by SBE. Since changing SBE alters the implementation’s interpretation
of these data structures, if any such data structures remain in use across a change to SBE, M-mode
software must follow such a change to SBE by executing an SFENCE.VMA instruction with rs1=x0 and
rs2=x0.



Only in contrived scenarios will a given memory-management data structure be
interpreted as both little-endian and big-endian. In practice, SBE will only be
changed at runtime on world switches, in which case neither the old nor new
memory-management data structure will be reinterpreted in a different endianness.

3.1. Machine-Level CSRs | Page 33

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

In this case, no additional SFENCE.VMA is necessary, beyond what would ordinarily
be required for a world switch.

If S-mode is supported, an implementation may make SBE be a read-only copy of MBE. If U-mode is
supported, an implementation may make UBE be a read-only copy of either MBE or SBE.



An implementation supports only little-endian memory accesses if fields MBE, SBE,
and UBE are all read-only 0. An implementation supports only big-endian memory
accesses (aside from instruction fetches) if MBE is read-only 1 and SBE and UBE are
each read-only 1 when S-mode and U-mode are supported.

Volume I defines a hart’s address space as a circular sequence of 2XLEN bytes at
consecutive addresses. The correspondence between addresses and byte locations is
fixed and not affected by any endianness mode. Rather, the applicable endianness
mode determines the order of mapping between memory bytes and a multibyte
quantity (halfword, word, etc.).

Standard RISC-V ABIs are expected to be purely little-endian-only or big-endian-
only, with no accommodation for mixing endianness. Nevertheless, endianness
control has been defined so as to permit, for instance, an OS of one endianness to
execute user-mode programs of the opposite endianness. Consideration has been
given also to the possibility of non-standard usages whereby software flips the
endianness of memory accesses as needed.

RISC-V instructions are uniformly little-endian to decouple instruction encoding from
the current endianness settings, for the benefit of both hardware and software.
Otherwise, for instance, a RISC-V assembler or disassembler would always need to
know the intended active endianness, despite that the endianness mode might
change dynamically during execution. In contrast, by giving instructions a fixed
endianness, it is sometimes possible for carefully written software to be endianness-
agnostic even in binary form, much like position-independent code.

The choice to have instructions be only little-endian does have consequences,
however, for RISC-V software that encodes or decodes machine instructions. In big-
endian mode, such software must account for the fact that explicit loads and stores
have endianness opposite that of instructions, for example by swapping byte order
after loads and before stores.

3.1.6.6. Virtualization Support in mstatus Register

The TVM (Trap Virtual Memory) bit is a WARL field that supports intercepting supervisor virtual-
memory management operations. When TVM=1, attempts to read or write the satp CSR or execute an
SFENCE.VMA or SINVAL.VMA instruction while executing in S-mode will raise an illegal-instruction
exception. When TVM=0, these operations are permitted in S-mode. TVM is read-only 0 when S-mode
is not supported.

 The TVM mechanism improves virtualization efficiency by permitting guest operating

3.1. Machine-Level CSRs | Page 34

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

systems to execute in S-mode, rather than classically virtualizing them in U-mode.
This approach obviates the need to trap accesses to most S-mode CSRs.

Trapping satp accesses and the SFENCE.VMA and SINVAL.VMA instructions provides
the hooks necessary to lazily populate shadow page tables.

The TW (Timeout Wait) bit is a WARL field that supports intercepting the WFI instruction (see Section
3.3.3). When TW=0, the WFI instruction may execute in lower privilege modes when not prevented for
some other reason. When TW=1, then if WFI is executed in any less-privileged mode, and it does not
complete within an implementation-specific, bounded time limit, the WFI instruction causes an illegal-
instruction exception. An implementation may have WFI always raise an illegal-instruction exception in
less-privileged modes when TW=1, even if there are pending globally-disabled interrupts when the
instruction is executed. TW is read-only 0 when there are no modes less privileged than M.


Trapping the WFI instruction can trigger a world switch to another guest OS, rather
than wastefully idling in the current guest.

When S-mode is implemented, then executing WFI in U-mode causes an illegal-instruction exception,
unless it completes within an implementation-specific, bounded time limit. A future revision of this
specification might add a feature that allows S-mode to selectively permit WFI in U-mode. Such a
feature would only be active when TW=0.

The TSR (Trap SRET) bit is a WARL field that supports intercepting the supervisor exception return
instruction, SRET. When TSR=1, attempts to execute SRET while executing in S-mode will raise an
illegal-instruction exception. When TSR=0, this operation is permitted in S-mode. TSR is read-only 0
when S-mode is not supported.


Trapping SRET is necessary to emulate the hypervisor extension (see Chapter 21) on
implementations that do not provide it.

3.1.6.7. Extension Context Status in mstatus Register

Supporting substantial extensions is one of the primary goals of RISC-V, and hence we define a
standard interface to allow unchanged privileged-mode code, particularly a supervisor-level OS, to
support arbitrary user-mode state extensions.


To date, the V extension is the only standard extension that defines additional state
beyond the floating-point CSR and data registers.

The FS[1:0] and VS[1:0] WARL fields and the XS[1:0] read-only field are used to reduce the cost of
context save and restore by setting and tracking the current state of the floating-point unit and any
other user-mode extensions respectively. The FS field encodes the status of the floating-point unit
state, including the floating-point registers f0–f31 and the CSRs fcsr, frm, and fflags. The VS field
encodes the status of the vector extension state, including the vector registers v0–v31 and the CSRs
vcsr, vxrm, vxsat, vstart, vl, vtype, and vlenb. The XS field encodes the status of additional user-mode
extensions and associated state. These fields can be checked by a context switch routine to quickly
determine whether a state save or restore is required. If a save or restore is required, additional
instructions and CSRs are typically required to effect and optimize the process.


The design anticipates that most context switches will not need to save/restore state
in either or both of the floating-point unit or other extensions, so provides a fast
check via the SD bit.

3.1. Machine-Level CSRs | Page 35

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The FS, VS, and XS fields use the same status encoding as shown in Table 11, with the four possible
status values being Off, Initial, Clean, and Dirty.

Table 11. Encoding of FS[1:0], VS[1:0], and XS[1:0] status fields

Status FS and VS Meaning XS Meaning

0
1
2
3

Off
Initial
Clean
Dirty

All off
None dirty or clean, some on
None dirty, some clean
Some dirty

If the F extension is implemented, the FS field shall not be read-only zero.

If neither the F extension nor S-mode is implemented, then FS is read-only zero. If S-mode is
implemented but the F extension is not, FS may optionally be read-only zero.



Implementations with S-mode but without the F extension are permitted, but not
required, to make the FS field be read-only zero. Some such implementations will
choose not to have the FS field be read-only zero, so as to enable emulation of the F
extension for both S-mode and U-mode via invisible traps into M-mode.

If the v registers are implemented, the VS field shall not be read-only zero.

If neither the v registers nor S-mode is implemented, then VS is read-only zero. If S-mode is
implemented but the v registers are not, VS may optionally be read-only zero.

In harts without additional user extensions requiring new state, the XS field is read-only zero. Every
additional extension with state provides a CSR field that encodes the equivalent of the XS states. The
XS field represents a summary of all extensions' status as shown in Table 11.


The XS field effectively reports the maximum status value across all user-extension
status fields, though individual extensions can use a different encoding than XS.

The SD bit is a read-only bit that summarizes whether either the FS, VS, or XS fields signal the
presence of some dirty state that will require saving extended user context to memory. If FS, XS, and
VS are all read-only zero, then SD is also always zero.

When an extension’s status is set to Off, any instruction that attempts to read or write the
corresponding state will cause an illegal-instruction exception. When the status is Initial, the
corresponding state should have an initial constant value. When the status is Clean, the corresponding
state is potentially different from the initial value, but matches the last value stored on a context swap.
When the status is Dirty, the corresponding state has potentially been modified since the last context
save.

During a context save, the responsible privileged code need only write out the corresponding state if
its status is Dirty, and can then reset the extension’s status to Clean. During a context restore, the
context need only be loaded from memory if the status is Clean (it should never be Dirty at restore). If
the status is Initial, the context must be set to an initial constant value on context restore to avoid a
security hole, but this can be done without accessing memory. For example, the floating-point registers
can all be initialized to the immediate value 0.

The FS and XS fields are read by the privileged code before saving the context. The FS field is set
directly by privileged code when resuming a user context, while the XS field is set indirectly by writing

3.1. Machine-Level CSRs | Page 36

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

to the status register of the individual extensions. The status fields will also be updated during
execution of instructions, regardless of privilege mode.

Extensions to the user-mode ISA often include additional user-mode state, and this state can be
considerably larger than the base integer registers. The extensions might only be used for some
applications, or might only be needed for short phases within a single application. To improve
performance, the user-mode extension can define additional instructions to allow user-mode software
to return the unit to an initial state or even to turn off the unit.

For example, a coprocessor might require to be configured before use and can be "unconfigured" after
use. The unconfigured state would be represented as the Initial state for context save. If the same
application remains running between the unconfigure and the next configure (which would set status
to Dirty), there is no need to actually reinitialize the state at the unconfigure instruction, as all state is
local to the user process, i.e., the Initial state may only cause the coprocessor state to be initialized to
a constant value at context restore, not at every unconfigure.

Executing a user-mode instruction to disable a unit and place it into the Off state will cause an illegal-
instruction exception to be raised if any subsequent instruction tries to use the unit before it is turned
back on. A user-mode instruction to turn a unit on must also ensure the unit’s state is properly
initialized, as the unit might have been used by another context meantime.

Changing the setting of FS has no effect on the contents of the floating-point register state. In
particular, setting FS=Off does not destroy the state, nor does setting FS=Initial clear the contents.
Similarly, the setting of VS has no effect on the contents of the vector register state. Other extensions,
however, might not preserve state when set to Off.

Implementations may choose to track the dirtiness of the floating-point register state imprecisely by
reporting the state to be dirty even when it has not been modified. On some implementations, some
instructions that do not mutate the floating-point state may cause the state to transition from Initial or
Clean to Dirty. On other implementations, dirtiness might not be tracked at all, in which case the valid
FS states are Off and Dirty, and an attempt to set FS to Initial or Clean causes it to be set to Dirty.


This definition of FS does not disallow setting FS to Dirty as a result of errant
speculation. Some platforms may choose to disallow speculatively writing FS to close
a potential side channel.

If an instruction explicitly or implicitly writes a floating-point register or the fcsr but does not alter its
contents, and FS=Initial or FS=Clean, it is implementation-defined whether FS transitions to Dirty.

Implementations may choose to track the dirtiness of the vector register state in an analogous
imprecise fashion, including possibly setting VS to Dirty when software attempts to set VS=Initial or
VS=Clean. When VS=Initial or VS=Clean, it is implementation-defined whether an instruction that
writes a vector register or vector CSR but does not alter its contents causes VS to transition to Dirty.

Table 12 shows all the possible state transitions for the FS, VS, or XS status bits. Note that the
standard floating-point and vector extensions do not support user-mode unconfigure or disable/enable
instructions.

3.1. Machine-Level CSRs | Page 37

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 12. FS, VS, and XS state transitions.

Current State
Action

Off Initial Clean Dirty

At context save in privileged code

Save state?
Next state

No
Off

No
Initial

No
Clean

Yes
Clean

At context restore in privileged code

Restore state?
Next state

No
Off

Yes, to initial
Initial

Yes, from
memory
Clean

N/A
N/A

Execute instruction to read state

Action?
Next state

Exception
Off

Execute
Initial

Execute
Clean

Execute
Dirty

Execute instruction that possibly modifies state, including configuration

Action?
Next state

Exception
Off

Execute
Dirty

Execute
Dirty

Execute
Dirty

Execute instruction to unconfigure unit

Action?
Next state

Exception
Off

Execute
Initial

Execute
Initial

Execute
Initial

Execute instruction to disable unit

Action?
Next state

Execute
Off

Execute
Off

Execute
Off

Execute
Off

Execute instruction to enable unit

Action?
Next state

Execute
Initial

Execute
Initial

Execute
Initial

Execute
Initial

Standard privileged instructions to initialize, save, and restore extension state are provided to insulate
privileged code from details of the added extension state by treating the state as an opaque object.



Many coprocessor extensions are only used in limited contexts that allows software
to safely unconfigure or even disable units when done. This reduces the context-
switch overhead of large stateful coprocessors.

We separate out floating-point state from other extension state, as when a floating-
point unit is present the floating-point registers are part of the standard calling
convention, and so user-mode software cannot know when it is safe to disable the
floating-point unit.

The XS field provides a summary of all added extension state, but additional microarchitectural bits
might be maintained in the extension to further reduce context save and restore overhead.

3.1. Machine-Level CSRs | Page 38

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The SD bit is read-only and is set when either the FS, VS, or XS bits encode a Dirty state (i.e., SD=
FS==11) OR (XS==11) OR (VS==11). This allows privileged code to quickly determine when no
additional context save is required beyond the integer register set and pc.

The floating-point unit state is always initialized, saved, and restored using standard instructions (F, D,
and/or Q), and privileged code must be aware of FLEN to determine the appropriate space to reserve
for each f register.

Machine and Supervisor modes share a single copy of the FS, VS, and XS bits. Supervisor-level
software normally uses the FS, VS, and XS bits directly to record the status with respect to the
supervisor-level saved context. Machine-level software must be more conservative in saving and
restoring the extension state in their corresponding version of the context.



In any reasonable use case, the number of context switches between user and
supervisor level should far outweigh the number of context switches to other
privilege levels. Note that coprocessors should not require their context to be saved
and restored to service asynchronous interrupts, unless the interrupt results in a
user-level context swap.

3.1.6.8. Previous Expected Landing Pad (ELP) State in mstatus Register

The Zicfilp extension adds the SPELP and MPELP fields that hold the previous ELP, and are updated as
specified in Section 22.1.2. The xPELP fields are encoded as follows:

⚫ 0 - NO_LP_EXPECTED - no landing pad instruction expected.

⚫ 1 - LP_EXPECTED - a landing pad instruction is expected.

3.1.7. Machine Trap-Vector Base-Address (mtvec) Register

The mtvec register is an MXLEN-bit WARL read/write register that holds trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE).

MXLEN-1 2 1 0

BASE[MXLEN-1:2] (WARL) MODE (WARL)

MXLEN-2 2

Figure 10. Encoding of mtvec MODE field.

The mtvec register must always be implemented, but can contain a read-only value. If mtvec is writable,
the set of values the register may hold can vary by implementation. The value in the BASE field must
always be aligned on a 4-byte boundary, and the MODE setting may impose additional alignment
constraints on the value in the BASE field.



We allow for considerable flexibility in implementation of the trap vector base
address. On the one hand, we do not wish to burden low-end implementations with a
large number of state bits, but on the other hand, we wish to allow flexibility for larger
systems.

Table 13. Encoding of mtvec MODE field.

3.1. Machine-Level CSRs | Page 39

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Value Name Description

0
1

≥2

Direct
Vectored

All traps set pc to BASE.
Asynchronous interrupts set pc to BASE+4×cause.
Reserved

The encoding of the MODE field is shown in Table 13. When MODE=Direct, all traps into machine
mode cause the pc to be set to the address in the BASE field. When MODE=Vectored, all synchronous
exceptions into machine mode cause the pc to be set to the address in the BASE field, whereas
interrupts cause the pc to be set to the address in the BASE field plus four times the interrupt cause
number. For example, a machine-mode timer interrupt (see Table 14) causes the pc to be set to
BASE+0x1c.

An implementation may have different alignment constraints for different modes. In particular,
MODE=Vectored may have stricter alignment constraints than MODE=Direct.



Allowing coarser alignments in Vectored mode enables vectoring to be implemented
without a hardware adder circuit.

Reset and NMI vector locations are given in a platform specification.

3.1.8. Machine Trap Delegation (medeleg and mideleg) Registers

By default, all traps at any privilege level are handled in machine mode, though a machine-mode
handler can redirect traps back to the appropriate level with the MRET instruction (Section 3.3.2). To
increase performance, implementations can provide individual read/write bits within medeleg and
mideleg to indicate that certain exceptions and interrupts should be processed directly by a lower
privilege level. The machine exception delegation register (medeleg) is a 64-bit read/write register. The
machine interrupt delegation (mideleg) register is an MXLEN-bit read/write register.

In harts with S-mode, the medeleg and mideleg registers must exist, and setting a bit in medeleg or mideleg
will delegate the corresponding trap, when occurring in S-mode or U-mode, to the S-mode trap
handler. In harts without S-mode, the medeleg and mideleg registers should not exist.


In versions 1.9.1 and earlier , these registers existed but were hardwired to zero in M-
mode only, or M/U without N harts. There is no reason to require they return zero in
those cases, as the misa register indicates whether they exist.

When a trap is delegated to S-mode, the scause register is written with the trap cause; the sepc register
is written with the virtual address of the instruction that took the trap; the stval register is written with
an exception-specific datum; the SPP field of mstatus is written with the active privilege mode at the
time of the trap; the SPIE field of mstatus is written with the value of the SIE field at the time of the
trap; and the SIE field of mstatus is cleared. The mcause, mepc, and mtval registers and the MPP and MPIE
fields of mstatus are not written.

An implementation can choose to subset the delegatable traps, with the supported delegatable bits
found by writing one to every bit location, then reading back the value in medeleg or mideleg to see
which bit positions hold a one.

An implementation shall not have any bits of medeleg be read-only one, i.e., any synchronous trap that
can be delegated must support not being delegated. Similarly, an implementation shall not fix as read-

3.1. Machine-Level CSRs | Page 40

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

only one any bits of mideleg corresponding to machine-level interrupts (but may do so for lower-level
interrupts).


Version 1.11 and earlier prohibited having any bits of mideleg be read-only one.
Platform standards may always add such restrictions.

Traps never transition from a more-privileged mode to a less-privileged mode. For example, if M-mode
has delegated illegal-instruction exceptions to S-mode, and M-mode software later executes an illegal
instruction, the trap is taken in M-mode, rather than being delegated to S-mode. By contrast, traps may
be taken horizontally. Using the same example, if M-mode has delegated illegal-instruction exceptions
to S-mode, and S-mode software later executes an illegal instruction, the trap is taken in S-mode.

Delegated interrupts result in the interrupt being masked at the delegator privilege level. For example,
if the supervisor timer interrupt (STI) is delegated to S-mode by setting mideleg[5], STIs will not be
taken when executing in M-mode. By contrast, if mideleg[5] is clear, STIs can be taken in any mode and
regardless of current mode will transfer control to M-mode.

63 0
Synchronous Exceptions (WARL)

64

Figure 11. Machine Exception Delegation (medeleg) register.

medeleg has a bit position allocated for every synchronous exception shown in Table 14, with the index
of the bit position equal to the value returned in the mcause register (i.e., setting bit 8 allows user-mode
environment calls to be delegated to a lower-privilege trap handler).

When XLEN=32, medelegh is a 32-bit read/write register that aliases bits 63:32 of medeleg. The medelegh
register does not exist when XLEN=64.

MXLEN-1 0
Interrupts (WARL)

MXLEN

Figure 12. Machine Interrupt Delegation (mideleg) Register.

mideleg holds trap delegation bits for individual interrupts, with the layout of bits matching those in the
mip register (i.e., STIP interrupt delegation control is located in bit 5).

For exceptions that cannot occur in less privileged modes, the corresponding medeleg bits should be
read-only zero. In particular, medeleg[11] is read-only zero.

The medeleg[16] is read-only zero as double trap is not delegatable.

3.1.9. Machine Interrupt (mip and mie) Registers

The mip register is an MXLEN-bit read/write register containing information on pending interrupts,
while mie is the corresponding MXLEN-bit read/write register containing interrupt enable bits. Interrupt
cause number i (as reported in CSR mcause, Section 3.1.15) corresponds with bit i in both mip and mie.
Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and above are designated for
platform use.


Interrupts designated for platform use may be designated for custom use at the
platform’s discretion.

3.1. Machine-Level CSRs | Page 41

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

MXLEN-1 0
Interrupts (WARL)

MXLEN

Figure 13. Machine Interrupt-Pending (mip) register.

MXLEN-1 0
Interrupts (WARL)

MXLEN

Figure 14. Machine Interrupt-Enable (mie) register

An interrupt i will trap to M-mode (causing the privilege mode to change to M-mode) if all of the
following are true: (a) either the current privilege mode is M and the MIE bit in the mstatus register is
set, or the current privilege mode has less privilege than M-mode; (b) bit i is set in both mip and mie;
and (c) if register mideleg exists, bit i is not set in mideleg.

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time from
when an interrupt becomes, or ceases to be, pending in mip, and must also be evaluated immediately
following the execution of an xRET instruction or an explicit write to a CSR on which these interrupt
trap conditions expressly depend (including mip, mie, mstatus, and mideleg).

Interrupts to M-mode take priority over any interrupts to lower privilege modes.

Each individual bit in register mip may be writable or may be read-only. When bit i in mip is writable, a
pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become pending but bit i in
mip is read-only, the implementation must provide some other mechanism for clearing the pending
interrupt.

A bit in mie must be writable if the corresponding interrupt can ever become pending. Bits of mie that
are not writable must be read-only zero.

The standard portions (bits 15:0) of the mip and mie registers are formatted as shown in Figure 15 and
Figure 16 respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LCOFIP 0 MEIP 0 SEIP 0 MTIP 0 STIP 0 MSIP 0 SSIP 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 15. Standard portion (bits 15:0) of mip.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LCOFIE 0 MEIE 0 SEIE 0 MTIE 0 STIE 0 MSIE 0 SSIE 0

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 16. Standard portion (bits 15:0) of mie.



The machine-level interrupt registers handle a few root interrupt sources which are
assigned a fixed service priority for simplicity, while separate external interrupt
controllers can implement a more complex prioritization scheme over a much larger
set of interrupts that are then muxed into the machine-level interrupt sources.

The non-maskable interrupt is not made visible via the mip register as its presence is
implicitly known when executing the NMI trap handler.

3.1. Machine-Level CSRs | Page 42

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Bits mip.MEIP and mie.MEIE are the interrupt-pending and interrupt-enable bits for machine-level
external interrupts. MEIP is read-only in mip, and is set and cleared by a platform-specific interrupt
controller.

Bits mip.MTIP and mie.MTIE are the interrupt-pending and interrupt-enable bits for machine timer
interrupts. MTIP is read-only in the mip register, and is cleared by writing to the memory-mapped
machine-mode timer compare register.

Bits mip.MSIP and mie.MSIE are the interrupt-pending and interrupt-enable bits for machine-level
software interrupts. MSIP is read-only in mip, and is written by accesses to memory-mapped control
registers, which are used by remote harts to provide machine-level interprocessor interrupts. A hart
can write its own MSIP bit using the same memory-mapped control register. If a system has only one
hart, or if a platform standard supports the delivery of machine-level interprocessor interrupts through
external interrupts (MEI) instead, then mip.MSIP and mie.MSIE may both be read-only zeros.

If supervisor mode is not implemented, bits SEIP, STIP, and SSIP of mip and SEIE, STIE, and SSIE of
mie are read-only zeros.

If supervisor mode is implemented, bits mip.SEIP and mie.SEIE are the interrupt-pending and interrupt-
enable bits for supervisor-level external interrupts. SEIP is writable in mip, and may be written by M-
mode software to indicate to S-mode that an external interrupt is pending. Additionally, the platform-
level interrupt controller may generate supervisor-level external interrupts. Supervisor-level external
interrupts are made pending based on the logical-OR of the software-writable SEIP bit and the signal
from the external interrupt controller. When mip is read with a CSR instruction, the value of the SEIP bit
returned in the rd destination register is the logical-OR of the software-writable bit and the interrupt
signal from the interrupt controller, but the signal from the interrupt controller is not used to calculate
the value written to SEIP. Only the software-writable SEIP bit participates in the read-modify-write
sequence of a CSRRS or CSRRC instruction.



For example, if we name the software-writable SEIP bit B and the signal from the
external interrupt controller E, then if csrrs t0, mip, t1 is executed, t0[9] is written
with B || E, then B is written with B || t1[9]. If csrrw t0, mip, t1 is executed, then
t0[9] is written with B || E, and B is simply written with t1[9]. In neither case does B
depend upon E.

The SEIP field behavior is designed to allow a higher privilege layer to mimic
external interrupts cleanly, without losing any real external interrupts. The behavior of
the CSR instructions is slightly modified from regular CSR accesses as a result.

If supervisor mode is implemented, bits mip.STIP and mie.STIE are the interrupt-pending and interrupt-
enable bits for supervisor-level timer interrupts. STIP is writable in mip, and may be written by M-mode
software to deliver timer interrupts to S-mode.

If supervisor mode is implemented, bits mip.SSIP and mie.SSIE are the interrupt-pending and interrupt-
enable bits for supervisor-level software interrupts. SSIP is writable in mip and may also be set to 1 by a
platform-specific interrupt controller.

If the Sscofpmf extension is implemented, bits mip.LCOFIP and mie.LCOFIE are the interrupt-pending
and interrupt-enable bits for local counter-overflow interrupts. LCOFIP is read-write in mip and reflects
the occurrence of a local counter-overflow overflow interrupt request resulting from any of the
mhpmeventn.OF bits being set. If the Sscofpmf extension is not implemented, mip.LCOFIP and
mie.LCOFIE are read-only zeros.

3.1. Machine-Level CSRs | Page 43

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Multiple simultaneous interrupts destined for M-mode are handled in the following decreasing priority
order: MEI, MSI, MTI, SEI, SSI, STI, LCOFI.



The machine-level interrupt fixed-priority ordering rules were developed with the
following rationale.

Interrupts for higher privilege modes must be serviced before interrupts for lower
privilege modes to support preemption.

The platform-specific machine-level interrupt sources in bits 16 and above have
platform-specific priority, but are typically chosen to have the highest service priority
to support very fast local vectored interrupts.

External interrupts are handled before internal (timer/software) interrupts as external
interrupts are usually generated by devices that might require low interrupt service
times.

Software interrupts are handled before internal timer interrupts, because internal
timer interrupts are usually intended for time slicing, where time precision is less
important, whereas software interrupts are used for inter-processor messaging.
Software interrupts can be avoided when high-precision timing is required, or high-
precision timer interrupts can be routed via a different interrupt path. Software
interrupts are located in the lowest four bits of mip as these are often written by
software, and this position allows the use of a single CSR instruction with a five-bit
immediate.

Restricted views of the mip and mie registers appear as the sip and sie registers for supervisor level. If
an interrupt is delegated to S-mode by setting a bit in the mideleg register, it becomes visible in the sip
register and is maskable using the sie register. Otherwise, the corresponding bits in sip and sie are
read-only zero.

3.1.10. Hardware Performance Monitor

M-mode includes a basic hardware performance-monitoring facility. The mcycle CSR counts the number
of clock cycles executed by the processor core on which the hart is running. The minstret CSR counts
the number of instructions the hart has retired. The mcycle and minstret registers have 64-bit precision
on all RV32 and RV64 harts.

The counter registers have an arbitrary value after the hart is reset, and can be written with a given
value. Any CSR write takes effect after the writing instruction has otherwise completed. The mcycle CSR
may be shared between harts on the same core, in which case writes to mcycle will be visible to those
harts. The platform should provide a mechanism to indicate which harts share an mcycle CSR.

The hardware performance monitor includes 29 additional 64-bit event counters, mhpmcounter3-
mhpmcounter31. The event selector CSRs, mhpmevent3-mhpmevent31, are 64-bit WARL registers that control
which event causes the corresponding counter to increment. The meaning of these events is defined
by the platform, but event 0 is defined to mean "no event." All counters should be implemented, but a
legal implementation is to make both the counter and its corresponding event selector be read-only 0.

3.1. Machine-Level CSRs | Page 44

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

63 0

mcycle
minstret

63 0
mhpmcounter3 mhpmevent3
mhpmcounter4 mhpmevent4

⋮ ⋮
mhpmcounter30 mhpmevent30
mhpmcounter31 mhpmevent31

64 64

Figure 17. Hardware performance monitor counters.

The mhpmcounters are WARL registers that support up to 64 bits of precision on RV32 and RV64.

When XLEN=32, reads of the mcycle, minstret, mhpmcountern, and mhpmeventn CSRs return bits 31-0 of the
corresponding register, and writes change only bits 31-0; reads of the mcycleh, minstreth, mhpmcounternh,
and mhpmeventnh CSRs return bits 63-32 of the corresponding register, and writes change only bits 63-
32. The mhpmeventnh CSRs are provided only if the Sscofpmf extension is implemented.

3.1.11. Machine Counter-Enable (mcounteren) Register

The counter-enable mcounteren register is a 32-bit register that controls the availability of the hardware
performance-monitoring counters to the next-lower privileged mode.

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 18. Counter-enable (mcounteren) register.

The settings in this register only control accessibility. The act of reading or writing this register does
not affect the underlying counters, which continue to increment even when not accessible.

When the CY, TM, IR, or HPMn bit in the mcounteren register is clear, attempts to read the cycle, time,
instret, or hpmcountern register while executing in S-mode or U-mode will cause an illegal-instruction
exception. When one of these bits is set, access to the corresponding register is permitted in the next
implemented privilege mode (S-mode if implemented, otherwise U-mode).



The counter-enable bits support two common use cases with minimal hardware. For
harts that do not need high-performance timers and counters, machine-mode
software can trap accesses and implement all features in software. For harts that
need high-performance timers and counters but are not concerned with obfuscating
the underlying hardware counters, the counters can be directly exposed to lower
privilege modes.

The cycle, instret, and hpmcountern CSRs are read-only shadows of mcycle, minstret, and mhpmcounter n,
respectively. The time CSR is a read-only shadow of the memory-mapped mtime register. Analogously,
when XLEN=32, the cycleh, instreth and hpmcounternh CSRs are read-only shadows of mcycleh, minstreth
and mhpmcounternh, respectively. When XLEN=32, the timeh CSR is a read-only shadow of the upper 32
bits of the memory-mapped mtime register, while time shadows only the lower 32 bits of mtime.


Implementations can convert reads of the time and timeh CSRs into loads to the
memory-mapped mtime register, or emulate this functionality on behalf of less-

3.1. Machine-Level CSRs | Page 45

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

privileged modes in M-mode software.

In harts with U-mode, the mcounteren must be implemented, but all fields are WARL and may be read-
only zero, indicating reads to the corresponding counter will cause an illegal-instruction exception
when executing in a less-privileged mode. In harts without U-mode, the mcounteren register should not
exist.

3.1.12. Machine Counter-Inhibit (mcountinhibit) Register

31 30 29 28 6 5 4 3 2 1 0

HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR 0 CY

1 1 1 23 1 1 1 1 1 1

Figure 19. Counter-inhibit mcountinhibit register

The counter-inhibit register mcountinhibit is a 32-bit WARL register that controls which of the hardware
performance-monitoring counters increment. The settings in this register only control whether the
counters increment; their accessibility is not affected by the setting of this register.

When the CY, IR, or HPMn bit in the mcountinhibit register is clear, the mcycle, minstret, or mhpmcountern
register increments as usual. When the CY, IR, or HPM_n_ bit is set, the corresponding counter does
not increment.

The mcycle CSR may be shared between harts on the same core, in which case the mcountinhibit.CY
field is also shared between those harts, and so writes to mcountinhibit.CY will be visible to those harts.

If the mcountinhibit register is not implemented, the implementation behaves as though the register
were set to zero.



When the mcycle and minstret counters are not needed, it is desirable to conditionally
inhibit them to reduce energy consumption. Providing a single CSR to inhibit all
counters also allows the counters to be atomically sampled.

Because the mtime counter can be shared between multiple cores, it cannot be
inhibited with the mcountinhibit mechanism.

3.1.13. Machine Scratch (mscratch) Register

The mscratch register is an MXLEN-bit read/write register dedicated for use by machine mode.
Typically, it is used to hold a pointer to a machine-mode hart-local context space and swapped with a
user register upon entry to an M-mode trap handler.

MXLEN-1 0
mscratch
MXLEN

Figure 20. Machine-mode scratch register.



The MIPS ISA allocated two user registers (k0/k1) for use by the operating system.
Although the MIPS scheme provides a fast and simple implementation, it also
reduces available user registers, and does not scale to further privilege levels, or
nested traps. It can also require both registers are cleared before returning to user
level to avoid a potential security hole and to provide deterministic debugging
behavior.

3.1. Machine-Level CSRs | Page 46

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The RISC-V user ISA was designed to support many possible privileged system
environments and so we did not want to infect the user-level ISA with any OS-
dependent features. The RISC-V CSR swap instructions can quickly save/restore
values to the mscratch register. Unlike the MIPS design, the OS can rely on holding a
value in the mscratch register while the user context is running.

3.1.14. Machine Exception Program Counter (mepc) Register

mepc is an MXLEN-bit read/write register formatted as shown in Figure 21. The low bit of mepc (mepc[0])
is always zero. On implementations that support only IALIGN=32, the two low bits (mepc[1:0]) are
always zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example), then,
whenever IALIGN=32, bit mepc[1] is masked on reads so that it appears to be 0. This masking occurs
also for the implicit read by the MRET instruction. Though masked, mepc[1] remains writable when
IALIGN=32.

mepc is a WARL register that must be able to hold all valid virtual addresses. It need not be capable of
holding all possible invalid addresses. Prior to writing mepc, implementations may convert an invalid
address into some other invalid address that mepc is capable of holding.


When address translation is not in effect, virtual addresses and physical addresses
are equal. Hence, the set of addresses mepc must be able to represent includes the
set of physical addresses that can be used as a valid pc or effective address.

When a trap is taken into M-mode, mepc is written with the virtual address of the instruction that was
interrupted or that encountered the exception. Otherwise, mepc is never written by the implementation,
though it may be explicitly written by software.

MXLEN-1 0
mepc

MXLEN

Figure 21. Machine exception program counter register.

3.1.15. Machine Cause (mcause) Register

The mcause register is an MXLEN-bit read-write register formatted as shown in Figure 22. When a trap
is taken into M-mode, mcause is written with a code indicating the event that caused the trap.
Otherwise, mcause is never written by the implementation, though it may be explicitly written by
software.

The Interrupt bit in the mcause register is set if the trap was caused by an interrupt. The Exception Code
field contains a code identifying the last exception or interrupt. Table 14 lists the possible machine-
level exception codes. The Exception Code is a WLRL field, so is only guaranteed to hold supported
exception codes.

MXLEN-1 MXLEN-2 0
Interrupt Exception Code (WLRL)

1 MXLEN-1

Figure 22. Machine Cause (mcause) register.

Note that load and load-reserved instructions generate load exceptions, whereas store, store-

3.1. Machine-Level CSRs | Page 47

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

conditional, and AMO instructions generate store/AMO exceptions.



Interrupts can be separated from other traps with a single branch on the sign of the
mcause register value. A shift left can remove the interrupt bit and scale the exception
codes to index into a trap vector table.

We do not distinguish privileged instruction exceptions from illegal-instruction
exceptions. This simplifies the architecture and also hides details of which higher-
privilege instructions are supported by an implementation. The privilege level
servicing the trap can implement a policy on whether these need to be distinguished,
and if so, whether a given opcode should be treated as illegal or privileged.

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Table 15
indicates which exception is taken and reported in mcause. The priority of any custom synchronous
exceptions is implementation-defined.

3.1. Machine-Level CSRs | Page 48

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 14. Machine cause (mcause) register values after trap.

Interrupt Exception Code Description

1
1
1
1

0
1
2
3

Reserved
Supervisor software interrupt
Reserved
Machine software interrupt

1
1
1
1

4
5
6
7

Reserved
Supervisor timer interrupt
Reserved
Machine timer interrupt

1
1
1
1

8
9

10
11

Reserved
Supervisor external interrupt
Reserved
Machine external interrupt

1
1
1
1

12
13

14-15
≥16

Reserved
Counter-overflow interrupt
Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20-23
24-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Double trap
Reserved
Software check
Hardware error
Reserved
Designated for custom use
Reserved
Designated for custom use
Reserved

3.1. Machine-Level CSRs | Page 49

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 15. Synchronous exception priority in decreasing priority order.

Priority Exc.Code Description

Highest 3 Instruction address breakpoint

12, 1

During instruction address translation:
First encountered page fault or access fault

1

With physical address for instruction:
Instruction access fault

2
0

8,9,11
3
3

Illegal instruction
Instruction address misaligned
Environment call
Environment break
Load/store/AMO address breakpoint

4,6

Optionally:
Load/store/AMO address misaligned

13, 15, 5, 7

During address translation for an explicit memory access:
First encountered page fault or access fault

5,7

With physical address for an explicit memory access:
Load/store/AMO access fault

Lowest 4,6

If not higher priority:
Load/store/AMO address misaligned

When a virtual address is translated into a physical address, the address translation algorithm
determines what specific exception may be raised.

Load/store/AMO address-misaligned exceptions may have either higher or lower priority than
load/store/AMO page-fault and access-fault exceptions.



The relative priority of load/store/AMO address-misaligned and page-fault
exceptions is implementation-defined to flexibly cater to two design points.
Implementations that never support misaligned accesses can unconditionally raise
the misaligned-address exception without performing address translation or
protection checks. Implementations that support misaligned accesses only to some
physical addresses must translate and check the address before determining
whether the misaligned access may proceed, in which case raising the page-fault
exception or access is more appropriate.

Instruction address breakpoints have the same cause value as, but different priority
than, data address breakpoints (a.k.a. watchpoints) and environment break exceptions
(which are raised by the EBREAK instruction).

Instruction address misaligned exceptions are raised by control-flow instructions
with misaligned targets, rather than by the act of fetching an instruction. Therefore,
these exceptions have lower priority than other instruction address exceptions.


A Software Check exception is a synchronous exception that is triggered when there
are violations of checks and assertions defined by ISA extensions that aim to

3.1. Machine-Level CSRs | Page 50

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

safeguard the integrity of software assets, including e.g. control-flow and memory-
access constraints. When this exception is raised, the xtval register is set either to 0
or to an informative value defined by the extension that stipulated the exception be
raised. The priority of this exception, relative to other synchronous exceptions,
depends on the cause of this exception and is defined by the extension that
stipulated the exception be raised.

A Hardware Error exception is a synchronous exception triggered when corrupted or
uncorrectable data is accessed explicitly or implicitly by an instruction. In this
context, "data" encompasses all types of information used within a RISC-V hart. Upon
a hardware error exception, the xepc register is set to the address of the instruction
that attempted to access corrupted data, while the xtval register is set either to 0 or
to the virtual address of an instruction fetch, load, or store that attempted to access
corrupted data. The priority of Hardware Error exception is implementation-defined,
but any given occurrence is generally expected to be recognized at the point in the
overall priority order at which the hardware error is discovered.

3.1.16. Machine Trap Value (mtval) Register

The mtval register is an MXLEN-bit read-write register formatted as shown in Figure 23. When a trap is
taken into M-mode, mtval is either set to zero or written with exception-specific information to assist
software in handling the trap. Otherwise, mtval is never written by the implementation, though it may be
explicitly written by software. The hardware platform will specify which exceptions must set mtval
informatively, which may unconditionally set it to zero, and which may exhibit either behavior,
depending on the underlying event that caused the exception. If the hardware platform specifies that
no exceptions set mtval to a nonzero value, then mtval is read-only zero.

If mtval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or page-
fault exception occurs on an instruction fetch, load, or store, then mtval will contain the faulting virtual
address.

When page-based virtual memory is enabled, mtval is written with the faulting virtual address, even for
physical-memory access-fault exceptions. This design reduces datapath cost for most
implementations, particularly those with hardware page-table walkers.

MXLEN-1 0

mtval
MXLEN

Figure 23. Machine Trap Value (mtval) register.

If mtval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then mtval will contain the virtual address of the portion of the access that
caused the fault.

If mtval is written with a nonzero value when an instruction access-fault or page-fault exception occurs
on a hart with variable-length instructions, then mtval will contain the virtual address of the portion of
the instruction that caused the fault, while mepc will point to the beginning of the instruction.

The mtval register can optionally also be used to return the faulting instruction bits on an illegal-
instruction exception (mepc points to the faulting instruction in memory). If mtval is written with a
nonzero value when an illegal-instruction exception occurs, then mtval will contain the shortest of:

⚫ the actual faulting instruction

3.1. Machine-Level CSRs | Page 51

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ the first ILEN bits of the faulting instruction

⚫ the first MXLEN bits of the faulting instruction

The value loaded into mtval on an illegal-instruction exception is right-justified and all unused upper
bits are cleared to zero.



Capturing the faulting instruction in mtval reduces the overhead of instruction
emulation, potentially avoiding several partial instruction loads if the instruction is
misaligned, and likely data cache misses or slow uncached accesses when loads are
used to fetch the instruction into a data register. There is also a problem of atomicity
if another agent is manipulating the instruction memory, as might occur in a dynamic
translation system.

A requirement is that the entire instruction (or at least the first MXLEN bits) are
fetched into mtval before taking the trap. This should not constrain implementations,
which would typically fetch the entire instruction before attempting to decode the
instruction, and avoids complicating software handlers.

A value of zero in mtval signifies either that the feature is not supported, or an illegal
zero instruction was fetched. A load from the instruction memory pointed to by mepc
can be used to distinguish these two cases (or alternatively, the system configuration
information can be interrogated to install the appropriate trap handling before
runtime).

On a trap caused by a software check exception, the mtval register holds the cause for the exception.
The following encodings are defined:

⚫ 0 - No information provided.

⚫ 2 - Landing Pad Fault. Defined by the Zicfilp extension (Section 22.1).

⚫ 3 - Shadow Stack Fault. Defined by the Zicfiss extension (Section 22.2).

For other traps, mtval is set to zero, but a future standard may redefine mtval’s setting for other traps.

If mtval is not read-only zero, it is a WARL register that must be able to hold all valid virtual addresses
and the value zero. It need not be capable of holding all possible invalid addresses. Prior to writing
mtval, implementations may convert an invalid address into some other invalid address that mtval is
capable of holding. If the feature to return the faulting instruction bits is implemented, mtval must also
be able to hold all values less than 2N, where N is the smaller of MXLEN and ILEN.

3.1.17. Machine Configuration Pointer (mconfigptr) Register

The mconfigptr register is an MXLEN-bit read-only CSR, formatted as shown in Figure 24, that holds the
physical address of a configuration data structure. Software can traverse this data structure to discover
information about the harts, the platform, and their configuration.

MXLEN-1 0

mconfigptr
MXLEN

Figure 24. Machine Configuration Pointer (mconfigptr) register.

The pointer alignment in bits must be no smaller than MXLEN: i.e., if MXLEN is , then mconfigptr
[-1:0] must be zero.

3.1. Machine-Level CSRs | Page 52

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The mconfigptr register must be implemented, but it may be zero to indicate the configuration data
structure does not exist or that an alternative mechanism must be used to locate it.



The format and schema of the configuration data structure have yet to be
standardized.

While the mconfigptr register will simply be hardwired in some implementations, other
implementations may provide a means to configure the value returned on CSR reads.
For example, mconfigptr might present the value of a memory-mapped register that is
programmed by the platform or by M-mode software towards the beginning of the
boot process.

3.1.18. Machine Environment Configuration (menvcfg) Register

The menvcfg CSR is a 64-bit read/write register, formatted as shown in Figure 25, that controls certain
characteristics of the execution environment for modes less privileged than M.

01234567815

FIOMWPRILPESSECBIECBCFECBZEWPRI

1631

WPRI

32333447

PMMWPRI

48585960616263

WPRIDTECDEADUEPBMTESTCE

Figure 25. Machine environment configuration (menvcfg) register.

If bit FIOM (Fence of I/O implies Memory) is set to one in menvcfg, FENCE instructions executed in
modes less privileged than M are modified so the requirement to order accesses to device I/O implies
also the requirement to order main memory accesses. Table 16 details the modified interpretation of
FENCE instruction bits PI, PO, SI, and SO for modes less privileged than M when FIOM=1.

Similarly, for modes less privileged than M when FIOM=1, if an atomic instruction that accesses a
region ordered as device I/O has its aq and/or rl bit set, then that instruction is ordered as though it
accesses both device I/O and memory.

If S-mode is not supported, or if satp.MODE is read-only zero (always Bare), the implementation may
make FIOM read-only zero.

Table 16. Modified interpretation of FENCE predecessor and successor sets for modes less privileged than
M when FIOM=1.

Instruction bit Meaning when set

PI
PO

Predecessor device input and memory reads (PR implied)
Predecessor device output and memory writes (PW implied)

SI
SO

Successor device input and memory reads (SR implied)
Successor device output and memory writes (SW implied)


Bit FIOM is needed in menvcfg so M-mode can emulate the hypervisor extension of
Chapter 21, which has an equivalent FIOM bit in the hypervisor CSR henvcfg.

3.1. Machine-Level CSRs | Page 53

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The PBMTE bit controls whether the Svpbmt extension is available for use in S-mode and G-stage
address translation (i.e., for page tables pointed to by satp or hgatp). When PBMTE=1, Svpbmt is
available for S-mode and G-stage address translation. When PBMTE=0, the implementation behaves
as though Svpbmt were not implemented. If Svpbmt is not implemented, PBMTE is read-only zero.
Furthermore, for implementations with the hypervisor extension, henvcfg.PBMTE is read-only zero if
menvcfg.PBMTE is zero.

After changing menvcfg.PBMTE, executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0 suffices
to synchronize address-translation caches with respect to the altered interpretation of page-table
entries' PBMT fields. See Section 21.5.3 for additional synchronization requirements when the
hypervisor extension is implemented.

If the Svadu extension is implemented, the ADUE bit controls whether hardware updating of PTE A/D
bits is enabled for S-mode and G-stage address translations. When ADUE=1, hardware updating of PTE
A/D bits is enabled during S-mode address translation, and the implementation behaves as though the
Svade extension were not implemented for S-mode address translation. When the hypervisor extension
is implemented, if ADUE=1, hardware updating of PTE A/D bits is enabled during G-stage address
translation, and the implementation behaves as though the Svade extension were not implemented for
G-stage address translation. When ADUE=0, the implementation behaves as though Svade were
implemented for S-mode and G-stage address translation. If Svadu is not implemented, ADUE is read-
only zero. Furthermore, for implementations with the hypervisor extension, henvcfg.ADUE is read-only
zero if menvcfg.ADUE is zero.


The Svade extension requires page-fault exceptions be raised when PTE A/D bits
need be set, hence Svade is implemented when ADUE=0.

If the Smcdeleg extension is implemented, the CDE (Counter Delegation Enable) bit controls whether
Zicntr and Zihpm counters can be delegated to S-mode. When CDE=1, the Smcdeleg extension is
enabled, see Chapter 9. When CDE=0, the Smcdeleg and Ssccfg extensions appear to be not
implemented. If Smcdeleg is not implemented, CDE is read-only zero.

The definition of the STCE field is furnished by the Sstc extension.

The definition of the CBZE field is furnished by the Zicboz extension.

The definitions of the CBCFE and CBIE fields are furnished by the Zicbom extension.

The definition of the PMM field is furnished by the Smnpm extension.

The Zicfilp extension adds the LPE field in menvcfg. When the LPE field is set to 1 and S-mode is
implemented, the Zicfilp extension is enabled in S-mode. If LPE field is set to 1 and S-mode is not
implemented, the Zicfilp extension is enabled in U-mode. When the LPE field is 0, the Zicfilp extension
is not enabled in S-mode, and the following rules apply to S-mode. If the LPE field is 0 and S-mode is
not implemented, then the same rules apply to U-mode.

⚫ The hart does not update the ELP state; it remains as NO_LP_EXPECTED.

⚫ The LPAD instruction operates as a no-op.

The Zicfiss extension adds the SSE field to menvcfg. When the SSE field is set to 1 the Zicfiss extension is
activated in S-mode. When SSE field is 0, the following rules apply to privilege modes that are less than
M:

⚫ 32-bit Zicfiss instructions will revert to their behavior as defined by Zimop.

3.1. Machine-Level CSRs | Page 54

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ 16-bit Zicfiss instructions will revert to their behavior as defined by Zcmop.

⚫ The pte.xwr=010b encoding in VS/S-stage page tables becomes reserved.

⚫ SSAMOSWAP.W/D raises an illegal-instruction exception.

When menvcfg.SSE is 0, the henvcfg.SSE and senvcfg.SSE fields are read-only zero.

The Ssdbltrp extension adds the double-trap-enable (DTE) field in menvcfg. When menvcfg.DTE is zero, the
implementation behaves as though Ssdbltrp is not implemented. When Ssdbltrp is not implemented
sstatus.SDT, vsstatus.SDT, and henvcfg.DTE bits are read-only zero.

When XLEN=32, menvcfgh is a 32-bit read/write register that aliases bits 63:32 of menvcfg. The menvcfgh
register does not exist when XLEN=64.

If U-mode is not supported, then registers menvcfg and menvcfgh do not exist.

3.1.19. Machine Security Configuration (mseccfg) Register

mseccfg is an optional 64-bit read/write register, formatted as shown in Figure 26, that controls security
features.

0123789101115

MMLMMWPRLBWPRIUSEEDSSEEDMLPEWPRI

1631

WPRI

3247

WPRI

4863

WPRI

Figure 26. Machine security configuration (mseccfg) register.

The definitions of the SSEED and USEED fields are furnished by the entropy-source extension, Zkr.

The definitions of the RLB, MMWP, and MML fields are furnished by the PMP-enhancement extension,
Smepmp.

The definition of the PMM field is furnished by the Smmpm extension.

The Zicfilp extension adds the MLPE field in mseccfg. When MLPE field is 1, Zicfilp extension is enabled in
M-mode. When the MLPE field is 0, the Zicfilp extension is not enabled in M-mode and the following
rules apply to M-mode.

⚫ The hart does not update the ELP state; it remains as NO_LP_EXPECTED.

⚫ The LPAD instruction operates as a no-op.

When XLEN=32 only, mseccfgh is a 32-bit read/write register that aliases bits 63:32 of mseccfg. Register
mseccfgh does not exist when XLEN=64.

3.1. Machine-Level CSRs | Page 55

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

3.2. Machine-Level Memory-Mapped Registers

3.2.1. Machine Timer (mtime and mtimecmp) Registers

Platforms provide a real-time counter, exposed as a memory-mapped machine-mode read-write
register, mtime. mtime must increment at constant frequency, and the platform must provide a
mechanism for determining the period of an mtime tick. The mtime register will wrap around if the count
overflows.

The mtime register has a 64-bit precision on all RV32 and RV64 systems. Platforms provide a 64-bit
memory-mapped machine-mode timer compare register (mtimecmp). A machine timer interrupt
becomes pending whenever mtime contains a value greater than or equal to mtimecmp, treating the values
as unsigned integers. The interrupt remains posted until mtimecmp becomes greater than mtime (typically
as a result of writing mtimecmp). The interrupt will only be taken if interrupts are enabled and the MTIE
bit is set in the mie register.

63 0

mtime
64

Figure 27. Machine time register (memory-mapped control register).

63 0

mtimecmp
64

Figure 28. Machine time compare register (memory-mapped control register).



The timer facility is defined to use wall-clock time rather than a cycle counter to
support modern processors that run with a highly variable clock frequency to save
energy through dynamic voltage and frequency scaling.

Accurate real-time clocks (RTCs) are relatively expensive to provide (requiring a
crystal or MEMS oscillator) and have to run even when the rest of system is powered
down, and so there is usually only one in a system located in a different
frequency/voltage domain from the processors. Hence, the RTC must be shared by all
the harts in a system and accesses to the RTC will potentially incur the penalty of a
voltage-level-shifter and clock-domain crossing. It is thus more natural to expose
mtime as a memory-mapped register than as a CSR.

Lower privilege levels do not have their own timecmp registers. Instead, machine-
mode software can implement any number of virtual timers on a hart by multiplexing
the next timer interrupt into the mtimecmp register.

Simple fixed-frequency systems can use a single clock for both cycle counting and
wall-clock time.

If the result of the comparison between mtime and mtimecmp changes, it is guaranteed to be reflected in
MTIP eventually, but not necessarily immediately.



A spurious timer interrupt might occur if an interrupt handler increments mtimecmp
then immediately returns, because MTIP might not yet have fallen in the interim. All
software should be written to assume this event is possible, but most software should
assume this event is extremely unlikely. It is almost always more performant to incur
an occasional spurious timer interrupt than to poll MTIP until it falls.

3.2. Machine-Level Memory-Mapped Registers | Page 56

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

In RV32, memory-mapped writes to mtimecmp modify only one 32-bit part of the register. The following
code sequence sets a 64-bit mtimecmp value without spuriously generating a timer interrupt due to the
intermediate value of the comparand:

For RV64, naturally aligned 64-bit memory accesses to the mtime and mtimecmp registers are additionally
supported and are atomic.

 # New comparand is in a1:a0.
 li t0, -1
 la t1, mtimecmp
 sw t0, 0(t1) # No smaller than old value.
 sw a1, 4(t1) # No smaller than new value.
 sw a0, 0(t1) # New value.

Sample code for setting the 64-bit time comparand in RV32 assuming a little-endian memory system and
that the registers live in a strongly ordered I/O region. Storing -1 to the low-order bits of mtimecmp prevents
mtimecmp from temporarily becoming smaller than the lesser of the old and new values.

The time CSR is a read-only shadow of the memory-mapped mtime register. When XLEN=32, the timeh
CSR is a read-only shadow of the upper 32 bits of the memory-mapped mtime register, while time
shadows only the lower 32 bits of mtime. When mtime changes, it is guaranteed to be reflected in time
and timeh eventually, but not necessarily immediately.

3.3. Machine-Mode Privileged Instructions

3.3.1. Environment Call and Breakpoint

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM
SYSTEM

5
0
0

3
PRIV
PRIV

5
0
0

12
ECALL

EBREAK

The ECALL instruction is used to make a request to the supporting execution environment. When
executed in U-mode, S-mode, or M-mode, it generates an environment-call-from-U-mode exception,
environment-call-from-S-mode exception, or environment-call-from-M-mode exception, respectively,
and performs no other operation.



ECALL generates a different exception for each originating privilege mode so that
environment call exceptions can be selectively delegated. A typical use case for Unix-
like operating systems is to delegate to S-mode the environment-call-from-U-mode
exception but not the others.

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debugging
environment. Unless overridden by an external debug environment, EBREAK raises a breakpoint
exception and performs no other operation.


As described in the "C" Standard Extension for Compressed Instructions in Volume I
of this manual, the C.EBREAK instruction performs the same operation as the
EBREAK instruction.

ECALL and EBREAK cause the receiving privilege mode’s epc register to be set to the address of the

3.3. Machine-Mode Privileged Instructions | Page 57

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

ECALL or EBREAK instruction itself, not the address of the following instruction. As ECALL and
EBREAK cause synchronous exceptions, they are not considered to retire, and should not increment
the minstret CSR.

3.3.2. Trap-Return Instructions

Instructions to return from trap are encoded under the PRIV minor opcode.

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM

5
0

3
PRIV

5
0

12
MRET/SRET

To return after handling a trap, there are separate trap return instructions per privilege level, MRET and
SRET. MRET is always provided. SRET must be provided if supervisor mode is supported, and should
raise an illegal-instruction exception otherwise. SRET should also raise an illegal-instruction exception
when TSR=1 in mstatus, as described in Section 3.1.6.6. An xRET instruction can be executed in
privilege mode x or higher, where executing a lower-privilege xRET instruction will pop the relevant
lower-privilege interrupt enable and privilege mode stack. In addition to manipulating the privilege
stack as described in Section 3.1.6.1, xRET sets the pc to the value stored in the xepc register.

If the A extension is supported, the xRET instruction is allowed to clear any outstanding LR address
reservation but is not required to. Trap handlers should explicitly clear the reservation if required (e.g.,
by using a dummy SC) before executing the xRET.


If xRET instructions always cleared LR reservations, it would be impossible to single-
step through LR/SC sequences using a debugger.

3.3.3. Wait for Interrupt

The Wait for Interrupt instruction (WFI) informs the implementation that the current hart can be stalled
until an interrupt might need servicing. Execution of the WFI instruction can also be used to inform the
hardware platform that suitable interrupts should preferentially be routed to this hart. WFI is available
in all privileged modes, and optionally available to U-mode. This instruction may raise an illegal-
instruction exception when TW=1 in mstatus, as described in Section 3.1.6.6.

06711121415192031

opcoderdfunct3rs1funct12

7
SYSTEM

5
0

3
PRIV

5
0

12
WFI

If an enabled interrupt is present or later becomes present while the hart is stalled, the interrupt trap
will be taken on the following instruction, i.e., execution resumes in the trap handler and mepc = pc + 4.


The following instruction takes the interrupt trap so that a simple return from the trap
handler will execute code after the WFI instruction.

Implementations are permitted to resume execution for any reason, even if an enabled interrupt has
not become pending. Hence, a legal implementation is to simply implement the WFI instruction as a
NOP.


If the implementation does not stall the hart on execution of the instruction, then the
interrupt will be taken on some instruction in the idle loop containing the WFI, and

3.3. Machine-Mode Privileged Instructions | Page 58

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

on a simple return from the handler, the idle loop will resume execution.

The WFI instruction can also be executed when interrupts are disabled. The operation of WFI must be
unaffected by the global interrupt bits in mstatus (MIE and SIE) and the delegation register mideleg (i.e.,
the hart must resume if a locally enabled interrupt becomes pending, even if it has been delegated to
a less-privileged mode), but should honor the individual interrupt enables (e.g, MTIE) (i.e.,
implementations should avoid resuming the hart if the interrupt is pending but not individually
enabled). WFI is also required to resume execution for locally enabled interrupts pending at any
privilege level, regardless of the global interrupt enable at each privilege level.

If the event that causes the hart to resume execution does not cause an interrupt to be taken,
execution will resume at pc + 4, and software must determine what action to take, including looping
back to repeat the WFI if there was no actionable event.



By allowing wakeup when interrupts are disabled, an alternate entry point to an
interrupt handler can be called that does not require saving the current context, as
the current context can be saved or discarded before the WFI is executed.

As implementations are free to implement WFI as a NOP, software must explicitly
check for any relevant pending but disabled interrupts in the code following an WFI,
and should loop back to the WFI if no suitable interrupt was detected. The mip or sip
registers can be interrogated to determine the presence of any interrupt in machine
or supervisor mode respectively.

The operation of WFI is unaffected by the delegation register settings.

WFI is defined so that an implementation can trap into a higher privilege mode,
either immediately on encountering the WFI or after some interval to initiate a
machine-mode transition to a lower power state, for example.

The same "wait-for-event" template might be used for possible future extensions that
wait on memory locations changing, or message arrival.

3.3.4. Custom SYSTEM Instructions

The subspace of the SYSTEM major opcode shown in Figure 29 is designated for custom use. It is
recommended that these instructions use bits 29:28 to designate the minimum required privilege
mode, as do other SYSTEM instructions.

31 26 25 15 14 12 11 7 6 0

funct6 custom funct3 custom opcode Recommended Purpose

6 11 3 5 7

100011 custom 0 custom SYSTEM Unprivileged or User-Level

110011 custom 0 custom SYSTEM Unprivileged or User-Level

100111 custom 0 custom SYSTEM Supervisor-Level

110111 custom 0 custom SYSTEM Supervisor-Level

101011 custom 0 custom SYSTEM Hypervisor-Level

111011 custom 0 custom SYSTEM Hypervisor-Level

101111 custom 0 custom SYSTEM Machine-Level

111111 custom 0 custom SYSTEM Machine-Level

Figure 29. SYSTEM instruction encodings designated for custom use.

3.4. Reset | Page 59

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

3.4. Reset

Upon reset, a hart’s privilege mode is set to M. The mstatus fields MIE and MPRV are reset to 0. If
little-endian memory accesses are supported, the mstatus/mstatush field MBE is reset to 0. The misa
register is reset to enable the maximal set of supported extensions, as described in Section 3.1.1. For
implementations with the "A" standard extension, there is no valid load reservation. The pc is set to an
implementation-defined reset vector. The mcause register is set to a value indicating the cause of the
reset. Writable PMP registers’ A and L fields are set to 0, unless the platform mandates a different
reset value for some PMP registers’ A and L fields. If the hypervisor extension is implemented, the
hgatp.MODE and vsatp.MODE fields are reset to 0. If the Smrnmi extension is implemented, the
mnstatus.NMIE field is reset to 0. No WARL field contains an illegal value. If the Zicfilp extension is
implemented, the mseccfg.MLPE field is reset to 0. All other hart state is UNSPECIFIED.

The mcause values after reset have implementation-specific interpretation, but the value 0 should be
returned on implementations that do not distinguish different reset conditions. Implementations that
distinguish different reset conditions should only use 0 to indicate the most complete reset.



Some designs may have multiple causes of reset (e.g., power-on reset, external hard
reset, brownout detected, watchdog timer elapse, sleep-mode wakeup), which
machine-mode software and debuggers may wish to distinguish.

mcause reset values may alias mcause values following synchronous exceptions. There
should be no ambiguity in this overlap, since on reset the pc is typically set to a
different value than on other traps.

3.5. Non-Maskable Interrupts

Non-maskable interrupts (NMIs) are only used for hardware error conditions, and cause an immediate
jump to an implementation-defined NMI vector running in M-mode regardless of the state of a hart’s
interrupt enable bits. The mepc register is written with the virtual address of the instruction that was
interrupted, and mcause is set to a value indicating the source of the NMI. The NMI can thus overwrite
state in an active machine-mode interrupt handler.

The values written to mcause on an NMI are implementation-defined. The high Interrupt bit of mcause
should be set to indicate that this was an interrupt. An Exception Code of 0 is reserved to mean
"unknown cause" and implementations that do not distinguish sources of NMIs via the mcause register
should return 0 in the Exception Code.

Unlike resets, NMIs do not reset processor state, enabling diagnosis, reporting, and possible
containment of the hardware error.

3.6. Physical Memory Attributes

The physical memory map for a complete system includes various address ranges, some
corresponding to memory regions and some to memory-mapped control registers, portions of which
might not be accessible. Some memory regions might not support reads, writes, or execution; some
might not support subword or subblock accesses; some might not support atomic operations; and
some might not support cache coherence or might have different memory models. Similarly, memory-
mapped control registers vary in their supported access widths, support for atomic operations, and
whether read and write accesses have associated side effects. In RISC-V systems, these properties
and capabilities of each region of the machine’s physical address space are termed physical memory

3.5. Non-Maskable Interrupts | Page 60

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

attributes (PMAs). This section describes RISC-V PMA terminology and how RISC-V systems
implement and check PMAs.

PMAs are inherent properties of the underlying hardware and rarely change during system operation.
Unlike physical memory protection values described in Section 3.7, PMAs do not vary by execution
context. The PMAs of some memory regions are fixed at chip design time—for example, for an on-chip
ROM. Others are fixed at board design time, depending, for example, on which other chips are
connected to off-chip buses. Off-chip buses might also support devices that could be changed on
every power cycle (cold pluggable) or dynamically while the system is running (hot pluggable). Some
devices might be configurable at run time to support different uses that imply different PMAs—for
example, an on-chip scratchpad RAM might be cached privately by one core in one end-application, or
accessed as a shared non-cached memory in another end-application.

Most systems will require that at least some PMAs are dynamically checked in hardware later in the
execution pipeline after the physical address is known, as some operations will not be supported at all
physical memory addresses, and some operations require knowing the current setting of a
configurable PMA attribute. While many other architectures specify some PMAs in the virtual memory
page tables and use the TLB to inform the pipeline of these properties, this approach injects platform-
specific information into a virtualized layer and can cause system errors unless attributes are correctly
initialized in each page-table entry for each physical memory region. In addition, the available page
sizes might not be optimal for specifying attributes in the physical memory space, leading to address-
space fragmentation and inefficient use of expensive TLB entries.

For RISC-V, we separate out specification and checking of PMAs into a separate hardware structure,
the PMA checker. In many cases, the attributes are known at system design time for each physical
address region, and can be hardwired into the PMA checker. Where the attributes are run-time
configurable, platform-specific memory-mapped control registers can be provided to specify these
attributes at a granularity appropriate to each region on the platform (e.g., for an on-chip SRAM that
can be flexibly divided between cacheable and uncacheable uses). PMAs are checked for any access to
physical memory, including accesses that have undergone virtual to physical memory translation. To
aid in system debugging, we strongly recommend that, where possible, RISC-V processors precisely
trap physical memory accesses that fail PMA checks. Precisely trapped PMA violations manifest as
instruction, load, or store access-fault exceptions, distinct from virtual-memory page-fault exceptions.
Precise PMA traps might not always be possible, for example, when probing a legacy bus architecture
that uses access failures as part of the discovery mechanism. In this case, error responses from
peripheral devices will be reported as imprecise bus-error interrupts.

PMAs must also be readable by software to correctly access certain devices or to correctly configure
other hardware components that access memory, such as DMA engines. As PMAs are tightly tied to a
given physical platform’s organization, many details are inherently platform-specific, as is the means
by which software can learn the PMA values for a platform. Some devices, particularly legacy buses, do
not support discovery of PMAs and so will give error responses or time out if an unsupported access is
attempted. Typically, platform-specific machine-mode code will extract PMAs and ultimately present
this information to higher-level less-privileged software using some standard representation.

Where platforms support dynamic reconfiguration of PMAs, an interface will be provided to set the
attributes by passing requests to a machine-mode driver that can correctly reconfigure the platform.
For example, switching cacheability attributes on some memory regions might involve platform-
specific operations, such as cache flushes, that are available only to machine-mode.

3.6.1. Main Memory versus I/O Regions

3.6. Physical Memory Attributes | Page 61

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The most important characterization of a given memory address range is whether it holds regular main
memory or I/O devices. Regular main memory is required to have a number of properties, specified
below, whereas I/O devices can have a much broader range of attributes. Memory regions that do not
fit into regular main memory, for example, device scratchpad RAMs, are categorized as I/O regions.



What previous versions of this specification termed vacant regions are no longer a
distinct category; they are now described as I/O regions that are not accessible (i.e.
lacking read, write, and execute permissions). Main memory regions that are not
accessible are also allowed.

3.6.2. Supported Access Type PMAs

Access types specify which access widths, from 8-bit byte to long multi-word burst, are supported, and
also whether misaligned accesses are supported for each access width.


Although software running on a RISC-V hart cannot directly generate bursts to
memory, software might have to program DMA engines to access I/O devices and
might therefore need to know which access sizes are supported.

Main memory regions always support read and write of all access widths required by the attached
devices, and can specify whether instruction fetch is supported.



Some platforms might mandate that all of main memory support instruction fetch.
Other platforms might prohibit instruction fetch from some main memory regions.

In some cases, the design of a processor or device accessing main memory might
support other widths, but must be able to function with the types supported by the
main memory.

I/O regions can specify which combinations of read, write, or execute accesses to which data widths
are supported.

For systems with page-based virtual memory, I/O and memory regions can specify which combinations
of hardware page-table reads and hardware page-table writes are supported.


Unix-like operating systems generally require that all of cacheable main memory
supports page-table walks.

3.6.3. Atomicity PMAs

Atomicity PMAs describes which atomic instructions are supported in this address region. Support for
atomic instructions is divided into two categories: LR/SC and AMOs.


Some platforms might mandate that all of cacheable main memory support all
atomic operations required by the attached processors.

3.6.3.1. AMO PMA

Within AMOs, there are four levels of support: AMONone, AMOSwap, AMOLogical, and AMOArithmetic.
AMONone indicates that no AMO operations are supported. AMOSwap indicates that only amoswap

3.6. Physical Memory Attributes | Page 62

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

instructions are supported in this address range. AMOLogical indicates that swap instructions plus all
the logical AMOs (amoand, amoor, amoxor) are supported. AMOArithmetic indicates that all RISC-V AMOs
are supported. For each level of support, naturally aligned AMOs of a given width are supported if the
underlying memory region supports reads and writes of that width. Main memory and I/O regions may
only support a subset or none of the processor-supported atomic operations.

Table 17. Classes of AMOs supported by I/O regions.

AMO Class Supported Operations

AMONone
AMOSwap
AMOLogical
AMOArithmetic

None
amoswap
above + amoand, amoor, amoxor
above + amoadd, amomin, amomax, amominu, amomaxu


We recommend providing at least AMOLogical support for I/O regions where
possible.

3.6.3.2. Reservability PMA

For LR/SC, there are three levels of support indicating combinations of the reservability and
eventuality properties: RsrvNone, RsrvNonEventual, and RsrvEventual. RsrvNone indicates that no
LR/SC operations are supported (the location is non-reservable). RsrvNonEventual indicates that the
operations are supported (the location is reservable), but without the eventual success guarantee
described in the unprivileged ISA specification. RsrvEventual indicates that the operations are
supported and provide the eventual success guarantee.



We recommend providing RsrvEventual support for main memory regions where
possible. Most I/O regions will not support LR/SC accesses, as these are most
conveniently built on top of a cache-coherence scheme, but some may support
RsrvNonEventual or RsrvEventual.

When LR/SC is used for memory locations marked RsrvNonEventual, software should
provide alternative fall-back mechanisms used when lack of progress is detected.

3.6.4. Misaligned Atomicity Granule PMA

The misaligned atomicity granule PMA provides constrained support for misaligned AMOs. This PMA,
if present, specifies the size of a misaligned atomicity granule, a naturally aligned power-of-two
number of bytes. Specific supported values for this PMA are represented by MAGNN, e.g., MAG16
indicates the misaligned atomicity granule is at least 16 bytes.

The misaligned atomicity granule PMA applies only to AMOs, loads and stores defined in the base
ISAs, and loads and stores of no more than XLEN bits defined in the F, D, and Q extensions. For an
instruction in that set, if all accessed bytes lie within the same misaligned atomicity granule, the
instruction will not raise an exception for reasons of address alignment, and the instruction will give
rise to only one memory operation for the purposes of RVWMO—i.e., it will execute atomically.

If a misaligned AMO accesses a region that does not specify a misaligned atomicity granule PMA, or if
not all accessed bytes lie within the same misaligned atomicity granule, then an exception is raised.
For regular loads and stores that access such a region or for which not all accessed bytes lie within the

3.6. Physical Memory Attributes | Page 63

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

same atomicity granule, then either an exception is raised, or the access proceeds but is not
guaranteed to be atomic. Implementations may raise access-fault exceptions instead of address-
misaligned exceptions for some misaligned accesses, indicating the instruction should not be
emulated by a trap handler.



LR/SC instructions are unaffected by this PMA and so always raise an exception
when misaligned. Vector memory accesses are also unaffected, so might execute
non-atomically even when contained within a misaligned atomicity granule. Implicit
accesses are similarly unaffected by this PMA.

3.6.5. Memory-Ordering PMAs

Regions of the address space are classified as either main memory or I/O for the purposes of ordering
by the FENCE instruction and atomic-instruction ordering bits.

Accesses by one hart to main memory regions are observable not only by other harts but also by other
devices with the capability to initiate requests in the main memory system (e.g., DMA engines).
Coherent main memory regions always have either the RVWMO or RVTSO memory model. Incoherent
main memory regions have an implementation-defined memory model.

Accesses by one hart to an I/O region are observable not only by other harts and bus mastering
devices but also by the targeted I/O devices, and I/O regions may be accessed with either relaxed or
strong ordering. Accesses to an I/O region with relaxed ordering are generally observed by other harts
and bus mastering devices in a manner similar to the ordering of accesses to an RVWMO memory
region, as discussed in Section A.4.2 in Volume I of this specification. By contrast, accesses to an I/O
region with strong ordering are generally observed by other harts and bus mastering devices in
program order.

Each strongly ordered I/O region specifies a numbered ordering channel, which is a mechanism by
which ordering guarantees can be provided between different I/O regions. Channel 0 is used to
indicate point-to-point strong ordering only, where only accesses by the hart to the single associated
I/O region are strongly ordered.

Channel 1 is used to provide global strong ordering across all I/O regions. Any accesses by a hart to
any I/O region associated with channel 1 can only be observed to have occurred in program order by
all other harts and I/O devices, including relative to accesses made by that hart to relaxed I/O regions
or strongly ordered I/O regions with different channel numbers. In other words, any access to a region
in channel 1 is equivalent to executing a fence io,io instruction before and after the instruction.

Other larger channel numbers provide program ordering to accesses by that hart across any regions
with the same channel number.

Systems might support dynamic configuration of ordering properties on each memory region.



Strong ordering can be used to improve compatibility with legacy device driver code,
or to enable increased performance compared to insertion of explicit ordering
instructions when the implementation is known to not reorder accesses.

Local strong ordering (channel 0) is the default form of strong ordering as it is often
straightforward to provide if there is only a single in-order communication path
between the hart and the I/O device.

3.6. Physical Memory Attributes | Page 64

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Generally, different strongly ordered I/O regions can share the same ordering
channel without additional ordering hardware if they share the same interconnect
path and the path does not reorder requests.

3.6.6. Coherence and Cacheability PMAs

Coherence is a property defined for a single physical address, and indicates that writes to that address
by one agent will eventually be made visible to other coherent agents in the system. Coherence is not
to be confused with the memory consistency model of a system, which defines what values a memory
read can return given the previous history of reads and writes to the entire memory system. In RISC-V
platforms, the use of hardware-incoherent regions is discouraged due to software complexity,
performance, and energy impacts.

The cacheability of a memory region should not affect the software view of the region except for
differences reflected in other PMAs, such as main memory versus I/O classification, memory ordering,
supported accesses and atomic operations, and coherence. For this reason, we treat cacheability as a
platform-level setting managed by machine-mode software only.

Where a platform supports configurable cacheability settings for a memory region, a platform-specific
machine-mode routine will change the settings and flush caches if necessary, so the system is only
incoherent during the transition between cacheability settings. This transitory state should not be
visible to lower privilege levels.



Coherence is straightforward to provide for a shared memory region that is not
cached by any agent. The PMA for such a region would simply indicate it should not
be cached in a private or shared cache.

Coherence is also straightforward for read-only regions, which can be safely cached
by multiple agents without requiring a cache-coherence scheme. The PMA for this
region would indicate that it can be cached, but that writes are not supported.

Some read-write regions might only be accessed by a single agent, in which case
they can be cached privately by that agent without requiring a coherence scheme.
The PMA for such regions would indicate they can be cached. The data can also be
cached in a shared cache, as other agents should not access the region.

If an agent can cache a read-write region that is accessible by other agents, whether
caching or non-caching, a cache-coherence scheme is required to avoid use of stale
values. In regions lacking hardware cache coherence (hardware-incoherent regions),
cache coherence can be implemented entirely in software, but software coherence
schemes are notoriously difficult to implement correctly and often have severe
performance impacts due to the need for conservative software-directed cache-
flushing. Hardware cache-coherence schemes require more complex hardware and
can impact performance due to the cache-coherence probes, but are otherwise
invisible to software.

For each hardware cache-coherent region, the PMA would indicate that the region is
coherent and which hardware coherence controller to use if the system has multiple
coherence controllers. For some systems, the coherence controller might be an
outer-level shared cache, which might itself access further outer-level cache-
coherence controllers hierarchically.

3.6. Physical Memory Attributes | Page 65

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Most memory regions within a platform will be coherent to software, because they
will be fixed as either uncached, read-only, hardware cache-coherent, or only
accessed by one agent.

If a PMA indicates non-cacheability, then accesses to that region must be satisfied by the memory
itself, not by any caches.



For implementations with a cacheability-control mechanism, the situation may arise
that a program uncacheably accesses a memory location that is currently cache-
resident. In this situation, the cached copy must be ignored. This constraint is
necessary to prevent more-privileged modes’ speculative cache refills from affecting
the behavior of less-privileged modes’ uncacheable accesses.

3.6.7. Idempotency PMAs

Idempotency PMAs describe whether reads and writes to an address region are idempotent. Main
memory regions are assumed to be idempotent. For I/O regions, idempotency on reads and writes can
be specified separately (e.g., reads are idempotent but writes are not). If accesses are non-idempotent,
i.e., there is potentially a side effect on any read or write access, then speculative or redundant
accesses must be avoided.

For the purposes of defining the idempotency PMAs, changes in observed memory ordering created by
redundant accesses are not considered a side effect.



While hardware should always be designed to avoid speculative or redundant
accesses to memory regions marked as non-idempotent, it is also necessary to
ensure software or compiler optimizations do not generate spurious accesses to non-
idempotent memory regions.

Non-idempotent regions might not support misaligned accesses. Misaligned
accesses to such regions should raise access-fault exceptions rather than address-
misaligned exceptions, indicating that software should not emulate the misaligned
access using multiple smaller accesses, which could cause unexpected side effects.

For non-idempotent regions, implicit reads and writes must not be performed early or speculatively,
with the following exceptions. When a non-speculative implicit read is performed, an implementation is
permitted to additionally read any of the bytes within a naturally aligned power-of-2 region containing
the address of the non-speculative implicit read. Furthermore, when a non-speculative instruction fetch
is performed, an implementation is permitted to additionally read any of the bytes within the next
naturally aligned power-of-2 region of the same size (with the address of the region taken modulo 2
XLEN. The results of these additional reads may be used to satisfy subsequent early or speculative
implicit reads. The size of these naturally aligned power-of-2 regions is implementation-defined, but,
for systems with page-based virtual memory, must not exceed the smallest supported page size.

3.7. Physical Memory Protection

To support secure processing and contain faults, it is desirable to limit the physical addresses
accessible by software running on a hart. An optional physical memory protection (PMP) unit provides
per-hart machine-mode control registers to allow physical memory access privileges (read, write,
execute) to be specified for each physical memory region. The PMP values are checked in parallel with
the PMA checks described in Section 3.6.

3.7. Physical Memory Protection | Page 66

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The granularity of PMP access control settings are platform-specific, but the standard PMP encoding
supports regions as small as four bytes. Certain regions’ privileges can be hardwired—for example,
some regions might only ever be visible in machine mode but in no lower-privilege layers.


Platforms vary widely in demands for physical memory protection, and some
platforms may provide other PMP structures in addition to or instead of the scheme
described in this section.

PMP checks are applied to all accesses whose effective privilege mode is S or U, including instruction
fetches and data accesses in S and U mode, and data accesses in M-mode when the MPRV bit in
mstatus is set and the MPP field in mstatus contains S or U. PMP checks are also applied to page-table
accesses for virtual-address translation, for which the effective privilege mode is S. Optionally, PMP
checks may additionally apply to M-mode accesses, in which case the PMP registers themselves are
locked, so that even M-mode software cannot change them until the hart is reset. In effect, PMP can
grant permissions to S and U modes, which by default have none, and can revoke permissions from M-
mode, which by default has full permissions.

PMP violations are always trapped precisely at the processor.

3.7.1. Physical Memory Protection CSRs

PMP entries are described by an 8-bit configuration register and one MXLEN-bit address register.
Some PMP settings additionally use the address register associated with the preceding PMP entry. Up
to 64 PMP entries are supported. Implementations may implement zero, 16, or 64 PMP entries; the
lowest-numbered PMP entries must be implemented first. All PMP CSR fields are WARL and may be
read-only zero. PMP CSRs are only accessible to M-mode.

The PMP configuration registers are densely packed into CSRs to minimize context-switch time. For
RV32, sixteen CSRs, pmpcfg0–pmpcfg15, hold the configurations pmp0cfg–pmp63cfg for the 64 PMP entries,
as shown in Figure 30. For RV64, eight even-numbered CSRs, pmpcfg0, pmpcfg2, …, pmpcfg14, hold the
configurations for the 64 PMP entries, as shown in Figure 31. For RV64, the odd-numbered
configuration registers, pmpcfg1, pmpcfg3, …, pmpcfg15, are illegal.


RV64 harts use pmpcfg2, rather than pmpcfg1, to hold configurations for PMP entries 8-
15. This design reduces the cost of supporting multiple MXLEN values, since the
configurations for PMP entries 8-11 appear in pmpcfg2[31:0] for both RV32 and RV64.

31 24 23 16 15 8 7 0
pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8
31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmpcfg1
8 8 8 8

⋮

31 24 23 16 15 8 7 0
pmp63cfg pmp62cfg pmp61cfg pmp60cfg pmpcfg15

8 8 8 8

Figure 30. RV32 PMP configuration CSR layout.

3.7. Physical Memory Protection | Page 67

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8 8 8 8 8

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp15cfg pmp14cfg pmp13cfg pmp12cfg pmp11cfg pmp10cfg pmp9cfg pmp8cfg pmpcfg2

8 8 8 8 8 8 8 8

⋮

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

pmp63cfg pmp62cfg pmp61cfg pmp60cfg pmp59cfg pmp58cfg pmp57cfg pmp56cfg pmpcfg14

8 8 8 8 8 8 8 8

Figure 31. RV64 PMP configuration CSR layout.

The PMP address registers are CSRs named pmpaddr0-pmpaddr63. Each PMP address register encodes
bits 33-2 of a 34-bit physical address for RV32, as shown in Figure 32. For RV64, each PMP address
register encodes bits 55-2 of a 56-bit physical address, as shown in Figure 33. Not all physical address
bits may be implemented, and so the pmpaddr registers are WARL.



The Sv32 page-based virtual-memory scheme described in Section 12.3 supports 34-
bit physical addresses for RV32, so the PMP scheme must support addresses wider
than XLEN for RV32. The Sv39 and Sv48 page-based virtual-memory schemes
described in Section 12.4 and Section 12.5 support a 56-bit physical address space,
so the RV64 PMP address registers impose the same limit.

31 0

address[33:2] (WARL)

32

Figure 32. PMP address register format, RV32.

63 54 53 0

0 (WARL) address[55:2] (WARL)

10 54

Figure 33. PMP address register format, RV64.

Figure 34 shows the layout of a PMP configuration register. The R, W, and X bits, when set, indicate
that the PMP entry permits read, write, and instruction execution, respectively. When one of these bits
is clear, the corresponding access type is denied. The R, W, and X fields form a collective WARL field
for which the combinations with R=0 and W=1 are reserved. The remaining two fields, A and L, are
described in the following sections.

7 6 5 4 3 2 1 0
L 0 A X W R
1 2 2 1 1 1

Figure 34. PMP configuration register format.

Attempting to fetch an instruction from a PMP region that does not have execute permissions raises
an instruction access-fault exception. Attempting to execute a load or load-reserved instruction which
accesses a physical address within a PMP region without read permissions raises a load access-fault
exception. Attempting to execute a store, store-conditional, or AMO instruction which accesses a
physical address within a PMP region without write permissions raises a store access-fault exception.

3.7.1.1. Address Matching

The A field in a PMP entry’s configuration register encodes the address-matching mode of the

3.7. Physical Memory Protection | Page 68

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

associated PMP address register. The encoding of this field is shown in Table 18. When A=0, this PMP
entry is disabled and matches no addresses. Two other address-matching modes are supported:
naturally aligned power-of-2 regions (NAPOT), including the special case of naturally aligned four-byte
regions (NA4); and the top boundary of an arbitrary range (TOR). These modes support four-byte
granularity.

Table 18. Encoding of A field in PMP configuration registers.

A Name Description

0
1
2
3

OFF
TOR
NA4

NAPOT

Null region (disabled)
Top of range
Naturally aligned four-byte region
Naturally aligned power-of-two region, ≥8 bytes

NAPOT ranges make use of the low-order bits of the associated address register to encode the size of
the range, as shown in Table 19.

Table 19. NAPOT range encoding in PMP address and configuration registers.

pmpaddr pmpcfg.A Match type and size

yyyy…yyyy
yyyy…yyy0
yyyy…yy01
yyyy…y011

…
yy01…1111
y011…1111
0111…1111
1111…1111

NA4
NAPOT
NAPOT
NAPOT

…
NAPOT
NAPOT
NAPOT
NAPOT

4-byte NAPOT range
8-byte NAPOT range
16-byte NAPOT range
32-byte NAPOT range
…
2XLEN-byte NAPOT range
2XLEN+1-byte NAPOT range
2XLEN+2-byte NAPOT range
2XLEN+3-byte NAPOT range

If TOR is selected, the associated address register forms the top of the address range, and the
preceding PMP address register forms the bottom of the address range. If PMP entry i's A field is set
to TOR, the entry matches any address y such that pmpaddri-1≤y<pmpaddri (irrespective of the value of
pmpcfgi-1). If PMP entry 0’s A field is set to TOR, zero is used for the lower bound, and so it matches any
address y<pmpaddr0.

 If pmpaddri-1≥pmpaddri and pmpcfgi.A=TOR, then PMP entry i matches no addresses.

Although the PMP mechanism supports regions as small as four bytes, platforms may specify coarser
PMP regions. In general, the PMP grain is bytes and must be the same across all PMP regions.
When , the NA4 mode is not selectable. When and .A[1] is set, i.e. the mode is
NAPOT, then bits [G-2:0] read as all ones. When and .A[1] is clear, i.e. the
mode is OFF or TOR, then bits [G-1:0] read as all zeros. Bits [G-1:0] do not affect
the TOR address-matching logic. Although changing .A[1] affects the value read from

, it does not affect the underlying value stored in that register—in particular, [G-
1] retains its original value when .A is changed from NAPOT to TOR/OFF then back to
NAPOT.


Software may determine the PMP granularity by writing zero to pmp0cfg, then writing
all ones to pmpaddr0, then reading back pmpaddr0. If G is the index of the least-
significant bit set, the PMP granularity is 2G+2 bytes.

If the current XLEN is greater than MXLEN, the PMP address registers are zero-extended from MXLEN

3.7. Physical Memory Protection | Page 69

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

to XLEN bits for the purposes of address matching.

3.7.1.2. Locking and Privilege Mode

The L bit indicates that the PMP entry is locked, i.e., writes to the configuration register and associated
address registers are ignored. Locked PMP entries remain locked until the hart is reset. If PMP entry i
is locked, writes to pmpicfg and pmpaddri are ignored. Additionally, if PMP entry i is locked and pmpicfg.A
is set to TOR, writes to pmpaddri-1 are ignored.

 Setting the L bit locks the PMP entry even when the A field is set to OFF.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X permissions are enforced
on M-mode accesses. When the L bit is set, these permissions are enforced for all privilege modes.
When the L bit is clear, any M-mode access matching the PMP entry will succeed; the R/W/X
permissions apply only to S and U modes.

3.7.1.3. Priority and Matching Logic

PMP entries are statically prioritized. The lowest-numbered PMP entry that matches any byte of an
access determines whether that access succeeds or fails. The matching PMP entry must match all
bytes of an access, or the access fails, irrespective of the L, R, W, and X bits. For example, if a PMP
entry is configured to match the four-byte range 0xC–0xF, then an 8-byte access to the range 0x8–0xF
will fail, assuming that PMP entry is the highest-priority entry that matches those addresses.

If a PMP entry matches all bytes of an access, then the L, R, W, and X bits determine whether the
access succeeds or fails. If the L bit is clear and the privilege mode of the access is M, the access
succeeds. Otherwise, if the L bit is set or the privilege mode of the access is S or U, then the access
succeeds only if the R, W, or X bit corresponding to the access type is set.

If no PMP entry matches an M-mode access, the access succeeds. If no PMP entry matches an S-
mode or U-mode access, but at least one PMP entry is implemented, the access fails.


If at least one PMP entry is implemented, but all PMP entries’ A fields are set to OFF,
then all S-mode and U-mode memory accesses will fail.

Failed accesses generate an instruction, load, or store access-fault exception. Note that a single
instruction may generate multiple accesses, which may not be mutually atomic. An access-fault
exception is generated if at least one access generated by an instruction fails, though other accesses
generated by that instruction may succeed with visible side effects. Notably, instructions that reference
virtual memory are decomposed into multiple accesses.

On some implementations, misaligned loads, stores, and instruction fetches may also be decomposed
into multiple accesses, some of which may succeed before an access-fault exception occurs. In
particular, a portion of a misaligned store that passes the PMP check may become visible, even if
another portion fails the PMP check. The same behavior may manifest for stores wider than XLEN bits
(e.g., the FSD instruction in RV32D), even when the store address is naturally aligned.

3.7.2. Physical Memory Protection and Paging

The Physical Memory Protection mechanism is designed to compose with the page-based virtual
memory systems described in Chapter 12. When paging is enabled, instructions that access virtual
memory may result in multiple physical-memory accesses, including implicit references to the page

3.7. Physical Memory Protection | Page 70

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

tables. The PMP checks apply to all of these accesses. The effective privilege mode for implicit page-
table accesses is S.

Implementations with virtual memory are permitted to perform address translations speculatively and
earlier than required by an explicit memory access, and are permitted to cache them in address
translation cache structures—including possibly caching the identity mappings from effective address
to physical address used in Bare translation modes and M-mode. The PMP settings for the resulting
physical address may be checked (and possibly cached) at any point between the address translation
and the explicit memory access. Hence, when the PMP settings are modified, M-mode software must
synchronize the PMP settings with the virtual memory system and any PMP or address-translation
caches. This is accomplished by executing an SFENCE.VMA instruction with rs1=x0 and rs2=x0, after
the PMP CSRs are written. See Section 21.5.3 for additional synchronization requirements when the
hypervisor extension is implemented.

If page-based virtual memory is not implemented, memory accesses check the PMP settings
synchronously, so no SFENCE.VMA is needed.

3.7. Physical Memory Protection | Page 71

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 4. "Smstateen/Ssstateen" Extensions, Version 1.0

The implementation of optional RISC-V extensions has the potential to open covert channels between
separate user threads, or between separate guest OSes running under a hypervisor. The problem
occurs when an extension adds processor state — usually explicit registers, but possibly other forms of
state — that the main OS or hypervisor is unaware of (and hence won’t context-switch) but that can be
modified/written by one user thread or guest OS and perceived/examined/read by another.

For example, the Advanced Interrupt Architecture (AIA) for RISC-V adds to a hart as many as ten
supervisor-level CSRs (siselect, sireg, stopi, sseteipnum, sclreipnum, sseteienum, sclreienum, sclaimei, sieh,
and siph) and provides also the option for hardware to be backward-compatible with older, pre-AIA
software. Because an older hypervisor that is oblivious to the AIA will not know to swap any of the
AIA’s new CSRs on context switches, the registers may then be used as a covert channel between
multiple guest OSes that run atop this hypervisor. Although traditional practices might consider such a
communication channel harmless, the intense focus on security today argues that a means be offered
to plug such channels.

The f registers of the RISC-V floating-point extensions and the v registers of the vector extension
would similarly be potential covert channels between user threads, except for the existence of the FS
and VS fields in the sstatus register. Even if an OS is unaware of, say, the vector extension and its v
registers, access to those registers is blocked when the VS field is initialized to zero, either at machine
level or by the OS itself initializing sstatus.

Obviously, one way to prevent the use of new user-level CSRs as covert channels would be to add to
mstatus or sstatus an "XS" field for each relevant extension, paralleling the V extension’s VS field.
However, this is not considered a general solution to the problem due to the number of potential future
extensions that may add small amounts of state. Even with a 64-bit sstatus (necessitating adding
sstatush for RV32), it is not certain there are enough remaining bits in sstatus to accommodate all
future user-level extensions. In any event, there is no need to strain sstatus (and add sstatush) for this
purpose. The "enable" flags that are needed to plug covert channels are not generally expected to
require swapping on context switches of user threads, making them a less-than-compelling candidate
for inclusion in sstatus. Hence, a new place is provided for them instead.

4.1. State Enable Extensions

The Smstateen and Ssstateen extensions collectively specify machine-mode and supervisor-mode
features. The Smstateen extension specification comprises the mstateen*, sstateen*, and hstateen*
CSRs and their functionality. The Ssstateen extension specification comprises only the sstateen* and
hstateen* CSRs and their functionality.

For RV64 harts, this extension adds four new 64-bit CSRs at machine level: mstateen0 (Machine State
Enable 0), mstateen1, mstateen2, and mstateen3.

If supervisor mode is implemented, another four CSRs are defined at supervisor level: sstateen0,
sstateen1, sstateen2, and sstateen3.

And if the hypervisor extension is implemented, another set of CSRs is added: hstateen0, hstateen1,
hstateen2, and hstateen3.

For RV32, the registers listed above are 32-bit, and for the machine-level and hypervisor CSRs there is
a corresponding set of high-half CSRs for the upper 32 bits of each register: mstateen0h, mstateen1h,
mstateen2h, mstateen3h, hstateen0h, hstateen1h, hstateen2h, and hstateen3h.

4.1. State Enable Extensions | Page 72

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

For the supervisor-level sstateen registers, high-half CSRs are not added at this time because it is
expected the upper 32 bits of these registers will always be zeros, as explained later below.

Each bit of a stateen CSR controls less-privileged access to an extension’s state, for an extension that
was not deemed "worthy" of a full XS field in sstatus like the FS and VS fields for the F and V
extensions. The number of registers provided at each level is four because it is believed that 4 * 64 =
256 bits for machine and hypervisor levels, and 4 * 32 = 128 bits for supervisor level, will be adequate
for many years to come, perhaps for as long as the RISC-V ISA is in use. The exact number four is an
attempted compromise between providing too few bits on the one hand and going overboard with
CSRs that will never be used on the other. A possible future doubling of the number of stateen CSRs is
covered later.

The stateen registers at each level control access to state at all less-privileged levels, but not at its own
level. This is analogous to how the existing counteren CSRs control access to performance counter
registers. Just as with the counteren CSRs, when a stateen CSR prevents access to state by less-
privileged levels, an attempt in one of those privilege modes to execute an instruction that would read
or write the protected state raises an illegal instruction exception, or, if executing in VS or VU mode
and the circumstances for a virtual instruction exception apply, raises a virtual instruction exception
instead of an illegal instruction exception.

When this extension is not implemented, all state added by an extension is accessible as defined by
that extension.

When a stateen CSR prevents access to state for a privilege mode, attempting to execute in that
privilege mode an instruction that implicitly updates the state without reading it may or may not raise
an illegal instruction or virtual instruction exception. Such cases must be disambiguated by being
explicitly specified one way or the other.

In some cases, the bits of the stateen CSRs will have a dual purpose as enables for the ISA extensions
that introduce the controlled state.

Each bit of a supervisor-level sstateen CSR controls user-level access (from U-mode or VU-mode) to an
extension’s state. The intention is to allocate the bits of sstateen CSRs starting at the least-significant
end, bit 0, through to bit 31, and then on to the next-higher-numbered sstateen CSR.

For every bit with a defined purpose in an sstateen CSR, the same bit is defined in the matching
mstateen CSR to control access below machine level to the same state. The upper 32 bits of an mstateen
CSR (or for RV32, the corresponding high-half CSR) control access to state that is inherently
inaccessible to user level, so no corresponding enable bits in the supervisor-level sstateen CSR are
applicable. The intention is to allocate bits for this purpose starting at the most-significant end, bit 63,
through to bit 32, and then on to the next-higher mstateen CSR. If the rate that bits are being allocated
from the least-significant end for sstateen CSRs is sufficiently low, allocation from the most-significant
end of mstateen CSRs may be allowed to encroach on the lower 32 bits before jumping to the next-
higher mstateen CSR. In that case, the bit positions of "encroaching" bits will remain forever read-only
zeros in the matching sstateen CSRs.

With the hypervisor extension, the hstateen CSRs have identical encodings to the mstateen CSRs, except
controlling accesses for a virtual machine (from VS and VU modes).

Each standard-defined bit of a stateen CSR is WARL and may be read-only zero or one, subject to the
following conditions.

Bits in any stateen CSR that are defined to control state that a hart doesn’t implement are read-only

4.1. State Enable Extensions | Page 73

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

zeros for that hart. Likewise, all reserved bits not yet given a defined meaning are also read-only zeros.
For every bit in an mstateen CSR that is zero (whether read-only zero or set to zero), the same bit
appears as read-only zero in the matching hstateen and sstateen CSRs. For every bit in an hstateen CSR
that is zero (whether read-only zero or set to zero), the same bit appears as read-only zero in sstateen
when accessed in VS-mode.

A bit in a supervisor-level sstateen CSR cannot be read-only one unless the same bit is read-only one
in the matching mstateen CSR and, if it exists, in the matching hstateen CSR. A bit in an hstateen CSR
cannot be read-only one unless the same bit is read-only one in the matching mstateen CSR.

On reset, all writable mstateen bits are initialized by the hardware to zeros. If machine-level software
changes these values, it is responsible for initializing the corresponding writable bits of the hstateen
and sstateen CSRs to zeros too. Software at each privilege level should set its respective stateen CSRs
to indicate the state it is prepared to allow less-privileged software to access. For OSes and
hypervisors, this usually means the state that the OS or hypervisor is prepared to swap on a context
switch, or to manage in some other way.

For each mstateen CSR, bit 63 is defined to control access to the matching sstateen and hstateen CSRs.
That is, bit 63 of mstateen0 controls access to sstateen0 and hstateen0; bit 63 of mstateen1 controls
access to sstateen1 and hstateen1; etc. Likewise, bit 63 of each hstateen correspondingly controls
access to the matching sstateen CSR.

A hypervisor may need this control over accesses to the sstateen CSRs if it ever must emulate for a
virtual machine an extension that is supposed to be affected by a bit in an sstateen CSR. Even if such
emulation is uncommon, it should not be excluded.

Machine-level software needs identical control to be able to emulate the hypervisor extension. That is,
machine level needs control over accesses to the supervisor-level sstateen CSRs in order to emulate
the hstateen CSRs, which have such control.

Bit 63 of each mstateen CSR may be read-only zero only if the hypervisor extension is not implemented
and the matching supervisor-level sstateen CSR is all read-only zeros. In that case, machine-level
software should emulate attempts to access the affected sstateen CSR from S-mode, ignoring writes
and returning zero for reads. Bit 63 of each hstateen CSR is always writable (not read-only).

4.2. State Enable 0 Registers

012315

CFCSRJVTWPRI

1631

WPRI

3247

WPRI

485354555657585960616263

WPRICTRP1P14P1P13CONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 35. Machine State Enable 0 Register (mstateen0)

4.2. State Enable 0 Registers | Page 74

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

012315

CFCSRJVTWPRI

1631

WPRI

3247

WPRI

485354555657585960616263

WPRICTRWPRICONTEXTIMSICAIACSRINDWPRIENVCFGSE0

Figure 36. Hypervisor State Enable 0 Register (hstateen0)

012315

CFCSRJVTWPRI

1631

WPRI

Figure 37. Supervisor State Enable 0 Register (sstateen0)

The C bit controls access to any and all custom state. This bit is not custom state itself. The C bit of
these registers is not custom state itself; it is a standard field of a standard CSR, either mstateen0,
hstateen0, or sstateen0.



The requirements that non-standard extensions must meet to be conforming are not
relaxed due solely to changes in the value of this bit. In particular, if software sets
this bit but does not execute any custom instructions or access any custom state, the
software must continue to execute as specified by all relevant RISC-V standards, or
the hardware is not standard-conforming.

The FCSR bit controls access to fcsr for the case when floating-point instructions operate on x
registers instead of f registers as specified by the Zfinx and related extensions (Zdinx, etc.). Whenever
misa.F = 1, FCSR bit of mstateen0 is read-only zero (and hence read-only zero in hstateen0 and sstateen0
too). For convenience, when the stateen CSRs are implemented and misa.F = 0, then if the FCSR bit of
a controlling stateen0 CSR is zero, all floating-point instructions cause an illegal instruction trap (or
virtual instruction trap, if relevant), as though they all access fcsr, regardless of whether they really do.

The JVT bit controls access to the jvt CSR provided by the Zcmt extension.

The SE0 bit in mstateen0 controls access to the hstateen0, hstateen0h, and the sstateen0 CSRs. The SE0
bit in hstateen0 controls access to the sstateen0 CSR.

The ENVCFG bit in mstateen0 controls access to the henvcfg, henvcfgh, and the senvcfg CSRs. The
ENVCFG bit in hstateen0 controls access to the senvcfg CSRs.

The CSRIND bit in mstateen0 controls access to the siselect, sireg*, vsiselect, and the vsireg* CSRs
provided by the Sscsrind extensions. The CSRIND bit in hstateen0 controls access to the siselect and
the sireg*, (really vsiselect and vsireg*) CSRs provided by the Sscsrind extensions.

The IMSIC bit in mstateen0 controls access to the IMSIC state, including CSRs stopei and vstopei,
provided by the Ssaia extension. The IMSIC bit in hstateen0 controls access to the guest IMSIC state,
including CSRs stopei (really vstopei), provided by the Ssaia extension.


Setting the IMSIC bit in hstateen0 to zero prevents a virtual machine from accessing
the hart’s IMSIC the same as setting hstatus.VGEIN = 0.

The AIA bit in mstateen0 controls access to all state introduced by the Ssaia extension and not

4.2. State Enable 0 Registers | Page 75

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

controlled by either the CSRIND or the IMSIC bits. The AIA bit in hstateen0 controls access to all state
introduced by the Ssaia extension and not controlled by either the CSRIND or the IMSIC bits of
hstateen0.

The CONTEXT bit in mstateen0 controls access to the scontext and hcontext CSRs provided by the Sdtrig
extension. The CONTEXT bit in hstateen0 controls access to the scontext CSR provided by the Sdtrig
extension.

The P1P13 bit in mstateen0 controls access to the hedelegh introduced by Privileged Specification
Version 1.13.

The P1P14 bit in mstateen0 controls access to the srmcfg CSR introduced by the Ssqosid Chapter 18
extension.

4.3. Usage

After the writable bits of the machine-level mstateen CSRs are initialized to zeros on reset, machine-
level software can set bits in these registers to enable less-privileged access to the controlled state.
This may be either because machine-level software knows how to swap the state or, more likely,
because machine-level software isn’t swapping supervisor-level environments. (Recall that the main
reason the mstateen CSRs must exist is so machine level can emulate the hypervisor extension. When
machine level isn’t emulating the hypervisor extension, it is likely there will be no need to keep any
implemented mstateen bits zero.)

If machine level sets any writable mstateen bits to nonzero, it must initialize the matching hstateen
CSRs, if they exist, by writing zeros to them. And if any mstateen bits that are set to one have matching
bits in the sstateen CSRs, machine-level software must also initialize those sstateen CSRs by writing
zeros to them. Ordinarily, machine-level software will want to set bit 63 of all mstateen CSRs,
necessitating that it write zero to all hstateen CSRs.

Software should ensure that all writable bits of sstateen CSRs are initialized to zeros when an OS at
supervisor level is first entered. The OS can then set bits in these registers to enable user-level access
to the controlled state, presumably because it knows how to context-swap the state.

For the sstateen CSRs whose access by a guest OS is permitted by bit 63 of the corresponding hstateen
CSRs, a hypervisor must include the sstateen CSRs in the context it swaps for a guest OS. When it
starts a new guest OS, it must ensure the writable bits of those sstateen CSRs are initialized to zeros,
and it must emulate accesses to any other sstateen CSRs.

If software at any privilege level does not support multiple contexts for less-privilege levels, then it may
choose to maximize less-privileged access to all state by writing a value of all ones to the stateen CSRs
at its level (the mstateen CSRs for machine level, the sstateen CSRs for an OS, and the hstateen CSRs for
a hypervisor), without knowing all the state to which it is granting access. This is justified because
there is no risk of a covert channel between execution contexts at the less-privileged level when only
one context exists at that level. This situation is expected to be common for machine level, and it
might also arise, for example, for a type-1 hypervisor that hosts only a single guest virtual machine.



If a need is anticipated, the set of stateen CSRs could in the future be doubled by
adding these:

⚫ 0x38C mstateen4, 0x39C mstateen4h

⚫ 0x38D mstateen5, 0x39D mstateen5h

4.3. Usage | Page 76

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ 0x38E mstateen6, 0x39E mstateen6h

⚫ 0x38F mstateen7, 0x39F mstateen7h

⚫ 0x18C sstateen4

⚫ 0x18D sstateen5

⚫ 0x18E sstateen6

⚫ 0x18F sstateen7

⚫ 0x68C hstateen4, 0x69C hstateen4h

⚫ 0x68D hstateen5, 0x69D hstateen5h

⚫ 0x68E hstateen6, 0x69E hstateen6h

⚫ 0x68F hstateen7, 0x69F hstateen7h

These additional CSRs are not a definite part of the original proposal because it is
unclear whether they will ever be needed, and it is believed the rate of consumption
of bits in the first group, registers numbered 0-3, will be slow enough that any
looming shortage will be perceptible many years in advance. At the moment, it is not
known even how many years it may take to exhaust just mstateen0, sstateen0, and
hstateen0.

4.3. Usage | Page 77

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 5. "Smcsrind/Sscsrind" Indirect CSR Access, Version
1.0

5.1. Introduction

Smcsrind/Sscsrind is an ISA extension that extends the indirect CSR access mechanism originally
defined as part of the Smaia/Ssaia extensions, in order to make it available for use by other extensions
without creating an unnecessary dependence on Smaia/Ssaia.

This extension confers two benefits:

1. It provides a means to access an array of registers via CSRs without requiring allocation of large
chunks of the limited CSR address space.

2. It enables software to access each of an array of registers by index, without requiring a switch
statement with a case for each register.



CSRs are accessed indirectly via this extension using select values, in contrast to
being accessed directly using standard CSR numbers. A CSR accessible via one
method may or may not be accessible via the other method. Select values are a
separate address space from CSR numbers, and from tselect values in the Sdtrig
extension. If a CSR is both directly and indirectly accessible, the CSR’s select value
is unrelated to its CSR number.

Further, Machine-level and Supervisor-level select values are separate address
spaces from each other; however, Machine-level and Supervisor-level CSRs with the
same select value may be defined by an extension as partial or full aliases with
respect to each other. This typically would be done for CSRs that can be delegated
from Machine-level to Supervisor-level.

The machine-level extension Smcsrind encompasses all added CSRs and all behavior modifications
for a hart, over all privilege levels. For a supervisor-level environment, extension Sscsrind is essentially
the same as Smcsrind except excluding the machine-level CSRs and behavior not directly visible to
supervisor level.

5.2. Machine-level CSRs

Number Privilege Width Name Description

0x350 MRW XLEN miselect Machine indirect register select

0x351 MRW XLEN mireg Machine indirect register alias

0x352 MRW XLEN mireg2 Machine indirect register alias 2

0x353 MRW XLEN mireg3 Machine indirect register alias 3

0x355 MRW XLEN mireg4 Machine indirect register alias 4

0x356 MRW XLEN mireg5 Machine indirect register alias 5

0x357 MRW XLEN mireg6 Machine indirect register alias 6

 The mireg* CSR numbers are not consecutive because miph is CSR number 0x354.

5.1. Introduction | Page 78

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

https://github.com/riscv/riscv-aia

The CSRs listed in the table above provide a window for accessing register state indirectly. The value
of miselect determines which register is accessed upon read or write of each of the machine indirect
alias CSRs (mireg*). miselect value ranges are allocated to dependent extensions, which specify the
register state accessible via each miregi register, for each miselect value. miselect is a WARL register.

The miselect register implements at least enough bits to support all implemented miselect values
(corresponding to the implemented extensions that utilize miselect/mireg* to indirectly access register
state). The miselect register may be read-only zero if there are no extensions implemented that utilize
it.

Values of miselect with the most-significant bit set (bit XLEN - 1 = 1) are designated only for custom
use, presumably for accessing custom registers through the alias CSRs. Values of miselect with the
most-significant bit clear are designated only for standard use and are reserved until allocated to a
standard architecture extension. If XLEN is changed, the most-significant bit of miselect moves to the
new position, retaining its value from before.

 An implementation is not required to support any custom values for miselect.

The behavior upon accessing mireg* from M-mode, while miselect holds a value that is not
implemented, is UNSPECIFIED.



It is expected that implementations will typically raise an illegal instruction exception
for such accesses, so that, for example, they can be identified as software bugs.
Platform specs, profile specs, and/or the Privileged ISA spec may place more
restrictions on behavior for such accesses.

Attempts to access mireg* while miselect holds a number in an allocated and implemented range
results in a specific behavior that, for each combination of miselect and miregi, is defined by the
extension to which the miselect value is allocated.



Ordinarily, each miregi will access register state, access read-only 0 state, or raise an
illegal instruction exception.

For RV32, if an extension defines an indirectly accessed register as 64 bits wide, it is
recommended that the lower 32 bits of the register are accessed through one of
mireg, mireg2, or mireg3, while the upper 32 bits are accessed through mireg4, mireg5, or
mireg6, respectively.



Six *ireg* registers are defined in order to ensure that the needs of extensions in
development are covered, with some room for growth. For example, for an siselect
value associated with counter X, sireg/sireg2 could be used to access mhpmcounterX
/mhpmeventX, while sireg4/sireg5 could access mhpmcounterXh/mhpmeventXh. Six *ireg*

registers allows for accessing up to 3 CSR arrays per index (*iselect) with RV32-only
CSRs, or up to 6 CSR arrays per index value without RV32-only CSRs.

5.3. Supervisor-level CSRs

Number Privilege Width Name Description

0x150 SRW XLEN siselect Supervisor indirect register select

0x151 SRW XLEN sireg Supervisor indirect register alias

5.3. Supervisor-level CSRs | Page 79

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Number Privilege Width Name Description

0x152 SRW XLEN sireg2 Supervisor indirect register alias 2

0x153 SRW XLEN sireg3 Supervisor indirect register alias 3

0x155 SRW XLEN sireg4 Supervisor indirect register alias 4

0x156 SRW XLEN sireg5 Supervisor indirect register alias 5

0x157 SRW XLEN sireg6 Supervisor indirect register alias 6

The CSRs in the table above are required if S-mode is implemented.

The siselect register will support the value range 0..0xFFF at a minimum. A future extension may
define a value range outside of this minimum range. Only if such an extension is implemented will
siselect be required to support larger values.



Requiring a range of 0–0xFFF for siselect, even though most or all of the space may
be reserved or inaccessible, permits M-mode to emulate indirectly accessed
registers in this implemented range, including registers that may be standardized in
the future.

Values of siselect with the most-significant bit set (bit XLEN - 1 = 1) are designated only for custom
use, presumably for accessing custom registers through the alias CSRs. Values of siselect with the
most-significant bit clear are designated only for standard use and are reserved until allocated to a
standard architecture extension. If XLEN is changed, the most-significant bit of siselect moves to the
new position, retaining its value from before.

The behavior upon accessing sireg* from M-mode or S-mode, while siselect holds a value that is not
implemented at supervisor level, is UNSPECIFIED.


It is recommended that implementations raise an illegal instruction exception for
such accesses, to facilitate possible emulation (by M-mode) of these accesses.


An extension is considered not to be implemented at supervisor level if machine
level has disabled the extension for S-mode, such as by the settings of certain fields
in CSR menvcfg, for example.

Otherwise, attempts to access sireg* from M-mode or S-mode while siselect holds a number in a
standard-defined and implemented range result in specific behavior that, for each combination of
siselect and siregi, is defined by the extension to which the siselect value is allocated.


Ordinarily, each siregi will access register state, access read-only 0 state, or, unless
executing in a virtual machine (covered in the next section), raise an illegal
instruction exception.

Note that the widths of siselect and sireg* are always the current XLEN rather than SXLEN. Hence, for
example, if MXLEN = 64 and SXLEN = 32, then these registers are 64 bits when the current privilege
mode is M (running RV64 code) but 32 bits when the privilege mode is S (RV32 code).

5.3. Supervisor-level CSRs | Page 80

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

5.4. Virtual Supervisor-level CSRs

Number Privilege Width Name Description

0x250 HRW XLEN vsiselect Virtual supervisor indirect register select

0x251 HRW XLEN vsireg Virtual supervisor indirect register alias

0x252 HRW XLEN vsireg2 Virtual supervisor indirect register alias 2

0x253 HRW XLEN vsireg3 Virtual supervisor indirect register alias 3

0x255 HRW XLEN vsireg4 Virtual supervisor indirect register alias 4

0x256 HRW XLEN vsireg5 Virtual supervisor indirect register alias 5

0x257 HRW XLEN vsireg6 Virtual supervisor indirect register alias 6

The CSRs in the table above are required if the hypervisor extension is implemented. These VS CSRs
all match supervisor CSRs, and substitute for those supervisor CSRs when executing in a virtual
machine (in VS-mode or VU-mode).

The vsiselect register will support the value range 0..0xFFF at a minimum. A future extension may
define a value range outside of this minimum range. Only if such an extension is implemented will
vsiselect be required to support larger values.



Requiring a range of 0–0xFFF for vsiselect, even though most or all of the space may
be reserved or inaccessible, permits a hypervisor to emulate indirectly accessed
registers in this implemented range, including registers that may be standardized in
the future.

More generally it is recommended that vsiselect and siselect be implemented with
the same number of bits. This also avoids creation of a virtualization hole due to
observable differences between vsiselect and siselect widths.

Values of vsiselect with the most-significant bit set (bit XLEN - 1 = 1) are designated only for custom
use, presumably for accessing custom registers through the alias CSRs. Values of vsiselect with the
most-significant bit clear are designated only for standard use and are reserved until allocated to a
standard architecture extension. If XLEN is changed, the most-significant bit of vsiselect moves to the
new position, retaining its value from before.

For alias CSRs sireg* and vsireg*, the hypervisor extension’s usual rules for when to raise a virtual
instruction exception (based on whether an instruction is HS-qualified) are not applicable. The rules
given in this section for sireg and vsireg apply instead, unless overridden by the requirements
specified in the section below, which take precedence over this section when extension Smstateen is
also implemented.

A virtual instruction exception is raised for attempts from VS-mode or VU-mode to directly access
vsiselect or vsireg*, or attempts from VU-mode to access siselect or sireg*.

The behavior upon accessing vsireg* from M-mode or HS-mode, or accessing sireg* (really vsireg*)
from VS-mode, while vsiselect holds a value that is not implemented at HS level, is UNSPECIFIED.


It is recommended that implementations raise an illegal instruction exception for
such accesses, to facilitate possible emulation (by M-mode) of these accesses.

Otherwise, while vsiselect holds a number in a standard-defined and implemented range, attempts to

5.4. Virtual Supervisor-level CSRs | Page 81

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

access vsireg* from a sufficiently privileged mode, or to access sireg* (really vsireg*) from VS-mode,
result in specific behavior that, for each combination of vsiselect and vsiregi, is defined by the
extension to which the vsiselect value is allocated.



Ordinarily, each vsiregi will access register state, access read-only 0 state, or raise
an exception (either an illegal instruction exception or, for select accesses from VS-
mode, a virtual instruction exception). When vsiselect holds a value that is
implemented at HS level but not at VS level, attempts to access sireg* (really vsireg*)
from VS-mode will typically raise a virtual instruction exception. But there may be
cases specific to an extension where different behavior is more appropriate.

Like siselect and sireg*, the widths of vsiselect and vsireg* are always the current XLEN rather than
VSXLEN. Hence, for example, if HSXLEN = 64 and VSXLEN = 32, then these registers are 64 bits when
accessed by a hypervisor in HS-mode (running RV64 code) but 32 bits for a guest OS in VS-mode
(RV32 code).

5.5. Access control by the state-enable CSRs

If extension Smstateen is implemented together with Smcsrind, bit 60 of state-enable register
mstateen0 controls access to siselect, sireg*, vsiselect, and vsireg*. When mstateen0[60]=0, an attempt
to access one of these CSRs from a privilege mode less privileged than M-mode results in an illegal
instruction exception. As always, the state-enable CSRs do not affect the accessibility of any state
when in M-mode, only in less privileged modes. For more explanation, see the documentation for
extension Smstateen.

Other extensions may specify that certain mstateen bits control access to registers accessed indirectly
through siselect + sireg*, and/or vsiselect + vsireg*. However, regardless of any other mstateen bits, if
mstateen0[60] = 1, a virtual instruction exception is raised as described in the previous section for all
attempts from VS-mode or VU-mode to directly access vsiselect or vsireg*, and for all attempts from
VU-mode to access siselect or sireg*.

If the hypervisor extension is implemented, the same bit is defined also in hypervisor CSR hstateen0,
but controls access to only siselect and sireg* (really vsiselect and vsireg*), which is the state
potentially accessible to a virtual machine executing in VS or VU-mode. When hstateen0[60]=0 and
mstateen0[60]=1, all attempts from VS or VU-mode to access siselect or sireg* raise a virtual instruction
exception, not an illegal instruction exception, regardless of the value of vsiselect or any other
mstateen bit.

Extension Ssstateen is defined as the supervisor-level view of Smstateen. Therefore, the combination
of Sscsrind and Ssstateen incorporates the bit defined above for hstateen0 but not that for mstateen0,
since machine-level CSRs are not visible to supervisor level.


CSR address space is reserved for a possible future "Sucsrind" extension that
extends indirect CSR access to user mode.

5.5. Access control by the state-enable CSRs | Page 82

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

https://github.com/riscv/riscv-state-enable/releases/download/v1.0.0/Smstateen.pdf

Chapter 6. "Smepmp" Extension for PMP Enhancements for
memory access and execution prevention in Machine mode,
Version 1.0

6.1. Introduction

Being able to access the memory of a process running at a high privileged execution mode, such as
the Supervisor or Machine mode, from a lower privileged mode such as the User mode, introduces an
obvious attack vector since it allows for an attacker to perform privilege escalation, and tamper with
the code and/or data of that process. A less obvious attack vector exists when the reverse happens, in
which case an attacker instead of tampering with code and/or data that belong to a high-privileged
process, can tamper with the memory of an unprivileged / less-privileged process and trick the high-
privileged process to use or execute it.

To prevent this attack vector, two mechanisms known as Supervisor Memory Access Prevention
(SMAP) and Supervisor Memory Execution Prevention (SMEP) were introduced in recent systems. The
first one prevents the OS from accessing the memory of an unprivileged process unless a specific
code path is followed, and the second one prevents the OS from executing the memory of an
unprivileged process at all times. RISC-V already includes support for SMAP, through the sstatus.SUM
bit, and for SMEP by always denying execution of virtual memory pages marked with the U bit, with
Supervisor mode (OS) privileges, as mandated on the Privilege Spec.



Terms:

⚫ PMP Entry: A pair of pmpcfg[i] / pmpaddr[i] registers.

⚫ PMP Rule: The contents of a pmpcfg register and its associated pmpaddr
register(s), that encode a valid protected physical memory region, where
pmpcfg[i].A != OFF, and if pmpcfg[i].A == TOR, pmpaddr[i-1] < pmpaddr[i].

⚫ Ignored: Any permissions set by a matching PMP rule are ignored, and all
accesses to the requested address range are allowed.

⚫ Enforced: Only access types configured in the PMP rule matching the requested
address range are allowed; failures will cause an access-fault exception.

⚫ Denied: Any permissions set by a matching PMP rule are ignored, and no
accesses to the requested address range are allowed.; failures will cause an
access-fault exception.

⚫ Locked: A PMP rule/entry where the pmpcfg.L bit is set.

⚫ PMP reset: A reset process where all PMP settings of the hart, including locked
rules/settings, are re-initialized to a set of safe defaults, before releasing the hart
(back) to the firmware / OS / application.

6.1.1. Threat model

However, there are no such mechanisms available on Machine mode in the current (v1.11) Privileged
Spec. It is not possible for a PMP rule to be enforced only on non-Machine modes and denied on
Machine mode, to only allow access to a memory region by less-privileged modes. it is only possible to
have a locked rule that will be enforced on all modes, or a rule that will be enforced on non-Machine
modes and be ignored by Machine mode. So for any physical memory region which is not protected

6.1. Introduction | Page 83

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

with a Locked rule, Machine mode has unlimited access, including the ability to execute it.

Without being able to protect less-privileged modes from Machine mode, it is not possible to prevent
the mentioned attack vector. This becomes even more important for RISC-V than on other
architectures, since implementations are allowed where a hart only has Machine and User modes
available, so the whole OS will run on Machine mode instead of the non-existent Supervisor mode. In
such implementations the attack surface is greatly increased, and the same kind of attacks performed
on Supervisor mode and mitigated through SMAP/SMEP, can be performed on Machine mode without
any available mitigations. Even on implementations with Supervisor mode present attacks are still
possible against the Firmware and/or the Secure Monitor running on Machine mode.

6.2. Proposal

1. Machine Security Configuration (mseccfg) is a new RW Machine mode CSR, used for
configuring various security mechanisms present on the hart, and only accessible to Machine
mode. It is 64 bits wide, and is at address 0x747 on RV64 and 0x747 (low 32bits), 0x757 (high
32bits) on RV32. All mseccfg fields defined on this proposal are WARL, and the remaining bits are
reserved for future standard use and should always read zero. The reset value of mseccfg is
implementation-specific, otherwise if backwards compatibility is a requirement it should reset to
zero on hard reset.

2. On mseccfg we introduce a field on bit 2 called Rule Locking Bypass (mseccfg.RLB) with the
following functionality:

a. When mseccfg.RLB is 1 locked PMP rules may be removed/modified and locked PMP entries
may be edited.

b. When mseccfg.RLB is 0 and pmpcfg.L is 1 in any rule or entry (including disabled entries), then
mseccfg.RLB remains 0 and any further modifications to mseccfg.RLB are ignored until a PMP
reset.



Note that this feature is intended to be used as a debug mechanism, or as a
temporary workaround during the boot process for simplifying software, and
optimizing the allocation of memory and PMP rules. Using this functionality
under normal operation, after the boot process is completed, should be
avoided since it weakens the protection of M-mode-only rules. Vendors who
don’t need this functionality may hardwire this field to 0.

3. On mseccfg we introduce a field in bit 1 called Machine-Mode alloWlist Policy (mseccfg.MMWP).
This is a sticky bit, meaning that once set it cannot be unset until a PMP reset. When set it
changes the default PMP policy for M-mode when accessing memory regions that don’t have a
matching PMP rule, to denied instead of ignored.

4. On mseccfg we introduce a field in bit 0 called Machine Mode Lockdown (mseccfg.MML). This is
a sticky bit, meaning that once set it cannot be unset until a PMP reset. When mseccfg.MML is set
the system’s behavior changes in the following way:

a. The meaning of pmpcfg.L changes: Instead of marking a rule as locked and enforced in all
modes, it now marks a rule as M-mode-only when set and S/U-mode-only when unset. The
formerly reserved encoding of pmpcfg.RW=01, and the encoding pmpcfg.LRWX=1111, now encode a
Shared-Region.

An M-mode-only rule is enforced on Machine mode and denied in Supervisor or User mode. It
also remains locked so that any further modifications to its associated configuration or

6.2. Proposal | Page 84

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

address registers are ignored until a PMP reset, unless mseccfg.RLB is set.

An S/U-mode-only rule is enforced on Supervisor and User modes and denied on Machine
mode.

A Shared-Region rule is enforced on all modes, with restrictions depending on the pmpcfg.L and
pmpcfg.X bits:

■ A Shared-Region rule where pmpcfg.L is not set can be used for sharing data between M-
mode and S/U-mode, so is not executable. M-mode has read/write access to that region,
and S/U-mode has read access if pmpcfg.X is not set, or read/write access if pmpcfg.X is set.

■ A Shared-Region rule where pmpcfg.L is set can be used for sharing code between M-mode
and S/U-mode, so is not writeable. Both M-mode and S/U-mode have execute access on
the region, and M-mode also has read access if pmpcfg.X is set. The rule remains locked so
that any further modifications to its associated configuration or address registers are
ignored until a PMP reset, unless mseccfg.RLB is set.

■ The encoding pmpcfg.LRWX=1111 can be used for sharing data between M-mode and S/U
mode, where both modes only have read-only access to the region. The rule remains locked
so that any further modifications to its associated configuration or address registers are
ignored until a PMP reset, unless mseccfg.RLB is set.

b. Adding a rule with executable privileges that either is M-mode-only or a locked Shared-
Region is not possible and such pmpcfg writes are ignored, leaving pmpcfg unchanged. This
restriction can be temporarily lifted by setting mseccfg.RLB e.g. during the boot process.

c. Executing code with Machine mode privileges is only possible from memory regions with a
matching M-mode-only rule or a locked Shared-Region rule with executable privileges.
Executing code from a region without a matching rule or with a matching S/U-mode-only rule is
denied.

d. If mseccfg.MML is not set, the combination of pmpcfg.RW=01 remains reserved for future standard
use.

6.2.1. Truth table when mseccfg.MML is set

Bits on pmpcfg register Result

L R W X M Mode S/U Mode

0 0 0 0 Inaccessible region (Access Exception)

0 0 0 1 Access Exception Execute-only region

0 0 1 0 Shared data region: Read/write on M mode, read-only on S/U mode

0 0 1 1 Shared data region: Read/write for both M and S/U mode

0 1 0 0 Access Exception Read-only region

0 1 0 1 Access Exception Read/Execute region

0 1 1 0 Access Exception Read/Write region

0 1 1 1 Access Exception Read/Write/Execute region

1 0 0 0 Locked inaccessible region* (Access Exception)

1 0 0 1 Locked Execute-only region* Access Exception

6.2. Proposal | Page 85

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Bits on pmpcfg register Result

1 0 1 0 Locked Shared code region: Execute only on both M and S/U
mode.*

1 0 1 1 Locked Shared code region: Execute only on S/U mode,
read/execute on M mode.*

1 1 0 0 Locked Read-only region* Access Exception

1 1 0 1 Locked Read/Execute region* Access Exception

1 1 1 0 Locked Read/Write region* Access Exception

1 1 1 1 Locked Shared data region: Read only on both M and S/U mode.*

: *Locked rules cannot be removed or modified until a PMP reset, unless mseccfg.RLB is set.

6.2.2. Visual representation of the proposal

6.3. Smepmp software discovery

Since all fields defined on mseccfg as part of this proposal are locked when set (MMWP/MML) or locked
when cleared (RLB), software can’t poll them for determining the presence of Smepmp. It is expected
that BootROM will set mseccfg.MMWP and/or mseccfg.MML during early boot, before jumping to the

6.3. Smepmp software discovery | Page 86

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

firmware, so that the firmware will be able to determine the presence of Smepmp by reading mseccfg
and checking the state of mseccfg.MMWP and mseccfg.MML.

6.4. Rationale

1. Since a CSR for security and / or global PMP behavior settings is not available with the current
spec, we needed to define a new one. This new CSR will allow us to add further security
configuration options in the future and also allow developers to verify the existence of the new
mechanisms defined on this proposal.

2. There are use cases where developers want to enforce PMP rules in M-mode during the boot
process, that are also able to modify, merge, and / or remove later on. Since a rule that is enforced
in M-mode also needs to be locked (or else badly written or malicious M-mode software can
remove it at any time), the only way for developers to approach this is to keep adding PMP rules to
the chain and rely on rule priority. This is a waste of PMP rules and since it’s only needed during
boot, mseccfg.RLB is a simple workaround that can be used temporarily and then disabled and
locked down.

Also when mseccfg.MML is set, according to 4b it’s not possible to add a Shared-Region rule with
executable privileges. So RLB can be set temporarily during the boot process to register such
regions. Note that it’s still possible to register executable Shared-Region rules using initial register
settings (that may include mseccfg.MML being set and the rule being set on PMP registers) on PMP
reset, without using RLB.



Be aware that RLB introduces a security vulnerability if left set after the
boot process is over and in general it should be used with caution, even
when used temporarily. Having editable PMP rules in M-mode gives a false
sense of security since it only takes a few malicious instructions to lift any PMP
restrictions this way. It doesn’t make sense to have a security control in place and
leave it unprotected. Rule Locking Bypass is only meant as a way to optimize the
allocation of PMP rules, catch errors durring debugging, and allow the
bootrom/firmware to register executable Shared-Region rules. If developers /
vendors have no use for such functionality, they should never set mseccfg.RLB and
if possible hard-wire it to 0. In any case RLB should be disabled and locked as
soon as possible.


If mseccfg.RLB is not used and left unset, it will be locked as soon as a PMP
rule/entry with the pmpcfg.L bit set is configured.


Since PMP rules with a higher priority override rules with a lower priority, locked
rules must precede non-locked rules.

3. With the current spec M-mode can access any memory region unless restricted by a PMP rule with
the pmpcfg.L bit set. There are cases where this approach is overly permissive, and although it’s
possible to restrict M-mode by adding PMP rules during the boot process, this can also be seen as
a waste of PMP rules. Having the option to block anything by default, and use PMP as an allowlist
for M-mode is considered a safer approach. This functionality may be used during the boot process
or upon PMP reset, using initial register settings.

4. The current dual meaning of the pmpcfg.L bit that marks a rule as Locked and enforced on all
modes is neither flexible nor clean. With the introduction of Machine Mode Lock-down the pmpcfg.L
bit distinguishes between rules that are enforced only in M-mode (M-mode-only) or only in S/U-
modes (S/U-mode-only). The rule locking becomes part of the definition of an M-mode-only rule,

6.4. Rationale | Page 87

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

since when a rule is added in M mode, if not locked, can be modified or removed in a few
instructions. On the other hand, S/U modes can’t modify PMP rules anyway so locking them doesn’t
make sense.

a. This separation between M-mode-only and S/U-mode-only rules also allows us to distinguish
which regions are to be used by processes in Machine mode (pmpcfg.L == 1) and which by
Supervisor or User mode processes (pmpcfg.L == 0), in the same way the U bit on the Virtual
Memory’s PTEs marks which Virtual Memory pages are to be used by User mode applications
(U=1) and which by the Supervisor / OS (U=0). With this distinction in place we are able to
implement memory access and execution prevention in M-mode for any physical memory
region that is not M-mode-only.

An attacker that manages to tamper with a memory region used by S/U mode, even after
successfully tricking a process running in M-mode to use or execute that region, will fail to
perform a successful attack since that region will be S/U-mode-only hence any access when in
M-mode will trigger an access exception.



In order to support zero-copy transfers between M-mode and S/U-mode we
need to either allow shared memory regions, or introduce a mechanism
similar to the sstatus.SUM bit to temporary allow the high-privileged mode (in
this case M-mode) to be able to perform loads and stores on the region of a
less-privileged process (in this case S/U-mode). In our case after discussion
within the group it seemed a better idea to follow the first approach and have
this functionality encoded on a per-rule basis to avoid the risk of leaving a
temporary, global bypass active when exiting M-mode, hence rendering
memory access prevention useless.



Although it’s possible to use mstatus.MPRV in M-mode to read/write data on an
S/U-mode-only region using general purpose registers for copying, this will
happen with S/U-mode permissions, honoring any MMU restrictions put in
place by S-mode. Of course it’s still possible for M-mode to tamper with the
page tables and / or add S/U-mode-only rules and bypass the protections put
in place by S-mode but if an attacker has managed to compromise M-mode
to such extent, no security guarantees are possible in any way. Also note that
the threat model we present here assumes buggy software in M-mode,
not compromised software. We considered disabling mstatus.MPRV but it
seemed too much and out of scope.

Shared-region rules can be used both for zero-copy data transfers and for sharing code
segments. The latter may be used for example to allow S/U-mode to execute code by the
vendor, that makes use of some vendor-specific ISA extension, without having to go through
the firmware with an ecall. This is similar to the vDSO approach followed on Linux, that allows
userspace code to execute kernel code without having to perform a system call.

To make sure that shared data regions can’t be executed and shared code regions can’t be
modified, the encoding changes the meaning of the pmpcfg.X bit. In case of shared data
regions, with the exception of the pmpcfg.LRWX=1111 encoding, the pmpcfg.X bit marks the
capability of S/U-mode to write to that region, so it’s not possible to encode an executable
shared data region. In case of shared code regions, the pmpcfg.X bit marks the capability of M-
mode to read from that region, and since pmpcfg.RW=01 is used for encoding the shared region,
it’s not possible to encode a shared writable code region.

 For adding Shared-region rules with executable privileges to share code

6.4. Rationale | Page 88

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

segments between M-mode and S/U-mode, mseccfg.RLB needs to be
implemented, or else such rules can only be added together with mseccfg.MML
being set on PMP Reset. That’s because the reserved encoding pmpcfg.RW=01
being used for Shared-region rules is only defined when mseccfg.MML is set,
and 4b prevents the addition of rules with executable privileges on M-mode
after mseccfg.MML is set unless mseccfg.RLB is also set.



Using the pmpcfg.LRWX=1111 encoding for a locked shared read-only data region
was decided later on, its initial meaning was an M-mode-only
read/write/execute region. The reason for that change was that the already
defined shared data regions were not locked, so r/w access to M-mode
couldn’t be restricted. In the same way we have execute-only shared code
regions for both modes, it was decided to also be able to allow a least-
privileged shared data region for both modes. This approach allows for
example to share the .text section of an ELF with a shared code region and
the .rodata section with a locked shared data region, without allowing M-mode
to modify .rodata. We also decided that having a locked read/write/execute
region in M-mode doesn’t make much sense and could be dangerous, since
M-mode won’t be able to add further restrictions there (as in the case of S/U-
mode where S-mode can further limit access to an pmpcfg.LWRX=0111 region
through the MMU), leaving the possibility of modifying an executable region
in M-mode open.



For encoding Shared-region rules initially we used one of the two reserved
bits on pmpcfg (bit 5) but in order to avoid allocating an extra bit, since those
bits are a very limited resource, it was decided to use the reserved R=0,W=1
combination.

b. The idea with this restriction is that after the Firmware or the OS running in M-mode is
initialized and mseccfg.MML is set, no new code regions are expected to be added since nothing
else is expected to run in M-mode (everything else will run in S/U mode). Since we want to limit
the attack surface of the system as much as possible, it makes sense to disallow any new code
regions which may include malicious code, to be added/executed in M-mode.

c. In case mseccfg.MMWP is not set, M-mode can still access and execute any region not covered by
a PMP rule. Since we try to prevent M-mode from executing malicious code and since an
attacker may manage to place code on some region not covered by PMP (e.g. a directly-
addressable flash memory), we need to ensure that M-mode can only execute the code
segments initialized during firmware / OS initialization.

d. We are only using the encoding pmpcfg.RW=01 together with mseccfg.MML, if mseccfg.MML is not set
the encoding remains usable for future use.

6.4. Rationale | Page 89

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 7. "Smcntrpmf" Cycle and Instret Privilege Mode
Filtering, Version 1.0

7.1. Introduction

The cycle and instret counters serve to support user mode self-profiling usages, wherein a user can
read the counter(s) twice and compute the delta(s) to evaluate user software performance and
behavior. By default, these counters are not filtered by privilege mode, and thus they continue to
increment while traps (e.g., page faults or interrupts) to more privileged code are handled. This causes
two problems:

⚫ It introduces unpredictable noise to the counter values observed by the user.

⚫ It leaks information about privileged software execution to user mode.

Smcntrpmf remedies these issues by introducing privilege mode filtering for the cycle and instret
counters.

7.2. CSRs

7.2.1. Machine Counter Configuration (mcyclecfg, minstretcfg) Registers

mcyclecfg and minstretcfg are 64-bit registers that configure privilege mode filtering for the cycle and
instret counters, respectively.

63 62 61 60 59 58 57:0

0 MINH SINH UINH VSINH VUINH WPRI

Field Description

MINH If set, then counting of events in M-mode is inhibited

SINH If set, then counting of events in S/HS-mode is inhibited

UINH If set, then counting of events in U-mode is inhibited

VSINH If set, then counting of events in VS-mode is inhibited

VUINH If set, then counting of events in VU-mode is inhibited

When all xINH bits are zero, event counting is enabled in all modes.

For each bit in 61:58, if the associated privilege mode is not implemented, the bit is read-only zero.

For RV32, bits 63:32 of mcyclecfg can be accessed via the mcyclecfgh CSR, and bits 63:32 of
minstretcfg can be accessed via the minstretcfgh CSR.

The CSR numbers are 0x321 for mcyclecfg, 0x322 for minstretcfg, 0x721 for mcyclecfgh, and 0x722 for
minstretcfgh.

The content of these registers may be accessible from Supervisor level if the Smcdeleg/Ssccfg
extensions are implemented.

7.1. Introduction | Page 90

The RISC-V Instruction Set Manual: Volume II | © RISC-V International



The more natural CSR number for mcyclecfg would be 0x320, but that was allocated
to mcountinhibit.

This register format matches that specified for programmable counters by Sscofpmf.
The bit position for the OF bit (bit 63) is read-only 0, since these counters do not
generate local counter overflow interrupts on overflow.

7.3. Counter Behavior

The fundamental behavior of cycle and instret is modified in that counting does not occur while
executing in an inhibited privilege mode. Further, the following defines how transitions between a non-
inhibited privilege mode and an inhibited privilege mode are counted.

The cycle counter will simply count CPU cycles while the CPU is in a non-inhibited privilege mode.
Mode transition operations (traps and trap returns) may take multiple clock cycles, and the change of
privilege mode may be reported as occurring in any one of those cycles (possibly different for each
occurrence of a trap or trap return).



The RISC-V ISA has no requirement that the number of cycles for a trap or trap
return be the same for all occurrences. Implementations are free to determine the
extent to which this number may be consistent and predictable (or not), and the same
is true for the specific cycle in which privilege mode changes.

For the instret counter, most instructions do not affect mode transitions, so for those the behavior is
clear: instructions that retire in a non-inhibited mode increment instret, and instructions that retire in
an inhibited mode do not. There are two types of instructions that can affect a privilege mode change:
instructions that cause synchronous exceptions to a more privileged mode, and xRET instructions that
return to a less privileged mode. The former are not considered to retire, and hence do not increment
instret. The latter do retire, and should increment instret only if the originating privilege mode is not
inhibited.



The instret definition above is intended to ensure that the counter increments in a
predictable fashion. For example, consider a scenario where minstretcfg is
configured such that all modes other than U-mode are inhibited. A user mode load
should increment only once, even if it takes a page fault or other exception. With this
definition, the faulting execution of the load will not increment (it does not retire), the
handler instructions will not increment (they execute in an inhibited mode), including
the xRET (it arguably retires in a non-inhibited mode, but it originates in an inhibited
mode). Only once the load is re-executed and retires will it increment instret.

In cases where an instruction is emulated by software running in a privilege mode
that is inhibited in minstretcfg, the emulation routine must emulate the instret
increment.

7.3. Counter Behavior | Page 91

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 8. "Smrnmi" Extension for Resumable Non-Maskable
Interrupts, Version 1.0

The base machine-level architecture supports only unresumable non-maskable interrupts (UNMIs),
where the NMI jumps to a handler in machine mode, overwriting the current mepc and mcause register
values. If the hart had been executing machine-mode code in a trap handler, the previous values in
mepc and mcause would not be recoverable and so execution is not generally resumable.

The Smrnmi extension adds support for resumable non-maskable interrupts (RNMIs) to RISC-V. The
extension adds four new CSRs (mnepc, mncause, mnstatus, and mnscratch) to hold the interrupted state, and
one new instruction, MNRET, to resume from the RNMI handler.

8.1. RNMI Interrupt Signals

The rnmi interrupt signals are inputs to the hart. These interrupts have higher priority than any other
interrupt or exception on the hart and cannot be disabled by software. Specifically, they are not
disabled by clearing the mstatus.MIE register.

8.2. RNMI Handler Addresses

The RNMI interrupt trap handler address is implementation-defined.

RNMI also has an associated exception trap handler address, which is implementation defined.


For example, some implementations might use the address specified in mtvec as the
RNMI exception trap handler.

8.3. RNMI CSRs

This extension adds additional M-mode CSRs to enable a resumable non-maskable interrupt (RNMI).

MXLEN-1 0

mnscratch

MXLEN

Figure 38. Resumable NMI scratch register mnscratch

The mnscratch CSR holds an MXLEN-bit read-write register which enables the NMI trap handler to save
and restore the context that was interrupted.

MXLEN-1 0

mnepc (WARL)

MXLEN

Figure 39. Resumable NMI program counter mnepc.

The mnepc CSR is an MXLEN-bit read-write register which on entry to the NMI trap handler holds the PC
of the instruction that took the interrupt.

The low bit of mnepc (mnepc[0]) is always zero. On implementations that support only IALIGN=32, the
two low bits (mnepc[1:0]) are always zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example), then,

8.1. RNMI Interrupt Signals | Page 92

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

whenever IALIGN=32, bit mnepc[1] is masked on reads so that it appears to be 0. This masking occurs
also for the implicit read by the MRET instruction. Though masked, mnepc[1] remains writable when
IALIGN=32.

mnepc is a WARL register that must be able to hold all valid virtual addresses. It need not be capable of
holding all possible invalid addresses. Prior to writing mnepc, implementations may convert an invalid
address into some other invalid address that mnepc is capable of holding.

MXLEN-1 MXLEN-2 0

Interrupt Exception Code (WARL)

1 MXLEN-1

Figure 40. Resumable NMI cause mncause.

The mncause CSR holds the reason for the NMI. If the reason is an interrupt, bit MXLEN-1 is set to 1, and
the NMI cause is encoded in the least-significant bits. If the reason is an interrupt and NMI causes
are not supported, bit MXLEN-1 is set to 1, and zero is written to the least-significant bits. If the reason
is an exception within M-mode that results in a double trap as specified in the Smdbltrp extension, bit
MXLEN-1 is set to 0 and the least-significant bits are set to the cause code corresponding to the
exception that precipitated the double trap.

MXLEN-1 13 12 11 10 9 8 7 6 4 3 2 0

Reserved MNPP (WARL) Reserved MNPELP Reserved MNPV (WARL) Reserved NMIE Reserved

MXLEN-13 2 1 1 1 1 3 1 3

Figure 41. Resumable NMI status register mnstatus.

The mnstatus CSR holds a two-bit field, MNPP, which on entry to the RNMI trap handler holds the
privilege mode of the interrupted context, encoded in the same manner as mstatus.MPP. It also holds a
one-bit field, MNPV, which on entry to the RNMI trap handler holds the virtualization mode of the
interrupted context, encoded in the same manner as mstatus.MPV.

If the Zicfilp extension is implemented, mnstatus also holds the MNPELP field, which on entry to the
RNMI trap handler holds the previous ELP state. When an RNMI trap is taken, MNPELP is set to ELP and
ELP is set to 0.

mnstatus also holds the NMIE bit. When NMIE=1, nonmaskable interrupts are enabled. When NMIE=0,
all interrupts are disabled.

When NMIE=0, the hart behaves as though mstatus.MPRV were clear, regardless of the current setting
of mstatus.MPRV.

Upon reset, NMIE contains the value 0.


RNMIs are masked out of reset to give software the opportunity to initialize data
structures and devices for subsequent RNMI handling.

Software can set NMIE to 1, but attempts to clear NMIE have no effect.



Normally, only reset sequences will explicitly set the NMIE bit.

That the NMIE bit is settable does not suffice to support the nesting of RNMIs. To
support this feature in a direct manner would have required allowing software to clear
the NMIE bit—a design choice that would have contravened the concept of non-

8.3. RNMI CSRs | Page 93

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

maskability.

Software that wishes to minimize the latency until the next RNMI is taken can follow
the top-half/bottom-half model, where the RNMI handler itself only enqueues a task
to a task queue then returns. The bulk of the interrupt servicing is performed later,
with RNMIs enabled.

For the purposes of the WFI instruction, NMIE is a global interrupt enable, meaning that the setting of
NMIE does not affect the operation of the WFI instruction.

The other bits in mnstatus are reserved; software should write zeros and hardware implementations
should return zeros.

8.4. MNRET Instruction

MNRET is an M-mode-only instruction that uses the values in mnepc and mnstatus to return to the
program counter, privilege mode, and virtualization mode of the interrupted context. This instruction
also sets mnstatus.NMIE. If MNRET changes the privilege mode to a mode less privileged than M, it
also sets mstatus.MPRV to 0. If the Zicfilp extension is implemented, then if the new privileged mode is
y, MNRET sets ELP to the logical AND of yLPE (see Section 22.1.1) and mnstatus.MNPELP.

8.5. RNMI Operation

When an RNMI interrupt is detected, the interrupted PC is written to the mnepc CSR, the type of RNMI
to the mncause CSR, and the privilege mode of the interrupted context to the mnstatus CSR. The
mnstatus.NMIE bit is cleared, masking all interrupts.

The hart then enters machine-mode and jumps to the RNMI trap handler address.

The RNMI handler can resume original execution using the new MNRET instruction, which restores the
PC from mnepc, the privilege mode from mnstatus, and also sets mnstatus.NMIE, which re-enables
interrupts.

If the hart encounters an exception while executing in M-mode with the mnstatus.NMIE bit clear, the
actions taken are the same as if the exception had occurred while mnstatus.NMIE were set, except that
the program counter is set to the RNMI exception trap handler address.


The Smrnmi extension does not change the behavior of the MRET and SRET
instructions. In particular, MRET and SRET are unaffected by the mnstatus.NMIE bit,
and their execution does not alter the mnstatus.NMIE bit.

8.4. MNRET Instruction | Page 94

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 9. "Smcdeleg" Counter Delegation Extension, Version
1.0

In modern “Rich OS” environments, hardware performance monitoring resources are managed by the
kernel, kernel driver, and/or hypervisor. Counters may be configured with differing scopes, in some
cases counting events system-wide, while in others counting events on behalf of a single virtual
machine or application. In such environments, the latency of counter writes has a direct impact on
overall profiling overhead as a result of frequent counter writes during:

1. Sample collection, to clear overflow indication, and reload overflowed counter(s)

2. Context switch, between processes, threads, containers, or virtual machines

This extension provides a means for M-mode to allow writing select counters and event selectors from
S/HS-mode. The purpose is to avert transitions to and from M-mode that add latency to these
performance critical supervisor/hypervisor code sections. This extension also defines one new CSR,
scountinhibit.

For a Machine-level environment, extension Smcdeleg (‘Sm’ for Privileged architecture and Machine-
level extension, ‘cdeleg’ for Counter Delegation) encompasses all added CSRs and all behavior
modifications for a hart, over all privilege levels. For a Supervisor-level environment, extension Ssccfg
(‘Ss’ for Privileged architecture and Supervisor-level extension, ‘ccfg’ for Counter Configuration)
provides access to delegated counters, and to new supervisor-level state.

9.1. Counter Delegation

The mcounteren register allows M-mode to provide the next-lower privilege mode with read access to
select counters. When the Smcdeleg/Ssccfg extension is enabled (menvcfg.CDE=1), it further allows M-
mode to delegate select counters to S-mode.

The siselect (and vsiselect) index range 0x40-0x5F is reserved for delegated counter access. When a
counter i is delegated (mcounteren[i]=1 and menvcfg.CDE=1), the register state associated with counter i
can be read or written via sireg*, while siselect holds 0x40+i. The counter state accessible via alias
CSRs is shown in the table below.

Table 20. Indirect HPM State Mappings

siselect value sireg sireg4 sireg2 sireg5

0x40 cycle1 cycleh1 cyclecfg14 cyclecfgh14

0x41 See below

0x42 instret1 instreth1 instretcfg14 instretcfgh14

0x43 hpmcounter32 hpmcounter3h2 hpmevent32 hpmevent3h23

… … … … …

0x5F hpmcounter312 hpmcounter31h2 hpmevent312 hpmevent31h23

1 Depends on Zicntr support
2 Depends on Zihpm support
3 Depends on Sscofpmf support
4 Depends on Smcntrpmf support

9.1. Counter Delegation | Page 95

The RISC-V Instruction Set Manual: Volume II | © RISC-V International


hpmeventi represents a subset of the state accessed by the mhpmeventi register.
Likewise, cyclecfg and instretcfg represent a subset of the state accessed by the
mcyclecfg and minstretcfg registers, respectively. See below for subset details.

If extension Smstateen is implemented, refer to extension Smcsrind/Sscsrind (Chapter 5) for how
setting bit 60 of CSR mstateen0 to zero prevents access to registers siselect, sireg*, vsiselect, and
vsireg* from privileged modes less privileged than M-mode, and likewise how setting bit 60 of
hstateen0 to zero prevents access to siselect and sireg* (really vsiselect and vsireg*) from VS-mode.

The remaining rules of this section apply only when access to a CSR is not blocked by mstateen0[60] =
0 or hstateen0[60] = 0.

While the privilege mode is M or S and siselect holds a value in the range 0x40-0x5F, illegal
instruction exceptions are raised for the following cases:

⚫ attempts to access any sireg* when menvcfg.CDE = 0;

⚫ attempts to access sireg3 or sireg6;

⚫ attempts to access sireg4 or sireg5 when XLEN = 64;

⚫ attempts to access sireg* when siselect = 0x41, or when the counter selected by siselect is not
delegated to S-mode (the corresponding bit in mcounteren = 0).


The memory-mapped mtime register is not a performance monitoring counter to be
managed by supervisor software, hence the special treatment of siselect value 0x41
described above.

For each siselect and sireg* combination defined in Table 20, the table further indicates the
extensions upon which the underlying counter state depends. If any extension upon which the
underlying state depends is not implemented, an attempt from M or S mode to access the given state
through sireg* raises an illegal instruction exception.

If the hypervisor (H) extension is also implemented, then as specified by extension Smcsrind/Sscsrind,
a virtual instruction exception is raised for attempts from VS-mode or VU-mode to directly access
vsiselect or vsireg*, or attempts from VU-mode to access siselect or sireg*. Furthermore, while
vsiselect holds a value in the range 0x40-0x5F:

⚫ An attempt to access any vsireg* from M or S mode raises an illegal instruction exception.

⚫ An attempt from VS-mode to access any sireg* (really vsireg*) raises an illegal instruction
exception if menvcfg.CDE = 0, or a virtual instruction exception if menvcfg.CDE = 1.

If Sscofpmf is implemented, sireg2 and sireg5 provide access only to a subset of the event selector
registers. Specifically, event selector bit 62 (MINH) is read-only 0 when accessed through sireg*.
Similarly, if Smcntrpmf is implemented, sireg2 and sireg5 provide access only to a subset of the
counter configuration registers. Counter configuration register bit 62 (MINH) is read-only 0 when
accessed through sireg*.

9.2. Supervisor Counter Inhibit (scountinhibit) Register

Smcdeleg/Ssccfg defines a new scountinhibit register, a masked alias of mcountinhibit. For counters
delegated to S-mode, the associated mcountinhibit bits can be accessed via scountinhibit. For counters
not delegated to S-mode, the associated bits in scountinhibit are read-only zero.

9.2. Supervisor Counter Inhibit (scountinhibit) Register | Page 96

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

When menvcfg.CDE=0, attempts to access scountinhibit raise an illegal instruction exception. When the
Supervisor Counter Delegation extension is enabled, attempts to access scountinhibit from VS-mode
or VU-mode raise a virtual instruction exception.

9.3. Virtualizing scountovf

For implementations that support Smcdeleg/Ssccfg, Sscofpmf, and the H extension, when
menvcfg.CDE=1, attempts to read scountovf from VS-mode or VU-mode raise a virtual instruction
exception.

9.4. Virtualizing Local Counter Overflow Interrupts

For implementations that support Smcdeleg, Sscofpmf, and Smaia, the local counter overflow interrupt
(LCOFI) bit (bit 13) in each of CSRs mvip and mvien is implemented and writable.

For implementations that support Smcdeleg/Ssccfg, Sscofpmf, Smaia/Ssaia, and the H extension, the
LCOFI bit (bit 13) in each of hvip and hvien is implemented and writable.



The hvip register is defined by the hypervisor (H) extension, while the mvien and hvien
registers are defined by the Smaia/Ssaia extension.

By virtue of implementing hvip.LCOFI, it is implicit that the LCOFI bit (bit 13) in each
of vsie and vsip is also implemented.

Requiring support for the LCOFI bits listed above ensures that virtual LCOFIs can be
delivered to an OS running in S-mode, and to a guest OS running in VS-mode. It is
optional whether the LCOFI bit (bit 13) in each of mideleg and hideleg, which allows all
LCOFIs to be delegated to S-mode and VS-mode, respectively, is implemented and
writable.

9.3. Virtualizing scountovf | Page 97

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 10. "Smdbltrp" Double Trap Extension, Version 1.0

The Smdbltrp extension addresses a double trap (See Section 3.1.6.2) in M-mode. When the Smrnmi
extension (Chapter 8) is implemented, it enables invocation of the RNMI handler on a double trap in
M-mode to handle the critical error. If the Smrnmi extension is not implemented or if a double trap
occurs during the RNMI handler’s execution, this extension helps transition the hart to a critical error
state and enables signaling the critical error to the platform.

To improve error diagnosis and resolution, this extension supports debugging harts in a critical error
state. The extension introduces a mechanism to enter Debug Mode instead of asserting a critical-error
signal to the platform when the hart is in a critical error state. See (The RISC-V Debug Specification,
n.d.) for details.

See Section 3.1.6.2 for the operational details.

Chapter 10. "Smdbltrp" Double Trap Extension, Version 1.0 | Page 98

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 11. "Smctr" Control Transfer Records Extension,
Version 1.0

A method for recording control flow transfer history is valuable not only for performance profiling but
also for debugging. Control flow transfers refer to jump instructions (including function calls and
returns), taken branch instructions, traps, and trap returns. Profiling tools, such as Linux perf, collect
control transfer history when sampling software execution, thereby enabling tools, like AutoFDO, to
identify hot paths for optimization.

Control flow trace capabilities offer very deep transfer history, but the volume of data produced can
result in significant performance overheads due to memory bandwidth consumption, buffer
management, and decoder overhead. The Control Transfer Records (CTR) extension provides a method
to record a limited history in register-accessible internal chip storage, with the intent of dramatically
reducing the performance overhead and complexity of collecting transfer history.

CTR defines a circular (FIFO) buffer. Each buffer entry holds a record for a single recorded control flow
transfer. The number of records that can be held in the buffer depends upon both the implementation
(the maximum supported depth) and the CTR configuration (the software selected depth).

Only qualified transfers are recorded. Qualified transfers are those that meet the filtering criteria,
which include the privilege mode and the transfer type.

Recorded transfers are inserted at the write pointer, which is then incremented, while older recorded
transfers may be overwritten once the buffer is full. Or the user can enable RAS (Return Address Stack)
emulation mode, where only function calls are recorded, and function returns pop the last call record.
The source PC, target PC, and some optional metadata (transfer type, elapsed cycles) are stored for
each recorded transfer.

The CTR buffer is accessible through an indirect CSR interface, such that software can specify which
logical entry in the buffer it wishes to read or write. Logical entry 0 always corresponds to the youngest
recorded transfer, followed by entry 1 as the next youngest, and so on.

The machine-level extension, Smctr, encompasses all newly added Control Status Registers (CSRs),
instructions, and behavior modifications for a hart across all privilege levels. The corresponding
supervisor-level extension, Ssctr, is essentially identical to Smctr, except that it excludes machine-
level CSRs and behaviors not intended to be directly accessible at the supervisor level.

Smctr and Ssctr depend on both the implementation of S-mode and the Sscsrind extension.

11.1. CSRs

11.1.1. Machine Control Transfer Records Control Register (mctrctl)

The mctrctl register is a 64-bit read/write register that enables and configures the CTR capability.

11.1. CSRs | Page 99

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

012367

USMWPRIRASEMU

891011121315

STEMTEWPRIBPFRZLCOFIFRZWPRI

1623

WPRI

2431

WPRI

3233343536373839

WPRIEXCINHINTRINHTRETINHNTBRENTKBRINHWPRI

4041424344454647

INDCALLINHDIRCALLINHINDJMPINHDIRJMPINHCORSWAPINHRETINHINDLJMPINHDIRLJMPINH

4855

WPRI

56596063

WPRICustom

Figure 42. Machine Control Transfer Records Control Register Format

Table 21. Machine Control Transfer Records Control Register Field Definitions

Field Description

M, S, U Enable transfer recording in the selected privileged mode(s).

RASEMU Enables RAS (Return Address Stack) Emulation Mode. See Section 11.5.4.

MTE Enables recording of traps to M-mode when M=0. See Section 11.5.1.2.

STE Enables recording of traps to S-mode when S=0. See Section 11.5.1.2.

BPFRZ Set sctrstatus.FROZEN on a breakpoint exception that traps to M-mode or S-mode. See
Section 11.5.5.

LCOFIFRZ Set sctrstatus.FROZEN on local counter overflow interrupt (LCOFI) that traps to M-mode
or S-mode. See Section 11.5.5.

EXCINH Inhibit recording of exceptions. See Section 11.5.2.

INTRINH Inhibit recording of interrupts. See Section 11.5.2.

TRETINH Inhibit recording of trap returns. See Section 11.5.2.

NTBREN Enable recording of not-taken branches. See Section 11.5.2.

TKBRINH Inhibit recording of taken branches. See Section 11.5.2.

INDCALLINH Inhibit recording of indirect calls. See Section 11.5.2.

DIRCALLINH Inhibit recording of direct calls. See Section 11.5.2.

INDJMPINH Inhibit recording of indirect jumps (without linkage). See Section 11.5.2.

DIRJMPINH Inhibit recording of direct jumps (without linkage). See Section 11.5.2.

CORSWAPINH Inhibit recording of co-routine swaps. See Section 11.5.2.

RETINH Inhibit recording of function returns. See Section 11.5.2.

INDLJMPINH Inhibit recording of other indirect jumps (with linkage). See Section 11.5.2.

DIRLJMPINH Inhibit recording of other direct jumps (with linkage). See Section 11.5.2.

Custom[3:0] WARL bits designated for custom use. The value 0 must correspond to standard behavior.
See Section 11.6.

11.1. CSRs | Page 100

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

All fields are optional except for M, S, U, and BPFRZ. All unimplemented fields are read-only 0, while all
implemented fields are writable. If the Sscofpmf extension is implemented, LCOFIFRZ must be
writable.



Because the ROI of CTR is perceived to be low for RV32 implementations, CTR does
not fully support RV32. While control flow transfers in RV32 can be recorded, RV32
cannot access xctrctl bits 63:32. A future extension could add support for RV32 by
adding 3 new CSRs (mctrctlh, sctrctlh, and vsctrctlh) to provide this access.

11.1.2. Supervisor Control Transfer Records Control Register (sctrctl)

The sctrctl register provides supervisor mode access to a subset of mctrctl.

Bits 2 and 9 in sctrctl are read-only 0. As a result, the M and MTE fields in mctrctl are not accessible
through sctrctl. All other mctrctl fields are accessible through sctrctl.

11.1.3. Virtual Supervisor Control Transfer Records Control Register (vsctrctl)

If the H extension is implemented, the vsctrctl register is a 64-bit read/write register that is VS-
mode’s version of supervisor register sctrctl. When V=1, vsctrctl substitutes for the usual sctrctl, so
instructions that normally read or modify sctrctl actually access vsctrctl instead.

01267

USWPRIRASEMU

891011121315

STEWPRIBPFRZLCOFIFRZWPRI

1623

WPRI

2431

WPRI

3233343536373839

WPRIEXCINHINTRINHTRETINHNTBRENTKBRINHWPRI

4041424344454647

INDCALLINHDIRCALLINHINDJMPINHDIRJMPINHCORSWAPINHRETINHINDLJMPINHDIRLJMPINH

4855

WPRI

56596063

WPRICustom

Figure 43. Virtual Supervisor Control Transfer Records Control Register Format

11.1. CSRs | Page 101

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 22. Virtual Supervisor Control Transfer Records Control Register Field Definitions

Field Description

S Enable transfer recording in VS-mode.

U Enable transfer recording in VU-mode.

STE Enables recording of traps to VS-mode when S=0. See Section 11.5.1.2.

BPFRZ Set sctrstatus.FROZEN on a breakpoint exception that traps to VS-mode. See Section
11.5.5.

LCOFIFRZ Set sctrstatus.FROZEN on local counter overflow interrupt (LCOFI) that traps to VS-
mode. See Section 11.5.5.

Other field definitions match those of sctrctl. The optional fields implemented in vsctrctl should match those
implemented in sctrctl.



Unlike the CTR status register or the CTR entry registers, the CTR control register
has a VS-mode version. This allows a guest to manage the CTR configuration directly,
without requiring traps to HS-mode, while ensuring that the guest configuration
(most notably the privilege mode enable bits) do not impact CTR behavior when V=0.

11.1.4. Supervisor Control Transfer Records Depth Register (sctrdepth)

The 32-bit sctrdepth register specifies the depth of the CTR buffer.

02331

DEPTHWPRI

Figure 44. Supervisor Control Transfer Records Depth Register Format

Table 23. Supervisor Control Transfer Records Depth Register Field Definitions

Field Description

DEPTH WARL field that selects the depth of the CTR buffer. Encodings:

‘000 - 16

‘001 - 32

‘010 - 64

‘011 - 128

‘100 - 256

'11x - reserved

The depth of the CTR buffer dictates the number of entries to which the hardware records
transfers. For a depth of N, the hardware records transfers to entries 0..N-1. All Entry Registers
read as '0' and are read-only when the selected entry is in the range N to 255. When the depth
is increased, the newly accessible entries contain unspecified but legal values.

It is implementation-specific which DEPTH value(s) are supported.

Attempts to access sctrdepth from VS-mode or VU-mode raise a virtual-instruction exception, unless

11.1. CSRs | Page 102

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

CTR state enable access restrictions apply. See Section 11.4.



It is expected that operating systems (OSs) will access sctrdepth only at boot, to
select the maximum supported depth value. More frequent accesses may result in
reduced performance in virtualization scenarios, as a result of traps from VS-mode
incurred.

There may be scenarios where software chooses to operate on only a subset of the
entries, to reduce overhead. In such cases tools may choose to read only the lower
entries, and OSs may choose to save/restore only on the lower entries while using
SCTRCLR to clear the others.

The value in configurable depth lies in supporting VM migration. It is expected that a
platform spec may specify that one or more CTR depth values must be supported. A
hypervisor may wish to restrict guests to using one of these required depths, in order
to ensure that such guests can be migrated to any system that complies with the
platform spec. The trapping behavior specified for VS-mode accesses to sctrdepth
ensures that the hypervisor can impose such restrictions.

11.1.5. Supervisor Control Transfer Records Status Register (sctrstatus)

The 32-bit sctrstatus register grants access to CTR status information and is updated by the hardware
whenever CTR is active. CTR is active when the current privilege mode is enabled for recording and
CTR is not frozen.

07815

WRPTRWPRI

163031

WPRIFROZEN

Figure 45. Supervisor Control Transfer Records Status Register Format

Table 24. Supervisor Control Transfer Records Status Register Field Definitions

Field Description

WRPTR WARL field that indicates the physical CTR buffer entry to be written next. It is incremented
after new transfers are recorded (see Section 11.5), though there are exceptions when x
ctrctl.RASEMU=1, see Section 11.5.4. For a given CTR depth (where depth = 2(DEPTH+4)), WRPTR
wraps to 0 on an increment when the value matches depth-1, and to depth-1 on a decrement
when the value is 0. Bits above those needed to represent depth-1 (e.g., bits 7:4 for a depth of
16) are read-only 0. On depth changes, WRPTR holds an unspecified but legal value.

FROZEN Inhibit transfer recording. See Section 11.5.5.

Undefined bits in sctrstatus are WPRI. Status fields may be added by future extensions, and software
should ignore but preserve any fields that it does not recognize. Undefined bits must be implemented
as read-only 0, unless a custom extension is implemented and enabled (see Section 11.6).



Logical entry 0, accessed via sireg* when siselect=0x200, is always the physical
buffer entry preceding the WRPTR entry. More generally, the physical buffer entry Y
associated with logical entry X (X < depth) can be determined using the formula Y =
(WRPTR - X - 1) % depth, where depth = 2(DEPTH+4). Logical entries >= depth are read-
only 0.

11.1. CSRs | Page 103

The RISC-V Instruction Set Manual: Volume II | © RISC-V International



Because the sctrstatus register is updated by hardware, writes should be performed
with caution. If a multi-instruction read-modify-write to sctrstatus is performed while
CTR is active, and between the read and write a qualified transfer or trap that causes
CTR freeze completes, a hardware update could be lost. Software may wish to ensure
that CTR is inactive before performing a read-modify-write, by ensuring that either
sctrstatus.FROZEN=1, or that the current privilege mode is not enabled for recording.

When restoring CTR state, sctrstatus should be written before CTR entry state is
restored. This ensures that the software writes to logical CTR entries modify the
proper physical entries.



Exposing the WRPTR provides a more efficient means for synthesizing CTR entries. If
a qualified control transfer is emulated, the emulator can simply increment the
WRPTR, then write the synthesized record to logical entry 0. If a qualified function
return is emulated while RASEMU=1, the emulator can clear ctrsource.V for logical
entry 0, then decrement the WRPTR.

Exposing the WRPTR may also allow support for Linux perf’s stack stitching
capability.



Smctr/Ssctr depends upon implementation of S-mode because much of CTR state is
accessible only through S-mode CSRs. If, in the future, it becomes desirable to
remove this dependency, an extension could add mctrdepth and mctrstatus CSRs that
reflect the same state as sctrdepth and sctrstatus, respectively. Further, such an
extension should make CTR entries accessible via miselect/mireg*. See Section 11.2.

11.2. Entry Registers

Control transfer records are stored in a CTR buffer, such that each buffer entry stores information
about a single transfer. The CTR buffer entries are logically accessed via the indirect register access
mechanism defined by the Sscsrind extension. The siselect index range 0x200 through 0x2FF is
reserved for CTR logical entries 0 through 255. When siselect holds a value in this range, sireg
provides access to ctrsource, sireg2 provides access to ctrtarget, and sireg3 provides access to ctrdata.
sireg4, sireg5, and sireg6 are read-only 0.

When vsiselect holds a value in 0x200..0x2FF, the vsireg* registers provide access to the same CTR
entry register state as the analogous sireg* registers. There is not a separate set of entry registers for
V=1.

See Section 11.4 for cases where CTR accesses from S-mode and VS-mode may be restricted.

11.2.1. Control Transfer Record Source Register (ctrsource)

The ctrsource register contains the source program counter, which is the pc of the recorded control
transfer instruction, or the epc of the recorded trap. The valid (V) bit is set by the hardware when a
transfer is recorded in the selected CTR buffer entry, and implies that data in ctrsource, ctrtarget, and
ctrdata is valid for this entry.

ctrsource is an MXLEN-bit WARL register that must be able to hold all valid virtual or physical
addresses that can serve as a pc. It need not be able to hold any invalid addresses; implementations
may convert an invalid address into a valid address that the register is capable of holding. When XLEN

11.2. Entry Registers | Page 104

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

https://lwn.net/Articles/802821

< MXLEN, both explicit writes (by software) and implict writes (for recorded transfers) will be zero-
extended.

0163

VPC[63:1]

Figure 46. Control Transfer Record Source Register Format for MXLEN=64


CTR entry registers are defined as MXLEN, despite the xireg* CSRs used to access
them being XLEN, to ensure that entries recorded in RV64 are not truncated, as a
result of CSR Width Modulation, on a transition to RV32.

11.2.2. Control Transfer Record Target Register (ctrtarget)

The ctrtarget register contains the target (destination) program counter of the recorded transfer. The
optional MISP bit is set by the hardware when the recorded transfer is an instruction whose target or
taken/not-taken direction was mispredicted by the branch predictor. MISP is read-only 0 when not
implemented.

ctrtarget is an MXLEN-bit WARL register that must be able to hold all valid virtual or physical
addresses that can serve as a pc. It need not be able to hold any invalid addresses; implementations
may convert an invalid address into a valid address that the register is capable of holding. When XLEN
< MXLEN, both explicit writes (by software) and implict writes (by recorded transfers) will be zero-
extended.

0131

MISPPC[31:1]

3263

PC[63:32]

Figure 47. Control Transfer Record Target Register Format for MXLEN=64

11.2.3. Control Transfer Record Metadata Register (ctrdata)

The ctrdata register contains metadata for the recorded transfer. This register must be implemented,
though all fields within it are optional. Unimplemented fields are read-only 0. ctrdata is a 64-bit
register.

03414151631

TYPEWPRICCVCC

3263

WPRI

Figure 48. Control Transfer Record Metadata Register Format

11.2. Entry Registers | Page 105

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 25. Control Transfer Record Metadata Register Field Definitions

Field Description Access

TYPE[3:0] Identifies the type of the control flow transfer recorded in the entry, using the
encodings listed in Table 28. Implementations that do not support this field will
report 0.

WARL

CCV Cycle Count Valid. See Section 11.5.3. WARL

CC[15:0] Cycle Count, composed of the Cycle Count Exponent (CCE, in CC[15:12]) and Cycle
Count Mantissa (CCM, in CC[11:0]). See Section 11.5.3.

WARL

Undefined bits in ctrdata are WPRI. Undefined bits must be implemented as read-only 0, unless a
custom extension is implemented and enabled.


Like the Transfer Type Filtering bits in mctrctl, the ctrdata.TYPE bits leverage the E-
trace itype encodings.

11.3. Instructions

11.3.1. Supervisor CTR Clear Instruction

06711121415192031

opcoderdfunct3rs1func12

7
SYSTEM

5
0

3
0

5
0

12
SCTRCLR (0x104)

The SCTRCLR instruction performs the following operations:

⚫ Zeroes all CTR Entry Registers, for all DEPTH values

⚫ Zeroes the CTR cycle counter and CCV (see Section 11.5.3)

Any read of ctrsource, ctrtarget, or ctrdata that follows SCTRCLR, such that it precedes the next
qualified control transfer, will return the value 0. Further, the first recorded transfer following SCTRCLR
will have ctrdata.CCV=0.

SCTRCLR raises an illegal-instruction exception in U-mode, and a virtual-instruction exception in VU-
mode, unless CTR state enable access restrictions apply. See Section 11.4.

11.4. State Enable Access Control

When Smstateen is implemented, the mstateen0.CTR bit controls access to CTR register state from
privilege modes less privileged than M-mode. When mstateen0.CTR=1, accesses to CTR register state
behave as described in Section 7.2 and Section 11.2 above, while SCTRCLR behaves as described in
Section 11.3.1. When mstateen0.CTR=0 and the privilege mode is less privileged than M-mode, the
following operations raise an illegal-instruction exception:

⚫ Attempts to access sctrctl, vsctrctl, sctrdepth, or sctrstatus

⚫ Attempts to access sireg* when siselect is in 0x200..0x2FF, or vsireg* when vsiselect is in
0x200..0x2FF

⚫ Execution of the SCTRCLR instruction

11.3. Instructions | Page 106

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

When mstateen0.CTR=0, qualified control transfers executed in privilege modes less privileged than M-
mode will continue to implicitly update entry registers and sctrstatus.

If the H extension is implemented and mstateen0.CTR=1, the hstateen0.CTR bit controls access to
supervisor CTR state when V=1. This state includes sctrctl (really vsctrctl), sctrstatus, and sireg*
(really vsireg*) when siselect (really vsiselect) is in 0x200..0x2FF. hstateen0.CTR is read-only 0 when
mstateen0.CTR=0.

When mstateen0.CTR=1 and hstateen0.CTR=1, VS-mode accesses to supervisor CTR state behave as
described in Section 7.2 and Section 11.2 above, while SCTRCLR behaves as described in Section
11.3.1. When mstateen0.CTR=1 and hstateen0.CTR=0, both VS-mode accesses to supervisor CTR state
and VS-mode execution of SCTRCLR raise a virtual-instruction exception.


sctrdepth is not included in the above list of supervisor CTR state controlled by
hstateen0.CTR since accesses to sctrdepth from VS-mode raise a virtual-instruction
exception regardless of the value of hstateen0.CTR.

When hstateen0.CTR=0, qualified control transfers executed while V=1 will continue to implicitly update
entry registers and sctrstatus.


See Chapter 5 for how bit 60 in mstateen0 and hstateen0 can also restrict access to
sireg*/siselect and vsireg*/vsiselect from privilege modes less privileged than M-
mode.

11.5. Behavior

CTR records qualified control transfers. Control transfers are qualified if they meet the following
criteria:

⚫ The current privilege mode is enabled

⚫ The transfer type is not inhibited

⚫ sctrstatus.FROZEN is not set

⚫ The transfer completes/retires

Such qualified transfers update the Entry Registers at logical entry 0. As a result, older entries are
pushed down the stack; the record previously in logical entry 0 moves to logical entry 1, the record in
logical entry 1 moves to logical entry 2, and so on. If the CTR buffer is full, the oldest recorded entry
(previously at entry depth-1) is lost.

Recorded transfers will set the ctrsource.V bit to 1, and will update all implemented record fields.



In order to collect accurate and representative performance profiles while using CTR,
it is recommended that hardware recording of control transfers incurs no added
performance overhead, e.g., in the form of retirement or instruction execution
restrictions that are not present when CTR is not active.

11.5.1. Privilege Mode Transitions

Transfers that change the privilege mode are a special case. What is recorded, if anything, depends on
whether the source privilege mode and/or target privilege mode are enabled for recording, and on the
transfer type (trap or trap return).

11.5. Behavior | Page 107

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Traps between enabled privilege modes are recorded as normal. Traps from a disabled privilege mode
to an enabled privilege mode are partially recorded, such that the ctrsource.PC is 0. Traps from an
enabled mode to a disabled mode, known as external traps, are not recorded by default. See Section
11.5.1.2 for how they can be recorded.

Trap returns have similar treatment. Trap returns between enabled privilege modes are recorded as
normal. Trap returns from an enabled mode back to a disabled mode are partially recorded, such that
ctrtarget.PC is 0. Trap returns from a disabled mode to an enabled mode are not recorded.



If privileged software is configuring CTR on behalf of less privileged software, it
should ensure that its privilege mode enable bit (e.g., sctrctl.S for Supervisor
software) is cleared before a trap return to the less privileged mode. Otherwise the
trap return will be recorded, leaking the privileged source pc.

Recording in Debug Mode is always inhibited. Transfers into and out of Debug Mode are never
recorded.

The table below provides details on recording of privilege mode transitions. Standard dependencies on
FROZEN and transfer type inhibits also apply, but are not covered by the table.

Table 26. Trap and Trap Return Recording

Transfer Type Source Mode Target Mode

Enabled Disabled

Trap Enabled Recorded. External trap. Not recorded by default,
but see Section 11.5.1.2.

Disabled Recorded, ctrsource.PC is 0. Not recorded.

Trap Return Enabled Recorded. Recorded, ctrtarget.PC is 0.

Disabled Not recorded. Not recorded.

11.5.1.1. Virtualization Mode Transitions

Transitions between VS/VU-mode and M/HS-mode are unique in that they effect a change in the
active CTR control register, and hence the CTR configuration. What is recorded, if anything, on these
virtualization mode transitions depends upon fields from both [ms]ctrctl and vsctrctl.

⚫ mctrctl.M, sctrctl.S, and vsctrctl.{S,U} are used to determine whether the source and target modes
are enabled;

⚫ mctrctl.MTE, sctrctl.STE, and vsctrctl.STE are used to determine whether an external trap is
recorded (see Section 11.5.1.2);

⚫ sctrctl.LCOFIFRZ and sctrctl.BPFRZ determine whether CTR becomes frozen (see Section 11.5.5)

⚫ For all other xctrctl fields, the value in vsctrctl is used.



Consider an exception that traps from VU-mode to HS-mode, with vsctrctl.U=1 and
sctrctl.S=1. Because both the source mode and target mode are enabled for
recording, whether the trap is recorded then depends on the CTR configuration (e.g.,
the transfer type filter bits) in vsctrctl, not in sctrctl.

11.5.1.2. External Traps

11.5. Behavior | Page 108

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

External traps are traps from a privilege mode enabled for CTR recording to a privilege mode that is
not enabled for CTR recording. By default external traps are not recorded, but privileged software
running in the target mode of the trap can opt-in to allowing CTR to record external traps into that
mode. The xctrctl.xTE bits allow M-mode, S-mode, and VS-mode to opt-in separately.

External trap recording depends not only on the target mode, but on any intervening modes, which are
modes that are more privileged than the source mode but less privileged than the target mode. Not
only must the external trap enable bit for the target mode be set, but the external trap enable bit(s) for
any intervening modes must also be set. See the table below for details.



Requiring intervening modes to be enabled for external traps simplifies software
management of CTR. Consider a scenario where S-mode software is configuring CTR
for U-mode contexts A and B, such that external traps (to any mode) are enabled for
A but not for B. When switching between the two contexts, S-mode can simply toggle
sctrctl.STE, rather than requiring a trap to M-mode to additionally toggle
mctrctl.MTE.

This method does not provide the flexibility to record external traps to a more
privileged mode but not to all intervening mode(s). Because it is expected that
profiling tools generally wish to observe all external traps or none, this is not
considered a meaningful limitation.

Table 27. External Trap Enable Requirements

Source Mode Target Mode External Trap Enable(s) Required

U-mode S-mode sctrctl.STE

M-mode mctrctl.MTE, sctrctl.STE

S-mode M-mode mctrctl.MTE

VU-mode VS-mode vsctrctl.STE

HS-mode sctrctl.STE, vsctrctl.STE

M-mode mctrctl.MTE, sctrctl.STE, vsctrctl.STE

VS-mode HS-mode sctrctl.STE

M-mode mctrctl.MTE, sctrctl.STE

In records for external traps, the ctrtarget.PC is 0.


No mechanism exists for recording external trap returns, because the external trap
record includes all relevant information, and gives the trap handler (e.g., an emulator)
the opportunity to modify the record.



Note that external trap recording does not depend on EXCINH/INTRINH. Thus, when
external traps are enabled, both external interrupts and external exceptions are
recorded.

STE allows recording of traps from U-mode to S-mode as well as from VS/VU-mode
to HS-mode. The hypervisor can flip sctrctl.STE before entering a guest if it wants
different behavior for U-to-S vs VS/VU-to-HS.

If external trap recording is implemented, mctrctl.MTE and sctrctl.STE must be implemented, while
vsctrctl.STE must be implemented if the H extension is implemented.

11.5. Behavior | Page 109

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

11.5.2. Transfer Type Filtering

Default CTR behavior, when all transfer type filter bits (xctrctl[47:32]) are unimplemented or 0, is to
record all control transfers within enabled privileged modes. By setting transfer type filter bits, software
can opt out of recording select transfer types, or opt into recording non-default operations. All transfer
type filter bits are optional.



Because not-taken branches are not recorded by default, the polarity of the
associated enable bit (NTBREN) is the opposite of other bits associated with transfer
type filtering (TKBRINH, RETINH, etc). Non-default operations require opt-in rather
than opt-out.

The transfer type filter bits leverage the type definitions specified in the RISC-V Efficient Trace Spec
v2.0 (Table 4.4 and Section 4.1.1). For completeness, the definitions are reproduced below.


Here "indirect" is used interchangeably with "uninferrable", which is used in the trace
spec. Both imply that the target of the jump is not encoded in the opcode.

Table 28. Control Transfer Type Definitions

Encoding Transfer Type Name

0 Not used by CTR

1 Exception

2 Interrupt

3 Trap return

4 Not-taken branch

5 Taken branch

6 reserved

7 reserved

8 Indirect call

9 Direct call

10 Indirect jump (without linkage)

11 Direct jump (without linkage)

12 Co-routine swap

13 Function return

14 Other indirect jump (with linkage)

15 Other direct jump (with linkage)

Encodings 8 through 15 refer to various encodings of jump instructions. The types are distinguished as
described below.

11.5. Behavior | Page 110

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

https://github.com/riscv-non-isa/riscv-trace-spec/releases/download/v2.0rc2/riscv-trace-spec.pdf
https://github.com/riscv-non-isa/riscv-trace-spec/releases/download/v2.0rc2/riscv-trace-spec.pdf

Table 29. Control Transfer Type Definitions

Transfer Type Name Associated Opcodes

Indirect call JALR x1, rs where rs != x5

JALR x5, rs where rs != x1

C.JALR rs1 where rs1 != x5

Direct call JAL x1

JAL x5

C.JAL

CM.JALT index

Indirect jump (without linkage) JALR x0, rs where rs != (x1 or x5)

C.JR rs1 where rs1 != (x1 or x5)

Direct jump (without linkage) JAL x0

C.J

CM.JT index

Co-routine swap JALR x1, x5

JALR x5, x1

C.JALR x5

Function return JALR rd, rs where rs == (x1 or x5) and rd != (x1 or x5)

C.JR rs1 where rs1 == (x1 or x5)

CM.POPRET(Z)

Other indirect jump (with linkage) JALR rd, rs where rs != (x1 or x5) and rd != (x0, x1, or x5)

Other direct jump (with linkage) JAL rd where rd != (x0, x1, or x5)



If implementation of any transfer type filter bit results in reduced software
performance, perhaps due to additional retirement restrictions, it is strongly
recommended that this reduced performance apply only when the bit is set.
Alternatively, support for the bit may be omitted. Maintaining software performance
for the default CTR configuration, when all transfer type bits are cleared, is
recommended.

11.5.3. Cycle Counting

The ctrdata register may optionally include a count of CPU cycles elapsed since the prior CTR record.
The elapsed cycle count value is represented by the CC field, which has a 12-bit mantissa component
(Cycle Count Mantissa, or CCM) and a 4-bit exponent component (Cycle Count Exponent, or CCE).

The elapsed cycle counter (CtrCycleCounter) increments at the same rate as the mcycle counter. Only
cycles while CTR is active are counted, where active implies that the current privilege mode is enabled
for recording and CTR is not frozen. The CC field is encoded such that CCE holds 0 if the
CtrCycleCounter value is less than 4096, otherwise it holds the index of the most significant one bit in
the CtrCycleCounter value, minus 12. CCM holds CtrCycleCounter bits CCE+11:CCE.

11.5. Behavior | Page 111

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The elapsed cycle count can then be calculated by software using the following formula:

if (CCE==0):
 return CCM
else:
 return (212 + CCM) << CCE-1
endif

The CtrCycleCounter is reset on writes to xctrctl, and on execution of SCTRCLR, to ensure that any
accumulated cycle counts do not persist across a context switch.

An implementation that supports cycle counting must implement CCV and all CCM bits, but may
implement 0..4 exponent bits in CCE. Unimplemented CCE bits are read-only 0. For implementations
that support transfer type filtering, it is recommended to implement at least 3 exponent bits. This
allows capturing the full latency of most functions, when recording only calls and returns.

The size of the CtrCycleCounter required to support each CCE width is given in the table below.

Table 30. Cycle Counter Size Options

CCE bits CtrCycleCounter bits Max elapsed cycle value

0 12 4095

1 13 8191

2 15 32764

3 19 524224

4 27 134201344



When CCE>1, the granularity of the reported cycle count is reduced. For example,
when CCE=3, the bottom 2 bits of the cycle counter are not reported, and thus the
reported value increments only every 4 cycles. As a result, the reported value
represents an undercount of elapsed cycles for most cases (when the unreported bits
are non-zero). On average, the undercount will be (2CCE-1-1)/2. Software can reduce the
average undercount to 0 by adding (2CCE-1-1)/2 to each computed cycle count value
when CCE>1.

Though this compressed method of representation results in some imprecision for
larger cycle count values, it produces meaningful area savings, reducing storage per
entry from 27 bits to 16.

The CC value saturates when all implemented bits in CCM and CCE are 1.

The CC value is valid only when the Cycle Count Valid (CCV) bit is set. If CCV=0, the CC value might
not hold the correct count of elapsed active cycles since the last recorded transfer. The next record will
have CCV=0 after a write to xctrctl, or execution of SCTRCLR, since CtrCycleCounter is reset. CCV
should additionally be cleared after any other implementation-specific scenarios where active cycles
might not be counted in CtrCycleCounter.

11.5. Behavior | Page 112

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

11.5.4. RAS (Return Address Stack) Emulation Mode

When the optional xctrctl.RASEMU bit is implemented and set to 1, transfer recording behavior is
altered to emulate the behavior of a return-address stack (RAS).

⚫ Indirect and direct calls are recorded as normal

⚫ Function returns pop the most recent call, by decrementing the WRPTR then invalidating the
WRPTR entry (by setting ctrsource.V=0). As a result, logical entry 0 is invalidated and moves to
logical entry depth-1, while logical entries 1..depth-1 move to 0..depth-2.

⚫ Co-routine swaps affect both a return and a call. Logical entry 0 is overwritten, and WRPTR is not
modified.

⚫ Other transfer types are inhibited

⚫ Transfer type filtering bits (xctrctl[47:32]) and external trap enable bits (xctrctl.xTE) are ignored



Profiling tools often collect call stacks along with each sample. Stack walking,
however, is a complex and often slow process that may require recompilation (e.g.,
-fno-omit-frame-pointer) to work reliably. With RAS emulation, tools can ask CTR
hardware to save call stacks even for unmodified code.

CTR RAS emulation has limitations. The CTR buffer will contain only partial stacks in
cases where the call stack depth was greater than the CTR depth, CTR recording was
enabled at a lower point in the call stack than main(), or where the CTR buffer was
cleared since main().

The CTR stack may be corrupted in cases where calls and returns are not symmetric,
such as with stack unwinding (e.g., setjmp/longjmp, C++ exceptions), where stale call
entries may be left on the CTR stack, or user stack switching, where calls from
multiple stacks may be intermixed.



As described in Section 11.5.3, when CCV=1, the CC field provides the elapsed cycles
since the prior CTR entry was recorded. This introduces implementation challenges
when RASEMU=1 because, for each recorded call, there may have been several
recorded calls (and returns which “popped” them) since the prior remaining call entry
was recorded (see Section 11.5.4). The implication is that returns that pop a call entry
not only do not reset the cycle counter, but instead add the CC field from the popped
entry to the counter. For simplicity, an implementation may opt to record CCV=0 for
all calls, or those whose parent call was popped, when RASEMU=1.

11.5.5. Freeze

When sctrstatus.FROZEN=1, transfer recording is inhibited. This bit can be set by hardware, as
described below, or by software.

When sctrctl.LCOFIFRZ=1 and a local counter overflow interrupt (LCOFI) traps (as a result of an HPM
counter overflow) to M-mode or to S-mode, sctrstatus.FROZEN is set by hardware. This inhibits CTR
recording until software clears FROZEN. The LCOFI trap itself is not recorded.

11.5. Behavior | Page 113

The RISC-V Instruction Set Manual: Volume II | © RISC-V International



Freeze on LCOFI ensures that the execution path leading to the sampled instruction
(xepc) is preserved, and that the local counter overflow interrupt (LCOFI) and
associated Interrupt Service Routine (ISR) do not displace any recorded transfer
history state. It is the responsibility of the ISR to clear FROZEN before xRET, if
continued control transfer recording is desired.

LCOFI refers only to architectural traps directly caused by a local counter overflow. If
a local counter overflow interrupt is recognized without a trap, FROZEN is not
automatically set. For instance, no freeze occurs if the LCOFI is pended while
interrupts are masked, and software recognizes the LCOFI (perhaps by reading stopi
or sip) and clears sip.LCOFIP before the trap is raised. As a result, some or all CTR
history may be overwritten while handling the LCOFI. Such cases are expected to be
very rare; for most usages (e.g., application profiling) privilege mode filtering is
sufficient to ensure that CTR updates are inhibited while interrupts are handled in a
more privileged mode.

Similarly, on a breakpoint exception that traps to M-mode or S-mode with sctrctl.BPFRZ=1, FROZEN is
set by hardware. The breakpoint exception itself is not recorded.


Breakpoint exception refers to synchronous exceptions with a cause value of
Breakpoint (3), regardless of source (ebreak, c.ebreak, Sdtrig); it does not include
entry into Debug Mode, even in cores where this is implemented as an exception.

If the H extension is implemented, freeze behavior for LCOFIs and breakpoint exceptions that trap to
VS-mode is determined by the LCOFIFRZ and BPFRZ values, respectively, in vsctrctl. This includes
virtual LCOFIs pended by a hypervisor.



When a guest uses the SBI Supervisor Software Events (SSE) extension, the LCOFI
will trap to HS-mode, which will then invoke a registered VS-mode LCOFI handler
routine. If vsctrctl.LCOFIFRZ=1, the HS-mode handler will need to emulate the
freeze by setting sctrstatus.FROZEN=1 before invoking the registered handler
routine.

11.6. Custom Extensions

Any custom CTR extension must be associated with a non-zero value within the designated custom
bits in xctrctl. When the custom bits hold a non-zero value that enables a custom extension, the
extension may alter standard CTR behavior, and may define new custom status fields within sctrstatus
or the CTR Entry Registers. All custom status fields, and standard status fields whose behavior is
altered by the custom extension, must revert to standard behavior when the custom bits hold zero. This
includes read-only 0 behavior for any bits undefined by any implemented standard extensions.

11.6. Custom Extensions | Page 114

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 12. Supervisor-Level ISA, Version 1.13

This chapter describes the RISC-V supervisor-level architecture, which contains a common core that is
used with various supervisor-level address translation and protection schemes.



Supervisor mode is deliberately restricted in terms of interactions with underlying
physical hardware, such as physical memory and device interrupts, to support clean
virtualization. In this spirit, certain supervisor-level facilities, including requests for
timer and interprocessor interrupts, are provided by implementation-specific
mechanisms. In some systems, a supervisor execution environment (SEE) provides
these facilities in a manner specified by a supervisor binary interface (SBI). Other
systems supply these facilities directly, through some other implementation-defined
mechanism.

12.1. Supervisor CSRs

A number of CSRs are provided for the supervisor.



The supervisor should only view CSR state that should be visible to a supervisor-level
operating system. In particular, there is no information about the existence (or non-
existence) of higher privilege levels (machine level or other) visible in the CSRs
accessible by the supervisor.

Many supervisor CSRs are a subset of the equivalent machine-mode CSR, and the
machine-mode chapter should be read first to help understand the supervisor-level
CSR descriptions.

12.1.1. Supervisor Status (sstatus) Register

The sstatus register is an SXLEN-bit read/write register formatted as shown in Figure 49 when
SXLEN=32 and Figure 50 when SXLEN=64. The sstatus register keeps track of the processor’s current
operating state.

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

1617181920222324253031

XS[1:0]WPRISUMMXRWPRISPELPSDTWPRISD

Figure 49. Supervisor-mode status (sstatus) register when SXLEN=32.

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

16171819202223242531

XS[1:0]WPRISUMMXRWPRISPELPSDTWPRI

32333447

UXL[1:0]WPRI

486263

WPRISD

Figure 50. Supervisor-mode status (sstatus) register when SXLEN=64.

The SPP bit indicates the privilege level at which a hart was executing before entering supervisor
mode. When a trap is taken, SPP is set to 0 if the trap originated from user mode, or 1 otherwise. When
an SRET instruction (see Section 3.3.2) is executed to return from the trap handler, the privilege level

12.1. Supervisor CSRs | Page 115

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

is set to user mode if the SPP bit is 0, or supervisor mode if the SPP bit is 1; SPP is then set to 0.

The SIE bit enables or disables all interrupts in supervisor mode. When SIE is clear, interrupts are not
taken while in supervisor mode. When the hart is running in user-mode, the value in SIE is ignored, and
supervisor-level interrupts are enabled. The supervisor can disable individual interrupt sources using
the sie CSR.

The SPIE bit indicates whether supervisor interrupts were enabled prior to trapping into supervisor
mode. When a trap is taken into supervisor mode, SPIE is set to SIE, and SIE is set to 0. When an
SRET instruction is executed, SIE is set to SPIE, then SPIE is set to 1.

The sstatus register is a subset of the mstatus register.


In a straightforward implementation, reading or writing any field in sstatus is
equivalent to reading or writing the homonymous field in mstatus.

12.1.1.1. Base ISA Control in sstatus Register

The UXL field controls the value of XLEN for U-mode, termed UXLEN, which may differ from the value
of XLEN for S-mode, termed SXLEN. The encoding of UXL is the same as that of the MXL field of misa,
shown in Table 9.

When SXLEN=32, the UXL field does not exist, and UXLEN=32. When SXLEN=64, it is a WARL field
that encodes the current value of UXLEN. In particular, an implementation may make UXL be a read-
only field whose value always ensures that UXLEN=SXLEN.

If UXLEN≠SXLEN, instructions executed in the narrower mode must ignore source register operand
bits above the configured XLEN, and must sign-extend results to fill the widest supported XLEN in the
destination register.

If UXLEN SXLEN, user-mode instruction-fetch addresses and load and store effective addresses are
taken modulo . For example, when UXLEN=32 and SXLEN=64, user-mode memory accesses
reference the lowest 4 GiB of the address space.

Some HINT instructions are encoded as integer computational instructions that overwrite their
destination register with its current value, e.g., c.addi x8, 0. When such a HINT is executed with XLEN
< SXLEN and bits SXLEN..XLEN of the destination register not all equal to bit XLEN-1, it is
implementation-defined whether bits SXLEN..XLEN of the destination register are unchanged or are
overwritten with copies of bit XLEN-1.



This definition allows implementations to elide register writeback for some HINTs,
while allowing them to execute other HINTs in the same manner as other integer
computational instructions. The implementation choice is observable only by S-mode
with SXLEN > UXLEN; it is invisible to U-mode.

12.1.1.2. Memory Privilege in sstatus Register

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads access virtual
memory. When MXR=0, only loads from pages marked readable (R=1 in Figure 67) will succeed. When
MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will succeed. MXR has no
effect when page-based virtual memory is not in effect.

12.1. Supervisor CSRs | Page 116

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The SUM (permit Supervisor User Memory access) bit modifies the privilege with which S-mode loads
and stores access virtual memory. When SUM=0, S-mode memory accesses to pages that are
accessible by U-mode (U=1 in Figure 67) will fault. When SUM=1, these accesses are permitted. SUM
has no effect when page-based virtual memory is not in effect, nor when executing in U-mode. Note
that S-mode can never execute instructions from user pages, regardless of the state of SUM.

SUM is read-only 0 if satp.MODE is read-only 0.



The SUM mechanism prevents supervisor software from inadvertently accessing user
memory. Operating systems can execute the majority of code with SUM clear; the few
code segments that should access user memory can temporarily set SUM.

The SUM mechanism does not avail S-mode software of permission to execute
instructions in user code pages. Legitimate uses cases for execution from user
memory in supervisor context are rare in general and nonexistent in POSIX
environments. However, bugs in supervisors that lead to arbitrary code execution are
much easier to exploit if the supervisor exploit code can be stored in a user buffer at
a virtual address chosen by an attacker.

Some non-POSIX single address space operating systems do allow certain privileged
software to partially execute in supervisor mode, while most programs run in user
mode, all in a shared address space. This use case can be realized by mapping the
physical code pages at multiple virtual addresses with different permissions, possibly
with the assistance of the instruction page-fault handler to direct supervisor software
to use the alternate mapping.

12.1.1.3. Endianness Control in sstatus Register

The UBE bit is a WARL field that controls the endianness of explicit memory accesses made from U-
mode, which may differ from the endianness of memory accesses in S-mode. An implementation may
make UBE be a read-only field that always specifies the same endianness as for S-mode.

UBE controls whether explicit load and store memory accesses made from U-mode are little-endian
(UBE=0) or big-endian (UBE=1).

UBE has no effect on instruction fetches, which are implicit memory accesses that are always little-
endian.

For implicit accesses to supervisor-level memory management data structures, such as page tables, S-
mode endianness always applies and UBE is ignored.



Standard RISC-V ABIs are expected to be purely little-endian-only or big-endian-
only, with no accommodation for mixing endianness. Nevertheless, endianness
control has been defined so as to permit an OS of one endianness to execute user-
mode programs of the opposite endianness.

12.1.1.4. Previous Expected Landing Pad (ELP) State in sstatus Register

Access to the SPELP field, added by Zicfilp, accesses the homonymous fields of mstatus when V=0, and
the homonymous fields of vsstatus when V=1.

12.1. Supervisor CSRs | Page 117

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

12.1.1.5. Double Trap Control in sstatus Register

The S-mode-disable-trap (SDT) bit is a WARL field introduced by the Ssdbltrp extension to address
double trap (See Section 3.1.6.2) at privilege modes lower than M.

When the SDT bit is set to 1 by an explicit CSR write, the SIE (Supervisor Interrupt Enable) bit is cleared
to 0. This clearing occurs regardless of the value written, if any, to the SIE bit by the same write. The
SIE bit can only be set to 1 by an explicit CSR write if the SDT bit is being set to 0 by the same write or
is already 0.

When a trap is to be taken into S-mode, if the SDT bit is currently 0, it is then set to 1, and the trap is
delivered as expected. However, if SDT is already set to 1, then this is an unexpected trap. In the event
of an unexpected trap, a double-trap exception trap is delivered into M-mode. To deliver this trap, the
hart writes registers, except mcause and mtval2, with the same information that the unexpected trap
would have written if it was taken into M-mode. The mtval2 register is then set to what would be
otherwise written into the mcause register by the unexpected trap. The mcause register is set to 16, the
double-trap exception code.

An SRET instruction sets the SDT bit to 0.



After a trap handler has saved the state, such as scause, sepc, and stval, needed for
resuming from the trap and is reentrant, it should clear the SDT bit.

Resetting the SDT by an SRET enables the trap handler to detect a double trap that may
occur during the tail phase, where it restores critical state to return from a trap.

The consequence of this specification is that if a critical error condition was caused
by a guest page-fault, then the GPA will not be available in mtval2 when the double
trap is delivered to M-mode. This condition arises if the HS-mode invokes a
hypervisor virtual-machine load or store instruction when SDT is 1 and the instruction
raises a guest page-fault. The use of such an instruction in this phase of trap
handling is not common. However, not recording the GPA is considered benign
because, if required, it can still be obtained — albeit with added effort — through the
process of walking the page tables.

For a double trap that originates in VS-mode, M-mode should redirect the exception
to HS-mode by copying the values of M-mode CSRs updated by the trap to HS-mode
CSRs and should use an MRET to resume execution at the address in stvec.

Supervisor Software Events (SSE), an extension to the SBI, provide a mechanism for
supervisor software to register and service system events emanating from an SBI
implementation, such as firmware or a hypervisor. In the event of a double trap, HS-
mode and M-mode can utilize the SSE mechanism to invoke a critical-error handler
in VS-mode or S/HS-mode, respectively. Additionally, the implementation of an SSE
protocol can be considered as an optional measure to aid in the recovery from such
critical errors.

12.1.2. Supervisor Trap Vector Base Address (stvec) Register

The stvec register is an SXLEN-bit read/write register that holds trap vector configuration, consisting
of a vector base address (BASE) and a vector mode (MODE).

12.1. Supervisor CSRs | Page 118

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

SXLEN-1 2 1 0
BASE[SXLEN-1:2] (WARL) MODE (WARL)

SXLEN-2 2

Figure 51. Supervisor trap vector base address (stvec) register.

The BASE field in stvec is a field that can hold any valid virtual or physical address, subject to the
following alignment constraints: the address must be 4-byte aligned, and MODE settings other than
Direct might impose additional alignment constraints on the value in the BASE field.

Table 31. Encoding of stvec MODE field.

Value Name Description

0
1

≥2

Direct
Vectored

All exceptions set pc to BASE.
Asynchronous interrupts set pc to BASE+4×cause.
Reserved

The encoding of the MODE field is shown in Table 31. When MODE=Direct, all traps into supervisor
mode cause the pc to be set to the address in the BASE field. When MODE=Vectored, all synchronous
exceptions into supervisor mode cause the pc to be set to the address in the BASE field, whereas
interrupts cause the pc to be set to the address in the BASE field plus four times the interrupt cause
number. For example, a supervisor-mode timer interrupt (see Table 32) causes the pc to be set to
BASE+0x14. Setting MODE=Vectored may impose a stricter alignment constraint on BASE.

12.1.3. Supervisor Interrupt (sip and sie) Registers

The sip register is an SXLEN-bit read/write register containing information on pending interrupts,
while sie is the corresponding SXLEN-bit read/write register containing interrupt enable bits. Interrupt
cause number i (as reported in CSR scause, Section 12.1.8) corresponds with bit i in both sip and sie.
Bits 15:0 are allocated to standard interrupt causes only, while bits 16 and above are designated for
platform use.

SXLEN-1 0
Interrupts (WARL)

SXLEN

Figure 52. Supervisor interrupt-pending register (sip).

SXLEN-1 0
Interrupts (WARL)

SXLEN

Figure 53. Supervisor interrupt-enable register (sie).

An interrupt i will trap to S-mode if both of the following are true: (a) either the current privilege mode
is S and the SIE bit in the sstatus register is set, or the current privilege mode has less privilege than
S-mode; and (b) bit i is set in both sip and sie.

These conditions for an interrupt trap to occur must be evaluated in a bounded amount of time from
when an interrupt becomes, or ceases to be, pending in sip, and must also be evaluated immediately
following the execution of an SRET instruction or an explicit write to a CSR on which these interrupt
trap conditions expressly depend (including sip, sie and sstatus).

Interrupts to S-mode take priority over any interrupts to lower privilege modes.

12.1. Supervisor CSRs | Page 119

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Each individual bit in register sip may be writable or may be read-only. When bit i in sip is writable, a
pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can become pending but bit i in
sip is read-only, the implementation must provide some other mechanism for clearing the pending
interrupt (which may involve a call to the execution environment).

A bit in sie must be writable if the corresponding interrupt can ever become pending. Bits of sie that
are not writable are read-only zero.

The standard portions (bits 15:0) of registers sip and sie are formatted as shown in Figures Figure 54
and Figure 55 respectively.

15 14 13 12 10 9 8 6 5 4 2 1 0
0 LCOFIP 0 SEIP 0 STIP 0 SSIP 0
2 1 3 1 3 1 3 1 1

Figure 54. Standard portion (bits 15:0) of sip.

15 14 13 12 10 9 8 6 5 4 2 1 0
0 LCOFIE 0 SEIE 0 STIE 0 SSIE 0
2 1 3 1 3 1 3 1 1

Figure 55. Standard portion (bits 15:0) of sie.

Bits sip.SEIP and sie.SEIE are the interrupt-pending and interrupt-enable bits for supervisor-level
external interrupts. If implemented, SEIP is read-only in sip, and is set and cleared by the execution
environment, typically through a platform-specific interrupt controller.

Bits sip.STIP and sie.STIE are the interrupt-pending and interrupt-enable bits for supervisor-level
timer interrupts. If implemented, STIP is read-only in sip, and is set and cleared by the execution
environment.

Bits sip.SSIP and sie.SSIE are the interrupt-pending and interrupt-enable bits for supervisor-level
software interrupts. If implemented, SSIP is writable in sip and may also be set to 1 by a platform-
specific interrupt controller.

If the Sscofpmf extension is implemented, bits sip.LCOFIP and sie.LCOFIE are the interrupt-pending
and interrupt-enable bits for local counter-overflow interrupts. LCOFIP is read-write in sip and reflects
the occurrence of a local counter-overflow overflow interrupt request resulting from any of the
mhpmeventn.OF bits being set. If the Sscofpmf extension is not implemented, sip.LCOFIP and
sie.LCOFIE are read-only zeros.


Interprocessor interrupts are sent to other harts by implementation-specific means,
which will ultimately cause the SSIP bit to be set in the recipient hart’s sip register.

Each standard interrupt type (SEI, STI, SSI, or LCOFI) may not be implemented, in which case the
corresponding interrupt-pending and interrupt-enable bits are read-only zeros. All bits in sip and sie
are WARL fields. The implemented interrupts may be found by writing one to every bit location in sie,
then reading back to see which bit positions hold a one.



The sip and sie registers are subsets of the mip and mie registers. Reading any
implemented field, or writing any writable field, of sip/sie effects a read or write of
the homonymous field of mip/mie.

Bits 3, 7, and 11 of sip and sie correspond to the machine-mode software, timer, and
external interrupts, respectively. Since most platforms will choose not to make these

12.1. Supervisor CSRs | Page 120

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

interrupts delegatable from M-mode to S-mode, they are shown as 0 in Figure 54
and Figure 55.

Multiple simultaneous interrupts destined for supervisor mode are handled in the following decreasing
priority order: SEI, SSI, STI, LCOFI.

12.1.4. Supervisor Timers and Performance Counters

Supervisor software uses the same hardware performance monitoring facility as user-mode software,
including the time, cycle, and instret CSRs. The implementation should provide a mechanism to modify
the counter values.

The implementation must provide a facility for scheduling timer interrupts in terms of the real-time
counter, time.

12.1.5. Counter-Enable (scounteren) Register

31 30 29 28 6 5 4 3 2 1 0
HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 56. Counter-enable (scounteren) register

The counter-enable (scounteren) CSR is a 32-bit register that controls the availability of the hardware
performance monitoring counters to U-mode.

When the CY, TM, IR, or HPMn bit in the scounteren register is clear, attempts to read the cycle, time,
instret, or hpmcountern register while executing in U-mode will cause an illegal-instruction exception.
When one of these bits is set, access to the corresponding register is permitted.

scounteren must be implemented. However, any of the bits may be read-only zero, indicating reads to
the corresponding counter will cause an exception when executing in U-mode. Hence, they are
effectively WARL fields.


The setting of a bit in mcounteren does not affect whether the corresponding bit in
scounteren is writable. However, U-mode may only access a counter if the
corresponding bits in scounteren and mcounteren are both set.

12.1.6. Supervisor Scratch (sscratch) Register

The sscratch CSR is an SXLEN-bit read/write register, dedicated for use by the supervisor. Typically,
sscratch is used to hold a pointer to the hart-local supervisor context while the hart is executing user
code. At the beginning of a trap handler, software normally uses a CSRRW instruction to swap sscratch
with an integer register to obtain an initial working register.

SXLEN-1 0
sscratch
SXLEN

Figure 57. Supervisor Scratch Register

12.1.7. Supervisor Exception Program Counter (sepc) Register

12.1. Supervisor CSRs | Page 121

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

sepc is an SXLEN-bit read/write CSR formatted as shown in Figure 58. The low bit of sepc (sepc[0]) is
always zero. On implementations that support only IALIGN=32, the two low bits (sepc[1:0]) are always
zero.

If an implementation allows IALIGN to be either 16 or 32 (by changing CSR misa, for example), then,
whenever IALIGN=32, bit sepc[1] is masked on reads so that it appears to be 0. This masking occurs
also for the implicit read by the SRET instruction. Though masked, sepc[1] remains writable when
IALIGN=32.

sepc is a WARL register that must be able to hold all valid virtual addresses. It need not be capable of
holding all possible invalid addresses. Prior to writing sepc, implementations may convert an invalid
address into some other invalid address that sepc is capable of holding.

When a trap is taken into S-mode, sepc is written with the virtual address of the instruction that was
interrupted or that encountered the exception. Otherwise, sepc is never written by the implementation,
though it may be explicitly written by software.

SXLEN-1 0
sepc

SXLEN

Figure 58. Supervisor exception program counter register.

12.1.8. Supervisor Cause (scause) Register

The scause CSR is an SXLEN-bit read-write register formatted as shown in Figure 59. When a trap is
taken into S-mode, scause is written with a code indicating the event that caused the trap. Otherwise,
scause is never written by the implementation, though it may be explicitly written by software.

The Interrupt bit in the scause register is set if the trap was caused by an interrupt. The Exception Code
field contains a code identifying the last exception or interrupt. Table 32 lists the possible exception
codes for the current supervisor ISAs. The Exception Code is a WLRL field. It is required to hold the
values 0–31 (i.e., bits 4–0 must be implemented), but otherwise it is only guaranteed to hold supported
exception codes.

SXLEN-1 SXLEN-2 0
Interrupt Exception Code (WLRL)

1 SXLEN-1

Figure 59. Supervisor Cause (scause) register.

Table 32. Supervisor cause (scause) register values after trap. Synchronous exception priorities are given by
Table 15.

12.1. Supervisor CSRs | Page 122

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Interrupt Exception Code Description

1
1
1
1
1
1
1
1
1
1

0
1

2-4
5

6-8
9

10-12
13

14-15
≥16

Reserved
Supervisor software interrupt
Reserved
Supervisor timer interrupt
Reserved
Supervisor external interrupt
Reserved
Counter-overflow interrupt
Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10-11
12
13
14
15

16-17
18
19

20-23
24-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode
Environment call from S-mode
Reserved
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Software check
Hardware error
Reserved
Designated for custom use
Reserved
Designated for custom use
Reserved

12.1.9. Supervisor Trap Value (stval) Register

The stval CSR is an SXLEN-bit read-write register formatted as shown in Figure 60. When a trap is
taken into S-mode, stval is written with exception-specific information to assist software in handling
the trap. Otherwise, stval is never written by the implementation, though it may be explicitly written by
software. The hardware platform will specify which exceptions must set stval informatively, which may
unconditionally set it to zero, and which may exhibit either behavior, depending on the underlying
event that caused the exception.

If stval is written with a nonzero value when a breakpoint, address-misaligned, access-fault, or page-
fault exception occurs on an instruction fetch, load, or store, then stval will contain the faulting virtual
address.

SXLEN-1 0
stval

SXLEN

Figure 60. Supervisor Trap Value register.

12.1. Supervisor CSRs | Page 123

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

If stval is written with a nonzero value when a misaligned load or store causes an access-fault or
page-fault exception, then stval will contain the virtual address of the portion of the access that
caused the fault.

If stval is written with a nonzero value when an instruction access-fault or page-fault exception occurs
on a system with variable-length instructions, then stval will contain the virtual address of the portion
of the instruction that caused the fault, while sepc will point to the beginning of the instruction.

The stval register can optionally also be used to return the faulting instruction bits on an illegal-
instruction exception (sepc points to the faulting instruction in memory). If stval is written with a
nonzero value when an illegal-instruction exception occurs, then stval will contain the shortest of:

⚫ the actual faulting instruction

⚫ the first ILEN bits of the faulting instruction

⚫ the first SXLEN bits of the faulting instruction

The value loaded into stval on an illegal-instruction exception is right-justified and all unused upper
bits are cleared to zero.

On a trap caused by a software check exception, the stval register holds the cause for the exception.
The following encodings are defined:

⚫ 0 - No information provided.

⚫ 2 - Landing Pad Fault. Defined by the Zicfilp extension (Section 22.1).

⚫ 3 - Shadow Stack Fault. Defined by the Zicfiss extension (Section 22.2).

For other traps, stval is set to zero, but a future standard may redefine stval’s setting for other traps.

stval is a WARL register that must be able to hold all valid virtual addresses and the value 0. It need
not be capable of holding all possible invalid addresses. Prior to writing stval, implementations may
convert an invalid address into some other invalid address that stval is capable of holding. If the
feature to return the faulting instruction bits is implemented, stval must also be able to hold all values
less than , where is the smaller of SXLEN and ILEN.

12.1.10. Supervisor Environment Configuration (senvcfg) Register

The senvcfg CSR is an SXLEN-bit read/write register, formatted as shown in Figure 61, that controls
certain characteristics of the U-mode execution environment.

01234567815

FIOMWPRILPESSECBIECBCFECBZEWPRI

1631

WPRI

32333447

PMMWPRI

4863

WPRI

Figure 61. Supervisor environment configuration register (senvcfg) for RV64.

12.1. Supervisor CSRs | Page 124

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

01234567815

FIOMWPRILPEWPRICBIECBCFECBZEWPRI

1631

WPRI

Figure 62. Supervisor environment configuration register (senvcfg) for RV32.

If bit FIOM (Fence of I/O implies Memory) is set to one in senvcfg, FENCE instructions executed in U-
mode are modified so the requirement to order accesses to device I/O implies also the requirement to
order main memory accesses. Table 33 details the modified interpretation of FENCE instruction bits
PI, PO, SI, and SO in U-mode when FIOM=1.

Similarly, for U-mode when FIOM=1, if an atomic instruction that accesses a region ordered as device
I/O has its aq and/or rl bit set, then that instruction is ordered as though it accesses both device I/O
and memory.

If satp.MODE is read-only zero (always Bare), the implementation may make FIOM read-only zero.

Table 33. Modified interpretation of FENCE predecessor and successor sets in U-mode when FIOM=1.

Instruction bit Meaning when set

PI
PO

Predecessor device input and memory reads (PR implied)
Predecessor device output and memory writes (PW implied)

SI
SO

Successor device input and memory reads (SR implied)
Successor device output and memory writes (SW implied)



Bit FIOM exists for a specific circumstance when an I/O device is being emulated for
U-mode and both of the following are true: (a) the emulated device has a memory
buffer that should be I/O space but is actually mapped to main memory via address
translation, and (b) multiple physical harts are involved in accessing this emulated
device from U-mode.

A hypervisor running in S-mode without the benefit of the hypervisor extension of
Chapter 21 may need to emulate a device for U-mode if paravirtualization cannot be
employed. If the same hypervisor provides a virtual machine (VM) with multiple
virtual harts, mapped one-to-one to real harts, then multiple harts may concurrently
access the emulated device, perhaps because: (a) the guest OS within the VM
assigns device interrupt handling to one hart while the device is also accessed by a
different hart outside of an interrupt handler, or (b) control of the device (or partial
control) is being migrated from one hart to another, such as for interrupt load
balancing within the VM. For such cases, guest software within the VM is expected to
properly coordinate access to the (emulated) device across multiple harts using
mutex locks and/or interprocessor interrupts as usual, which in part entails executing
I/O fences. But those I/O fences may not be sufficient if some of the device ``I/O'' is
actually main memory, unknown to the guest. Setting FIOM=1 modifies those fences
(and all other I/O fences executed in U-mode) to include main memory, too.

Software can always avoid the need to set FIOM by never using main memory to
emulate a device memory buffer that should be I/O space. However, this choice
usually requires trapping all U-mode accesses to the emulated buffer, which might
have a noticeable impact on performance. The alternative offered by FIOM is
sufficiently inexpensive to implement that we consider it worth supporting even if
only rarely enabled.

12.1. Supervisor CSRs | Page 125

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The definition of the CBZE field is furnished by the Zicboz extension.

The definitions of the CBCFE and CBIE fields are furnished by the Zicbom extension.

The definition of the PMM field is furnished by the Ssnpm extension.

The Zicfilp extension adds the LPE field in senvcfg. When the LPE field is set to 1, the Zicfilp extension is
enabled in VU/U-mode. When the LPE field is 0, the Zicfilp extension is not enabled in VU/U-mode and
the following rules apply to VU/U-mode:

⚫ The hart does not update the ELP state; it remains as NO_LP_EXPECTED.

⚫ The LPAD instruction operates as a no-op.

The Zicfiss extension adds the SSE field in senvcfg. When the SSE field is set to 1, the Zicfiss extension is
activated in VU/U-mode. When the SSE field is 0, the Zicfiss extension remains inactive in VU/U-mode,
and the following rules apply:

⚫ 32-bit Zicfiss instructions will revert to their behavior as defined by Zimop.

⚫ 16-bit Zicfiss instructions will revert to their behavior as defined by Zcmop.

⚫ When menvcfg.SSE is one, SSAMOSWAP.W/D raises an illegal-instruction exception in U-mode and a
virtual instruction exception in VU-mode.

12.1.11. Supervisor Address Translation and Protection (satp) Register

The satp CSR is an SXLEN-bit read/write register, formatted as shown in Figure 63 for SXLEN=32 and
Figure 64 for SXLEN=64, which controls supervisor-mode address translation and protection. This
register holds the physical page number (PPN) of the root page table, i.e., its supervisor physical
address divided by 4 KiB; an address space identifier (ASID), which facilitates address-translation
fences on a per-address-space basis; and the MODE field, which selects the current address-
translation scheme. Further details on the access to this register are described in Section 3.1.6.6.

31 30 22 21 0
MODE (WARL) ASID (WARL) PPN (WARL)

1 9 22

Figure 63. Supervisor address translation and protection (satp) register when SXLEN=32.



Storing a PPN in satp, rather than a physical address, supports a physical address
space larger than 4 GiB for RV32.

The satp.PPN field might not be capable of holding all physical page numbers. Some
platform standards might place constraints on the values satp.PPN may assume, e.g.,
by requiring that all physical page numbers corresponding to main memory be
representable.

63 60 59 44 43 0
MODE (WARL) ASID (WARL) PPN (WARL)

4 16 44

Figure 64. Supervisor address translation and protection (satp) register when SXLEN=64, for MODE values
Bare, Sv39, Sv48, and Sv57.

 We store the ASID and the page table base address in the same CSR to allow the

12.1. Supervisor CSRs | Page 126

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

pair to be changed atomically on a context switch. Swapping them non-atomically
could pollute the old virtual address space with new translations, or vice-versa. This
approach also slightly reduces the cost of a context switch.

Table 34 shows the encodings of the MODE field when SXLEN=32 and SXLEN=64. When MODE=Bare,
supervisor virtual addresses are equal to supervisor physical addresses, and there is no additional
memory protection beyond the physical memory protection scheme described in Section 3.7. To select
MODE=Bare, software must write zero to the remaining fields of satp (bits 30–0 when SXLEN=32, or
bits 59–0 when SXLEN=64). Attempting to select MODE=Bare with a nonzero pattern in the remaining
fields has an UNSPECIFIED effect on the value that the remaining fields assume and an
UNSPECIFIED effect on address translation and protection behavior.

When SXLEN=32, the satp encodings corresponding to MODE=Bare and ASID[8:7]=3 are designated
for custom use, whereas the encodings corresponding to MODE=Bare and ASID[8:7]≠3 are reserved
for future standard use. When SXLEN=64, all satp encodings corresponding to MODE=Bare are
reserved for future standard use.



Version 1.11 of this standard stated that the remaining fields in satp had no effect
when MODE=Bare. Making these fields reserved facilitates future definition of
additional translation and protection modes, particularly in RV32, for which all
patterns of the existing MODE field have already been allocated.

When SXLEN=32, the only other valid setting for MODE is Sv32, a paged virtual-memory scheme
described in Section 12.3.

When SXLEN=64, three paged virtual-memory schemes are defined: Sv39, Sv48, and Sv57, described
in Section 12.4, Section 12.5, and Section 12.6, respectively. One additional scheme, Sv64, will be
defined in a later version of this specification. The remaining MODE settings are reserved for future
use and may define different interpretations of the other fields in satp.

Implementations are not required to support all MODE settings, and if satp is written with an
unsupported MODE, the entire write has no effect; no fields in satp are modified.

The number of ASID bits is UNSPECIFIED and may be zero. The number of implemented ASID bits,
termed ASIDLEN, may be determined by writing one to every bit position in the ASID field, then
reading back the value in satp to see which bit positions in the ASID field hold a one. The least-
significant bits of ASID are implemented first: that is, if ASIDLEN 0, ASID[ASIDLEN-1:0] is writable.
The maximal value of ASIDLEN, termed ASIDMAX, is 9 for Sv32 or 16 for Sv39, Sv48, and Sv57.

12.1. Supervisor CSRs | Page 127

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 34. Encoding of satp MODE field.

SXLEN=32

Value Name Description

0
1

Bare
Sv32

No translation or protection.
Page-based 32-bit virtual addressing (see Section 12.3).

SXLEN=64

Value Name Description

0
1-7
8
9
10
11

12-13
14-15

Bare
-

Sv39
Sv48
Sv57
Sv64

-
-

No translation or protection.
Reserved for standard use
Page-based 39-bit virtual addressing (see Section 12.4).
Page-based 48-bit virtual addressing (see Section 12.5).
Page-based 57-bit virtual addressing (see Section 12.6).
Reserved for page-based 64-bit virtual addressing.
Reserved for standard use
Designated for custom use



For many applications, the choice of page size has a substantial performance impact.
A large page size increases TLB reach and loosens the associativity constraints on
virtually indexed, physically tagged caches. At the same time, large pages exacerbate
internal fragmentation, wasting physical memory and possibly cache capacity.

After much deliberation, we have settled on a conventional page size of 4 KiB for
both RV32 and RV64. We expect this decision to ease the porting of low-level
runtime software and device drivers. The TLB reach problem is ameliorated by
transparent superpage support in modern operating systems. (Navarro et al., 2002)
Additionally, multi-level TLB hierarchies are quite inexpensive relative to the multi-
level cache hierarchies whose address space they map.

The satp CSR is considered active when the effective privilege mode is S-mode or U-mode. Executions
of the address-translation algorithm may only begin using a given value of satp when satp is active.



Translations that began while satp was active are not required to complete or
terminate when satp is no longer active, unless an SFENCE.VMA instruction matching
the address and ASID is executed. The SFENCE.VMA instruction must be used to
ensure that updates to the address-translation data structures are observed by
subsequent implicit reads to those structures by a hart.

Note that writing satp does not imply any ordering constraints between page-table updates and
subsequent address translations, nor does it imply any invalidation of address-translation caches. If
the new address space’s page tables have been modified, or if an ASID is reused, it may be necessary
to execute an SFENCE.VMA instruction (see Section 12.2.1) after, or in some cases before, writing satp.


Not imposing upon implementations to flush address-translation caches upon satp
writes reduces the cost of context switches, provided a sufficiently large ASID space.

12.2. Supervisor Instructions

In addition to the SRET instruction defined in Section 3.3.2, one new supervisor-level instruction is
provided.

12.2. Supervisor Instructions | Page 128

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

12.2.1. Supervisor Memory-Management Fence Instruction

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
vaddr

5
asid

7
SFENCE.VMA

The supervisor memory-management fence instruction SFENCE.VMA is used to synchronize updates to
in-memory memory-management data structures with current execution. Instruction execution causes
implicit reads and writes to these data structures; however, these implicit references are ordinarily not
ordered with respect to explicit loads and stores. Executing an SFENCE.VMA instruction guarantees
that any previous stores already visible to the current RISC-V hart are ordered before certain implicit
references by subsequent instructions in that hart to the memory-management data structures. The
specific set of operations ordered by SFENCE.VMA is determined by rs1 and rs2, as described below.
SFENCE.VMA is also used to invalidate entries in the address-translation cache associated with a hart
(see Section 12.3.2). Further details on the behavior of this instruction are described in Section 3.1.6.6
and Section 3.7.2.



The SFENCE.VMA is used to flush any local hardware caches related to address
translation. It is specified as a fence rather than a TLB flush to provide cleaner
semantics with respect to which instructions are affected by the flush operation and
to support a wider variety of dynamic caching structures and memory-management
schemes. SFENCE.VMA is also used by higher privilege levels to synchronize page
table writes and the address translation hardware.

SFENCE.VMA orders only the local hart’s implicit references to the memory-management data
structures.



Consequently, other harts must be notified separately when the memory-
management data structures have been modified. One approach is to use 1) a local
data fence to ensure local writes are visible globally, then 2) an interprocessor
interrupt to the other thread, then 3) a local SFENCE.VMA in the interrupt handler of
the remote thread, and finally 4) signal back to originating thread that operation is
complete. This is, of course, the RISC-V analog to a TLB shootdown.

For the common case that the translation data structures have only been modified for a single address
mapping (i.e., one page or superpage), rs1 can specify a virtual address within that mapping to effect a
translation fence for that mapping only. Furthermore, for the common case that the translation data
structures have only been modified for a single address-space identifier, rs2 can specify the address
space. The behavior of SFENCE.VMA depends on rs1 and rs2 as follows:

⚫ If rs1=x0 and rs2=x0, the fence orders all reads and writes made to any level of the page tables, for
all address spaces. The fence also invalidates all address-translation cache entries, for all address
spaces.

⚫ If rs1=x0 and rs2≠x0, the fence orders all reads and writes made to any level of the page tables, but
only for the address space identified by integer register rs2. Accesses to global mappings (see
Section 12.3.1) are not ordered. The fence also invalidates all address-translation cache entries
matching the address space identified by integer register rs2, except for entries containing global
mappings.

⚫ If rs1≠x0 and rs2=x0, the fence orders only reads and writes made to leaf page table entries
corresponding to the virtual address in rs1, for all address spaces. The fence also invalidates all
address-translation cache entries that contain leaf page table entries corresponding to the virtual

12.2. Supervisor Instructions | Page 129

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

address in rs1, for all address spaces.

⚫ If rs1≠x0 and rs2≠x0, the fence orders only reads and writes made to leaf page table entries
corresponding to the virtual address in rs1, for the address space identified by integer register rs2.
Accesses to global mappings are not ordered. The fence also invalidates all address-translation
cache entries that contain leaf page table entries corresponding to the virtual address in rs1 and
that match the address space identified by integer register rs2, except for entries containing global
mappings.

If the value held in rs1 is not a valid virtual address, then the SFENCE.VMA instruction has no effect. No
exception is raised in this case.



It is always legal to over-fence, e.g., by fencing only based on a subset of the bits in
rs1 and/or rs2, and/or by simply treating all SFENCE.VMA instructions as having rs1
=x0 and/or rs2=x0. For example, simpler implementations can ignore the virtual
address in rs1 and the ASID value in rs2 and always perform a global fence. The
choice not to raise an exception when an invalid virtual address is held in rs1
facilitates this type of simplification.

When rs2≠x0, bits SXLEN-1:ASIDMAX of the value held in rs2 are reserved for future standard use.
Until their use is defined by a standard extension, they should be zeroed by software and ignored by
current implementations. Furthermore, if ASIDLEN<ASIDMAX, the implementation shall ignore bits
ASIDMAX-1:ASIDLEN of the value held in rs2.

An implicit read of the memory-management data structures may return any translation for an address
that was valid at any time since the most recent SFENCE.VMA that subsumes that address. The
ordering implied by SFENCE.VMA does not place implicit reads and writes to the memory-
management data structures into the global memory order in a way that interacts cleanly with the
standard RVWMO ordering rules. In particular, even though an SFENCE.VMA orders prior explicit
accesses before subsequent implicit accesses, and those implicit accesses are ordered before their
associated explicit accesses, SFENCE.VMA does not necessarily place prior explicit accesses before
subsequent explicit accesses in the global memory order. These implicit loads also need not otherwise
obey normal program order semantics with respect to prior loads or stores to the same address.



A consequence of this specification is that an implementation may use any
translation for an address that was valid at any time since the most recent
SFENCE.VMA that subsumes that address. In particular, if a leaf PTE is modified but
a subsuming SFENCE.VMA is not executed, either the old translation or the new
translation will be used, but the choice is unpredictable. The behavior is otherwise
well-defined.

In a conventional TLB design, it is possible for multiple entries to match a single
address if, for example, a page is upgraded to a superpage without first clearing the
original non-leaf PTE’s valid bit and executing an SFENCE.VMA with rs1=x0. In this
case, a similar remark applies: it is unpredictable whether the old non-leaf PTE or the
new leaf PTE is used, but the behavior is otherwise well defined.

Another consequence of this specification is that it is generally unsafe to update a
PTE using a set of stores of a width less than the width of the PTE, as it is legal for
the implementation to read the PTE at any time, including when only some of the
partial stores have taken effect.

12.2. Supervisor Instructions | Page 130

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

This specification permits the caching of PTEs whose V (Valid) bit is clear. Operating
systems must be written to cope with this possibility, but implementers are reminded
that eagerly caching invalid PTEs will reduce performance by causing additional page
faults.

Implementations must only perform implicit reads of the translation data structures pointed to by the
current contents of the satp register or a subsequent valid (V=1) translation data structure entry, and
must only raise exceptions for implicit accesses that are generated as a result of instruction execution,
not those that are performed speculatively.

Changes to the sstatus fields SUM and MXR take effect immediately, without the need to execute an
SFENCE.VMA instruction. Changing satp.MODE from Bare to other modes and vice versa also takes
effect immediately, without the need to execute an SFENCE.VMA instruction. Likewise, changes to
satp.ASID take effect immediately.



The following common situations typically require executing an SFENCE.VMA
instruction:

⚫ When software recycles an ASID (i.e., reassociates it with a different page table),
it should first change satp to point to the new page table using the recycled ASID,
then execute SFENCE.VMA with rs1=x0 and rs2 set to the recycled ASID.
Alternatively, software can execute the same SFENCE.VMA instruction while a
different ASID is loaded into satp, provided the next time satp is loaded with the
recycled ASID, it is simultaneously loaded with the new page table.

⚫ If the implementation does not provide ASIDs, or software chooses to always use
ASID 0, then after every satp write, software should execute SFENCE.VMA with
rs1=x0. In the common case that no global translations have been modified, rs2
should be set to a register other than x0 but which contains the value zero, so that
global translations are not flushed.

⚫ If software modifies a non-leaf PTE, it should execute SFENCE.VMA with rs1=x0.
If any PTE along the traversal path had its G bit set, rs2 must be x0; otherwise, rs2
should be set to the ASID for which the translation is being modified.

⚫ If software modifies a leaf PTE, it should execute SFENCE.VMA with rs1 set to a
virtual address within the page. If any PTE along the traversal path had its G bit
set, rs2 must be x0; otherwise, rs2 should be set to the ASID for which the
translation is being modified.

⚫ For the special cases of increasing the permissions on a leaf PTE and changing
an invalid PTE to a valid leaf, software may choose to execute the SFENCE.VMA
lazily. After modifying the PTE but before executing SFENCE.VMA, either the new
or old permissions will be used. In the latter case, a page-fault exception might
occur, at which point software should execute SFENCE.VMA in accordance with
the previous bullet point.

If a hart employs an address-translation cache, that cache must appear to be private to that hart. In
particular, the meaning of an ASID is local to a hart; software may choose to use the same ASID to
refer to different address spaces on different harts.



A future extension could redefine ASIDs to be global across the SEE, enabling such
options as shared translation caches and hardware support for broadcast TLB
shootdown. However, as OSes have evolved to significantly reduce the scope of TLB

12.2. Supervisor Instructions | Page 131

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

shootdowns using novel ASID-management techniques, we expect the local-ASID
scheme to remain attractive for its simplicity and possibly better scalability.

For implementations that make satp.MODE read-only zero (always Bare), attempts to execute an
SFENCE.VMA instruction might raise an illegal-instruction exception.

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems

When Sv32 is written to the MODE field in the satp register (see Section 12.1.11), the supervisor
operates in a 32-bit paged virtual-memory system. In this mode, supervisor and user virtual addresses
are translated into supervisor physical addresses by traversing a radix-tree page table. Sv32 is
supported when SXLEN=32 and is designed to include mechanisms sufficient for supporting modern
Unix-based operating systems.



The initial RISC-V paged virtual-memory architectures have been designed as
straightforward implementations to support existing operating systems. We have
architected page table layouts to support a hardware page-table walker. Software TLB
refills are a performance bottleneck on high-performance systems, and are especially
troublesome with decoupled specialized coprocessors. An implementation can
choose to implement software TLB refills using a machine-mode trap handler as an
extension to M-mode.

Some ISAs architecturally expose virtually indexed, physically tagged caches, in that
accesses to the same physical address via different virtual addresses might not be
coherent unless the virtual addresses lie within the same cache set. Implicitly, this
specification does not permit such behavior to be architecturally exposed.

12.3.1. Addressing and Memory Protection

Sv32 implementations support a 32-bit virtual address space, divided into pages. An Sv32 virtual
address is partitioned into a virtual page number (VPN) and page offset, as shown in Figure 65. When
Sv32 virtual memory mode is selected in the MODE field of the satp register, supervisor virtual
addresses are translated into supervisor physical addresses via a two-level page table. The 20-bit VPN
is translated into a 22-bit physical page number (PPN), while the 12-bit page offset is untranslated. The
resulting supervisor-level physical addresses are then checked using any physical memory protection
structures (Section 3.7), before being directly converted to machine-level physical addresses. If
necessary, supervisor-level physical addresses are zero-extended to the number of physical address
bits found in the implementation.



For example, consider an RV32 system supporting 34 bits of physical address. When
the value of satp.MODE is Sv32, a 34-bit physical address is produced directly, and
therefore no zero extension is needed. When the value of satp.MODE is Bare, the 32-
bit virtual address is translated (unmodified) into a 32-bit physical address, and then
that physical address is zero-extended into a 34-bit machine-level physical address.

31 22 21 12 11 0
VPN[1] VPN[0] page offset

10 10 12

Figure 65. Sv32 virtual address.

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 132

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Sv32 page tables consist of 210 page-table entries (PTEs), each of four bytes. A page table is exactly
the size of a page and must always be aligned to a page boundary. The physical page number of the
root page table is stored in the satp register.

33 22 21 12 11 0
PPN[1] PPN[0] page offset

12 10 12

Figure 66. SV32 physical address.

31 20 19 10 9 8 7 6 5 4 3 2 1 0
PPN[1] PPN[0] RSW D A G U X W R V

12 10 2 1 1 1 1 1 1 1 1

Figure 67. Sv32 page table entry.

The PTE format for Sv32 is shown in Figure 67. The V bit indicates whether the PTE is valid; if it is 0,
all other bits in the PTE are don’t-cares and may be used freely by software. The permission bits, R, W,
and X, indicate whether the page is readable, writable, and executable, respectively. When all three are
zero, the PTE is a pointer to the next level of the page table; otherwise, it is a leaf PTE. Writable pages
must also be marked readable; the contrary combinations are reserved for future use. Table 35
summarizes the encoding of the permission bits.

Table 35. Encoding of PTE R/W/X fields.

X W R Meaning

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Pointer to next level of page table.
Read-only page.
Reserved for future use.
Read-write page.
Execute-only page.
Read-execute page.
Reserved for future use.
Read-write-execute page.

Attempting to fetch an instruction from a page that does not have execute permissions raises a fetch
page-fault exception. Attempting to execute a load or load-reserved instruction whose effective
address lies within a page without read permissions raises a load page-fault exception. Attempting to
execute a store, store-conditional, or AMO instruction whose effective address lies within a page
without write permissions raises a store page-fault exception.


AMOs never raise load page-fault exceptions. Since any unreadable page is also
unwritable, attempting to perform an AMO on an unreadable page always raises a
store page-fault exception.

The U bit indicates whether the page is accessible to user mode. U-mode software may only access
the page when U=1. If the SUM bit in the sstatus register is set, supervisor mode software may also
access pages with U=1. However, supervisor code normally operates with the SUM bit clear, in which
case, supervisor code will fault on accesses to user-mode pages. Irrespective of SUM, the supervisor
may not execute code on pages with U=1.


An alternative PTE format would support different permissions for supervisor and
user. We omitted this feature because it would be largely redundant with the SUM
mechanism (see Section 12.1.1.2) and would require more encoding space in the PTE.

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 133

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The G bit designates a global mapping. Global mappings are those that exist in all address spaces. For
non-leaf PTEs, the global setting implies that all mappings in the subsequent levels of the page table
are global. Note that failing to mark a global mapping as global merely reduces performance, whereas
marking a non-global mapping as global is a software bug that, after switching to an address space
with a different non-global mapping for that address range, can unpredictably result in either mapping
being used.


Global mappings need not be stored redundantly in address-translation caches for
multiple ASIDs. Additionally, they need not be flushed from local address-translation
caches when an SFENCE.VMA instruction is executed with rs2≠x0.

The RSW field is reserved for use by supervisor software; the implementation shall ignore this field.

Each leaf PTE contains an accessed (A) and dirty (D) bit. The A bit indicates the virtual page has been
read, written, or fetched from since the last time the A bit was cleared. The D bit indicates the virtual
page has been written since the last time the D bit was cleared.

Two schemes to manage the A and D bits are defined:

⚫ The Svade extension: when a virtual page is accessed and the A bit is clear, or is written and the D
bit is clear, a page-fault exception is raised.

⚫ When the Svade extension is not implemented, the following scheme applies.

When a virtual page is accessed and the A bit is clear, the PTE is updated to set the A bit. When
the virtual page is written and the D bit is clear, the PTE is updated to set the D bit. When G-stage
address translation is in use and is not Bare, the G-stage virtual pages may be accessed or written
by implicit accesses to VS-level memory management data structures, such as page tables.

When two-stage address translation is in use, an explicit access may cause both VS-stage and G-
stage PTEs to be updated. The following rules apply to all PTE updates caused by an explicit or an
implicit memory accesses.

The PTE update must be atomic with respect to other accesses to the PTE, and must atomically
perform all tablewalk checks for that leaf PTE as part of, and before, conditionally updating the PTE
value. Updates of the A bit may be performed as a result of speculation, even if the associated
memory access ultimately is not performed architecturally. However, updates to the D bit, resulting
from an explicit store, must be exact (i.e., non-speculative), and observed in program order by the
local hart. When two-stage address translation is active, updates to the D bit in G-stage PTEs may
be performed by an implicit access to a VS-stage PTE, if the G-stage PTE provides write
permission, before any speculative access to the VS-stage PTE.

The PTE update must appear in the global memory order before the memory access that caused
the PTE update and before any subsequent explicit memory access to that virtual page by the local
hart. The ordering on loads and stores provided by FENCE instructions and the acquire/release bits
on atomic instructions also orders the PTE updates associated with those loads and stores as
observed by remote harts.

The PTE update is not required to be atomic with respect to the memory access that caused the
update and a trap may occur between the PTE update and the memory access that caused the PTE
update. If a trap occurs then the A and/or D bit may be updated but the memory access that
caused the PTE update might not occur. The hart must not perform the memory access that caused

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 134

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

the PTE update before the PTE update is globally visible.

The page tables must be located in memory with hardware page-table write access and
RsrvEventual PMA.

All harts in a system must employ the same PTE-update scheme as each other.



The PTE updates due to memory accesses ordered-after a FENCE are not themselves
ordered by the FENCE.

Simpler implementations may order the Page Table Entry (PTE) update to precede all
subsequent explicit memory accesses, as opposed to ensuring that the PTE update is
precisely sequenced before subsequent explicit memory accesses to the associated
virtual page.

Prior versions of this specification required PTE A bit updates to be exact, but
allowing the A bit to be updated as a result of speculation simplifies the
implementation of address translation prefetchers. System software typically uses
the A bit as a page replacement policy hint, but does not require exactness for
functional correctness. On the other hand, D bit updates are still required to be exact
and performed in program order, as the D bit affects the functional correctness of
page eviction.

Implementations are of course still permitted to perform both A and D bit updates
only in an exact manner.

In both cases, requiring atomicity ensures that the PTE update will not be interrupted
by other intervening writes to the page table, as such interruptions could lead to A/D
bits being set on PTEs that have been reused for other purposes, on memory that has
been reclaimed for other purposes, and so on. Simple implementations may instead
generate page-fault exceptions.

The A and D bits are never cleared by the implementation. If the supervisor software
does not rely on accessed and/or dirty bits, e.g. if it does not swap memory pages to
secondary storage or if the pages are being used to map I/O space, it should always
set them to 1 in the PTE to improve performance.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv32 supports 4 MiB megapages. A
megapage must be virtually and physically aligned to a 4 MiB boundary; a page-fault exception is
raised if the physical address is insufficiently aligned.

For non-leaf PTEs, the D, A, and U bits are reserved for future standard use. Until their use is defined
by a standard extension, they must be cleared by software for forward compatibility.

For implementations with both page-based virtual memory and the "A" standard extension, the LR/SC
reservation set must lie completely within a single base physical page (i.e., a naturally aligned 4 KiB
physical-memory region).

On some implementations, misaligned loads, stores, and instruction fetches may also be decomposed
into multiple accesses, some of which may succeed before a page-fault exception occurs. In particular,
a portion of a misaligned store that passes the exception check may become visible, even if another
portion fails the exception check. The same behavior may manifest for stores wider than XLEN bits
(e.g., the FSD instruction in RV32D), even when the store address is naturally aligned.

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 135

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

12.3.2. Virtual Address Translation Process

A virtual address va is translated into a physical address pa as follows:

1. Let a be satp.ppn×PAGESIZE, and let i=LEVELS-1. (For Sv32, PAGESIZE=212 and LEVELS=2.) The
satp register must be active, i.e., the effective privilege mode must be S-mode or U-mode.

2. Let pte be the value of the PTE at address a+va.vpn[i]×PTESIZE. (For Sv32, PTESIZE=4.) If
accessing pte violates a PMA or PMP check, raise an access-fault exception corresponding to the
original access type.

3. If pte.v=0, or if pte.r=0 and pte.w=1, or if any bits or encodings that are reserved for future
standard use are set within pte, stop and raise a page-fault exception corresponding to the original
access type.

4. Otherwise, the PTE is valid. If pte.r=1 or pte.x=1, go to step 5. Otherwise, this PTE is a pointer to the
next level of the page table. Let i=i-1. If i<0, stop and raise a page-fault exception corresponding
to the original access type. Otherwise, let a=pte.ppn×PAGESIZE and go to step 2.

5. A leaf PTE has been reached. If i>0 and pte.ppn[i-1:0] ≠ 0, this is a misaligned superpage; stop
and raise a page-fault exception corresponding to the original access type.

6. Determine if the requested memory access is allowed by the pte.u bit, given the current privilege
mode and the value of the SUM and MXR fields of the mstatus register. If not, stop and raise a
page-fault exception corresponding to the original access type.

7. Determine if the requested memory access is allowed by the pte.r, pte.w, and pte.x bits, given the
Shadow Stack Memory Protection rules. If not, stop and raise an access-fault exception.

8. Determine if the requested memory access is allowed by the pte.r, pte.w, and pte.x bits. If not, stop
and raise a page-fault exception corresponding to the original access type.

9. If pte.a=0, or if the original memory access is a store and pte.d=0:

⚫ If the Svade extension is implemented, stop and raise a page-fault exception corresponding to
the original access type.

⚫ If a store to pte would violate a PMA or PMP check, raise an access-fault exception
corresponding to the original access type.

⚫ Perform the following steps atomically:

■ Compare pte to the value of the PTE at address a+va.vpn[i]×PTESIZE.

■ If the values match, set pte.a to 1 and, if the original memory access is a store, also set pte
.d to 1.

■ If the comparison fails, return to step 2.

10. The translation is successful. The translated physical address is given as follows:

⚫ pa.pgoff = va.pgoff.

⚫ If i>0, then this is a superpage translation and pa.ppn[i-1:0] = va.vpn[i-1:0].

⚫ pa.ppn[LEVELS-1:i] = pte.ppn[LEVELS-1:i].

All implicit accesses to the address-translation data structures in this algorithm are performed using
width PTESIZE.


This implies, for example, that an Sv48 implementation may not use two separate 4B
reads to non-atomically access a single 8B PTE, and that A/D bit updates performed

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 136

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

by the implementation are treated as atomically updating the entire PTE, rather than
just the A and/or D bit alone (even though the PTE value does not otherwise change).

The results of implicit address-translation reads in step 2 may be held in a read-only, incoherent
address-translation cache but not shared with other harts. The address-translation cache may hold an
arbitrary number of entries, including an arbitrary number of entries for the same address and ASID.
Entries in the address-translation cache may then satisfy subsequent step 2 reads if the ASID
associated with the entry matches the ASID loaded in step 0 or if the entry is associated with a global
mapping. To ensure that implicit reads observe writes to the same memory locations, an SFENCE.VMA
instruction must be executed after the writes to flush the relevant cached translations.

The address-translation cache cannot be used in step 7; accessed and dirty bits may only be updated
in memory directly.



It is permitted for multiple address-translation cache entries to co-exist for the same
address. This represents the fact that in a conventional TLB hierarchy, it is possible
for multiple entries to match a single address if, for example, a page is upgraded to a
superpage without first clearing the original non-leaf PTE’s valid bit and executing an
SFENCE.VMA with rs1=x0, or if multiple TLBs exist in parallel at a given level of the
hierarchy. In this case, just as if an SFENCE.VMA is not executed between a write to
the memory-management tables and subsequent implicit read of the same address:
it is unpredictable whether the old non-leaf PTE or the new leaf PTE is used, but the
behavior is otherwise well defined.

Implementations may also execute the address-translation algorithm speculatively at any time, for any
virtual address, as long as satp is active (as defined in Section 12.1.11). Such speculative executions
have the effect of pre-populating the address-translation cache.

Speculative executions of the address-translation algorithm behave as non-speculative executions of
the algorithm do, except that they must not set the dirty bit for a PTE, they must not trigger an
exception, and they must not create address-translation cache entries if those entries would have been
invalidated by any SFENCE.VMA instruction executed by the hart since the speculative execution of the
algorithm began.



For instance, it is illegal for both non-speculative and speculative executions of the
translation algorithm to begin, read the level 2 page table, pause while the hart
executes an SFENCE.VMA with rs1=rs2=x0, then resume using the now-stale level 2
PTE, as subsequent implicit reads could populate the address-translation cache with
stale PTEs.

In many implementations, an SFENCE.VMA instruction with rs1=x0 will therefore
either terminate all previously-launched speculative executions of the address-
translation algorithm (for the specified ASID, if applicable), or simply wait for them to
complete (in which case any address-translation cache entries created will be
invalidated by the SFENCE.VMA as appropriate). Likewise, an SFENCE.VMA
instruction with rs1≠x0 generally must either ensure that previously-launched
speculative executions of the address-translation algorithm (for the specified ASID, if
applicable) are prevented from creating new address-translation cache entries
mapping leaf PTEs, or wait for them to complete.

A consequence of implementations being permitted to read the translation data
structures arbitrarily early and speculatively is that at any time, all page table entries

12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems | Page 137

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

reachable by executing the algorithm may be loaded into the address-translation
cache.

Although it would be uncommon to place page tables in non-idempotent memory,
there is no explicit prohibition against doing so. Since the algorithm may only touch
page tables reachable from the root page table indicated in satp, the range of
addresses that an implementation’s page table walker will touch is fully under
supervisor control.

The algorithm does not admit the possibility of ignoring high-order PPN bits for
implementations with narrower physical addresses.

12.4. Sv39: Page-Based 39-bit Virtual-Memory System

This section describes a simple paged virtual-memory system for SXLEN=64, which supports 39-bit
virtual address spaces. The design of Sv39 follows the overall scheme of Sv32, and this section details
only the differences between the schemes.



We specified multiple virtual memory systems for RV64 to relieve the tension
between providing a large address space and minimizing address-translation cost.
For many systems, 39 bits of virtual-address space is ample, and so Sv39 suffices.
Sv48 increases the virtual address space to 48 bits, but increases the physical
memory capacity dedicated to page tables, the latency of page-table traversals, and
the size of hardware structures that store virtual addresses. Sv57 increases the
virtual address space, page table capacity requirement, and translation latency even
further.

12.4.1. Addressing and Memory Protection

Sv39 implementations support a 39-bit virtual address space, divided into pages. An Sv39 address is
partitioned as shown in Figure 68. Instruction fetch addresses and load and store effective addresses,
which are 64 bits, must have bits 63–39 all equal to bit 38, or else a page-fault exception will occur.
The 27-bit VPN is translated into a 44-bit PPN via a three-level page table, while the 12-bit page offset
is untranslated.



When mapping between narrower and wider addresses, RISC-V zero-extends a
narrower physical address to a wider size. The mapping between 64-bit virtual
addresses and the 39-bit usable address space of Sv39 is not based on zero
extension but instead follows an entrenched convention that allows an OS to use one
or a few of the most-significant bits of a full-size (64-bit) virtual address to quickly
distinguish user and supervisor address regions.

38 30 29 21 20 12 11 0
VPN[2] VPN[1] VPN[0] page offset

9 9 9 12

Figure 68. Sv39 virtual address.

12.4. Sv39: Page-Based 39-bit Virtual-Memory System | Page 138

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

55 30 29 21 20 12 11 0
PPN[2] PPN[1] PPN[0] page offset

26 9 9 12

Figure 69. Sv39 physical address.

63 62 61 60 54 53 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0
N PBMT Reserved PPN[2] PPN[1] PPN[0] RSW D A G U X W R V
1 2 7 26 9 9 2 1 1 1 1 1 1 1 1

Figure 70. Sv39 page table entry.

Sv39 page tables contain 29 page table entries (PTEs), eight bytes each. A page table is exactly the
size of a page and must always be aligned to a page boundary. The physical page number of the root
page table is stored in the satp register’s PPN field.

The PTE format for Sv39 is shown in Figure 70. Bits 9-0 have the same meaning as for Sv32. Bit 63 is
reserved for use by the Svnapot extension in Chapter 13. If Svnapot is not implemented, bit 63 remains
reserved and must be zeroed by software for forward compatibility, or else a page-fault exception is
raised. Bits 62-61 are reserved for use by the Svpbmt extension in Chapter 14. If Svpbmt is not
implemented, bits 62-61 remain reserved and must be zeroed by software for forward compatibility, or
else a page-fault exception is raised. Bits 60-54 are reserved for future standard use and, until their
use is defined by some standard extension, must be zeroed by software for forward compatibility. If
any of these bits are set, a page-fault exception is raised.



We reserved several PTE bits for a possible extension that improves support for
sparse address spaces by allowing page-table levels to be skipped, reducing memory
usage and TLB refill latency. These reserved bits may also be used to facilitate
research experimentation. The cost is reducing the physical address space, but is
presently ample. When it no longer suffices, the reserved bits that remain
unallocated could be used to expand the physical address space.

Any level of PTE may be a leaf PTE, so in addition to 4 KiB pages, Sv39 supports 2 MiB megapages
and 1 GiB gigapages, each of which must be virtually and physically aligned to a boundary equal to its
size. A page-fault exception is raised if the physical address is insufficiently aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 12.3.2, except
LEVELS equals 3 and PTESIZE equals 8.

12.5. Sv48: Page-Based 48-bit Virtual-Memory System

This section describes a simple paged virtual-memory system for SXLEN=64, which supports 48-bit
virtual address spaces. Sv48 is intended for systems for which a 39-bit virtual address space is
insufficient. It closely follows the design of Sv39, simply adding an additional level of page table, and
so this chapter only details the differences between the two schemes.

Implementations that support Sv48 must also support Sv39.


Systems that support Sv48 can also support Sv39 at essentially no cost, and so
should do so to maintain compatibility with supervisor software that assumes Sv39.

12.5. Sv48: Page-Based 48-bit Virtual-Memory System | Page 139

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

12.5.1. Addressing and Memory Protection

Sv48 implementations support a 48-bit virtual address space, divided into pages. An Sv48 address is
partitioned as shown in Figure 71. Instruction fetch addresses and load and store effective addresses,
which are 64 bits, must have bits 63–48 all equal to bit 47, or else a page-fault exception will occur.
The 36-bit VPN is translated into a 44-bit PPN via a four-level page table, while the 12-bit page offset
is untranslated.

47 39 38 30 29 21 20 12 11 0
VPN[3] VPN[2] VPN[1] VPN[0] page offset

9 9 9 9 12

Figure 71. Sv48 virtual address.

55 39 38 30 29 21 20 12 11 0
PPN[3] PPN[2] PPN[1] PPN[0] page offset

17 9 9 9 12

Figure 72. Sv48 physical address.

63 62 61 60 54 53 37 36 28 27 19 18 10 9 8 7 6 5 4 3 2 1 0
N PBMT Reserved PPN[3] PPN[2] PPN[1] PPN[0] RSW D A G U X W R V
1 2 7 17 9 9 9 2 1 1 1 1 1 1 1 1

Figure 73. Sv48 page table entry.

The PTE format for Sv48 is shown in Figure 73. Bits 63-54 and 9-0 have the same meaning as for
Sv39. Any level of PTE may be a leaf PTE, so in addition to pages, Sv48 supports megapages,
gigapages, and terapages, each of which must be virtually and physically aligned to a boundary equal
to its size. A page-fault exception is raised if the physical address is insufficiently aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 12.3.2, except
LEVELS equals 4 and PTESIZE equals 8.

12.6. Sv57: Page-Based 57-bit Virtual-Memory System

This section describes a simple paged virtual-memory system designed for RV64 systems, which
supports 57-bit virtual address spaces. Sv57 is intended for systems for which a 48-bit virtual address
space is insufficient. It closely follows the design of Sv48, simply adding an additional level of page
table, and so this chapter only details the differences between the two schemes.

Implementations that support Sv57 must also support Sv48.


Systems that support Sv57 can also support Sv48 at essentially no cost, and so
should do so to maintain compatibility with supervisor software that assumes Sv48.

12.6.1. Addressing and Memory Protection

Sv57 implementations support a 57-bit virtual address space, divided into pages. An Sv57 address is
partitioned as shown in Figure 74. Instruction fetch addresses and load and store effective addresses,
which are 64 bits, must have bits 63–57 all equal to bit 56, or else a page-fault exception will occur.
The 45-bit VPN is translated into a 44-bit PPN via a five-level page table, while the 12-bit page offset
is untranslated.

12.6. Sv57: Page-Based 57-bit Virtual-Memory System | Page 140

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

56 48 47 39 38 30 29 21 20 12 11 0
VPN[4] VPN[3] VPN[2] VPN[1] VPN[0] page offset

9 9 9 9 9 12

Figure 74. Sv57 virtual address.

55 48 47 39 38 30 29 21 20 12 11 0
PPN[4] PPN[3] PPN[2] PPN[1] PPN[0] page offset

8 9 9 9 9 12

Figure 75. Sv57 physical address.

63 62 61 60 54 53 10 9 8 7 6 5 4 3 2 1 0
N PBMT Reserved PPN RSW D A G U X W R V
1 2 7 44 2 1 1 1 1 1 1 1 1

53 46 45 37 36 28 27 19 18 10
PPN[4] PPN[3] PPN[2] PPN[1] PPN[0]

8 9 9 9 9

Figure 76. Sv57 page table entry.

The PTE format for Sv57 is shown in Figure 76. Bits 63–54 and 9–0 have the same meaning as for
Sv39. Any level of PTE may be a leaf PTE, so in addition to pages, Sv57 supports megapages,
gigapages, terapages, and petapages, each of which must be virtually and physically aligned to a
boundary equal to its size. A page-fault exception is raised if the physical address is insufficiently
aligned.

The algorithm for virtual-to-physical address translation is the same as in Section 12.3.2, except
LEVELS equals 5 and PTESIZE equals 8.

12.6. Sv57: Page-Based 57-bit Virtual-Memory System | Page 141

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 13. "Svnapot" Extension for NAPOT Translation
Contiguity, Version 1.0

In Sv39, Sv48, and Sv57, when a PTE has N=1, the PTE represents a translation that is part of a range
of contiguous virtual-to-physical translations with the same values for PTE bits 5–0. Such ranges must
be of a naturally aligned power-of-2 (NAPOT) granularity larger than the base page size.

The Svnapot extension depends on Sv39.

Table 36. Page table entry encodings when pte.N=1

i pte.ppn[i] Description pte.napot_bits

0
0
0
0
0
≥1

x xxxx xxx1
x xxxx xx1x
x xxxx x1xx
x xxxx 1000
x xxxx 0xxx
x xxxx xxxx

Reserved
Reserved
Reserved
64 KiB contiguous region
Reserved
Reserved

-
-
-
4
-
-

NAPOT PTEs behave identically to non-NAPOT PTEs within the address-translation algorithm in
Section 12.3.2, except that:

⚫ If the encoding in pte is valid according to Table 36, then instead of returning the original value of
pte, implicit reads of a NAPOT PTE return a copy of pte in which pte.ppn[i][pte.napot_bits-1:0] is
replaced by vpn[i][pte.napot_bits-1:0]. If the encoding in pte is reserved according to Table 36,
then a page-fault exception must be raised.

⚫ Implicit reads of NAPOT page table entries may create address-translation cache entries mapping
a + j×PTESIZE to a copy of pte in which pte.ppn[i][pte.napot_bits-1:0] is replaced by
vpn[i][pte.napot_bits-1:0], for any or all j such that j >> napot_bits = vpn[i] >> napot_bits, all for the
address space identified in satp as loaded by step 1.



The motivation for a NAPOT PTE is that it can be cached in a TLB as one or more
entries representing the contiguous region as if it were a single (large) page covered
by a single translation. This compaction can help relieve TLB pressure in some
scenarios. The encoding is designed to fit within the pre-existing Sv39, Sv48, and
Sv57 PTE formats so as not to disrupt existing implementations or designs that
choose not to implement the scheme. It is also designed so as not to complicate the
definition of the address-translation algorithm.

The address translation cache abstraction captures the behavior that would result
from the creation of a single TLB entry covering the entire NAPOT region. It is also
designed to be consistent with implementations that support NAPOT PTEs by
splitting the NAPOT region into TLB entries covering any smaller power-of-two region
sizes. For example, a 64 KiB NAPOT PTE might trigger the creation of 16 standard 4
KiB TLB entries, all with contents generated from the NAPOT PTE (even if the PTEs
for the other 4 KiB regions have different contents).

In typical usage scenarios, NAPOT PTEs in the same region will have the same
attributes, same PPNs, and same values for bits 5-0. RSW remains reserved for
supervisor software control. It is the responsibility of the OS and/or hypervisor to
configure the page tables in such a way that there are no inconsistencies between
NAPOT PTEs and other NAPOT or non-NAPOT PTEs that overlap the same address

Chapter 13. "Svnapot" Extension for NAPOT Translation Contiguity, Version 1.0 | Page 142

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

range. If an update needs to be made, the OS generally should first mark all of the
PTEs invalid, then issue SFENCE.VMA instruction(s) covering all 4 KiB regions within
the range (either via a single SFENCE.VMA with rs1=x0, or with multiple SFENCE.VMA
instructions with rs1≠x0), then update the PTE(s), as described in Section 12.2.1,
unless any inconsistencies are known to be benign. If any inconsistencies do exist,
then the effect is the same as when SFENCE.VMA is used incorrectly: one of the
translations will be chosen, but the choice is unpredictable.

If an implementation chooses to use a NAPOT PTE (or cached version thereof), it
might not consult the PTE directly specified by the algorithm in Section 12.3.2 at all.
Therefore, the D and A bits may not be identical across all mappings of the same
address range even in typical use cases The operating system must query all NAPOT
aliases of a page to determine whether that page has been accessed and/or is dirty.
If the OS manually sets the A and/or D bits for a page, it is recommended that the
OS also set the A and/or D bits for other NAPOT aliases as appropriate in order to
avoid unnecessary traps.

Just as with normal PTEs, TLBs are permitted to cache NAPOT PTEs whose V (Valid)
bit is clear.

Depending on need, the NAPOT scheme may be extended to other intermediate page
sizes and/or to other levels of the page table in the future. The encoding is designed
to accommodate other NAPOT sizes should that need arise. For example:

__

i pte.ppn[i] Description pte.napot_bits

0
0
0
0
0
…
1
1
…

x xxxx xxx1
x xxxx xx10
x xxxx x100
x xxxx 1000
x xxx1 0000

…
x xxxx xxx1
x xxxx xx10

…

8 KiB contiguous region
16 KiB contiguous region
32 KiB contiguous region
64 KiB contiguous region
128 KiB contiguous region
…
4 MiB contiguous region
8 MiB contiguous region
…

1
2
3
4
5
…
1
2
…

In such a case, an implementation may or may not support all options. The
discoverability mechanism for this extension would be extended to allow system
software to determine which sizes are supported.

Other sizes may remain deliberately excluded, so that PPN bits not being used to
indicate a valid NAPOT region size (e.g., the least-significant bit of pte.ppn[i]) may be
repurposed for other uses in the future.

However, in case finer-grained intermediate page size support proves not to be
useful, we have chosen to standardize only 64 KiB support as a first step.

Chapter 13. "Svnapot" Extension for NAPOT Translation Contiguity, Version 1.0 | Page 143

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 14. "Svpbmt" Extension for Page-Based Memory Types,
Version 1.0

In Sv39, Sv48, and Sv57, bits 62-61 of a leaf page table entry indicate the use of page-based memory
types that override the PMA(s) for the associated memory pages. The encoding for the PBMT bits is
captured in Table 37.

The Svpbmt extension depends on Sv39.

Table 37. Encodings for PBMT field in Sv39, Sv48, and Sv57 PTEs.

Mode Value Requested Memory Attributes

PMA
NC
IO
-

0
1
2
3

None
Non-cacheable, idempotent, weakly-ordered (RVWMO), main memory
Non-cacheable, non-idempotent, strongly-ordered (I/O ordering), I/O
Reserved for future standard use

Implementations may override additional PMAs not explicitly listed in Table 37. For example, to be
consistent with the characteristics of a typical I/O region, a misaligned memory access to a page with
PBMT=IO might raise an exception, even if the underlying region were main memory and the same
access would have succeeded for PBMT=PMA.


Future extensions may provide more and/or finer-grained control over which PMAs
can be overridden.

For non-leaf PTEs, bits 62-61 are reserved for future standard use. Until their use is defined by a
standard extension, they must be cleared by software for forward compatibility, or else a page-fault
exception is raised.

For leaf PTEs, setting bits 62-61 to the value 3 is reserved for future standard use. Until this value is
defined by a standard extension, using this reserved value in a leaf PTE raises a page-fault exception.

When PBMT settings override a main memory page into I/O or vice versa, memory accesses to such
pages obey the memory ordering rules of the final effective attribute, as follows.

If the underlying physical memory attribute for a page is I/O, and the page has PBMT=NC, then
accesses to that page obey RVWMO. However, accesses to such pages are considered to be both I/O
and main memory accesses for the purposes of FENCE, .aq, and .rl.

If the underlying physical memory attribute for a page is main memory, and the page has PBMT=IO,
then accesses to that page obey strong channel 0 I/O ordering rules. However, accesses to such pages
are considered to be both I/O and main memory accesses for the purposes of FENCE, .aq, and .rl.



A device driver written to rely on I/O strong ordering rules will not operate correctly if
the address range is mapped with PBMT=NC. As such, this configuration is
discouraged.

It will often still be useful to map physical I/O regions using PBMT=NC so that write
combining and speculative accesses can be performed. Such optimizations will likely
improve performance when applied with adequate care.

When Svpbmt is used with non-zero PBMT encodings, it is possible for multiple virtual aliases of the
same physical page to exist simultaneously with different memory attributes. It is also possible for a

Chapter 14. "Svpbmt" Extension for Page-Based Memory Types, Version 1.0 | Page 144

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

U-mode or S-mode mapping through a PTE with Svpbmt enabled to observe different memory
attributes for a given region of physical memory than a concurrent access to the same page performed
by M-mode or when MODE=Bare. In such cases, the behaviors dictated by the attributes (including
coherence, which is otherwise unaffected) may be violated.

Accessing the same location using different attributes that are both non-cacheable (e.g., NC and IO)
does not cause loss of coherence, but might result in weaker memory ordering than the stricter
attribute ordinarily guarantees. Executing a fence iorw, iorw instruction between such accesses
suffices to prevent loss of memory ordering.

Accessing the same location using different cacheability attributes may cause loss of coherence.
Executing the following sequence between such accesses prevents both loss of coherence and loss of
memory ordering: fence iorw, iorw, followed by cbo.flush to an address of that location, followed by a
fence iorw, iorw.



It follows that, if the same location might later be referenced using the original
attributes, then this sequence must be repeated beforehand.

In certain cases, a weaker sequence might suffice to prevent loss of coherence.
These situations will be detailed following the forthcoming formalization of the
interaction of the RVWMO memory model with the instructions in the Zicbom
extension.

When two-stage address translation is enabled within the H extension, the page-based memory types
are also applied in two stages. First, if hgatp.MODE is not equal to zero, non-zero G-stage PTE PBMT
bits override the attributes in the PMA to produce an intermediate set of attributes. Otherwise, the
PMAs serve as the intermediate attributes. Second, if vsatp.MODE is not equal to zero, non-zero VS-
stage PTE PBMT bits override the intermediate attributes to produce the final set of attributes used by
accesses to the page in question. Otherwise, the intermediate attributes are used as the final set of
attributes.



These final attributes apply to implicit and explicit accesses that are subject to both
stages of address translation. For accesses that are not subject to the first stage of
address translation, e.g. VS-stage page-table accesses, the intermediate attributes
apply instead.

Chapter 14. "Svpbmt" Extension for Page-Based Memory Types, Version 1.0 | Page 145

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 15. "Svinval" Extension for Fine-Grained Address-
Translation Cache Invalidation, Version 1.0

The Svinval extension splits SFENCE.VMA, HFENCE.VVMA, and HFENCE.GVMA instructions into finer-
grained invalidation and ordering operations that can be more efficiently batched or pipelined on
certain classes of high-performance implementation.

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
vaddr

5
asid

7
SINVAL.VMA

The SINVAL.VMA instruction invalidates any address-translation cache entries that an SFENCE.VMA
instruction with the same values of rs1 and rs2 would invalidate. However, unlike SFENCE.VMA,
SINVAL.VMA instructions are only ordered with respect to SFENCE.VMA, SFENCE.W.INVAL, and
SFENCE.INVAL.IR instructions as defined below.

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
0

5
0

7
SFENCE.W.INVAL

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
0

5
1

7
SFENCE.INVAL.IR

The SFENCE.W.INVAL instruction guarantees that any previous stores already visible to the current
RISC-V hart are ordered before subsequent SINVAL.VMA instructions executed by the same hart. The
SFENCE.INVAL.IR instruction guarantees that any previous SINVAL.VMA instructions executed by the
current hart are ordered before subsequent implicit references by that hart to the memory-
management data structures.

When executed in order (but not necessarily consecutively) by a single hart, the sequence
SFENCE.W.INVAL, SINVAL.VMA, and SFENCE.INVAL.IR has the same effect as a hypothetical
SFENCE.VMA instruction in which:

⚫ the values of rs1 and rs2 for the SFENCE.VMA are the same as those used in the SINVAL.VMA,

⚫ reads and writes prior to the SFENCE.W.INVAL are considered to be those prior to the
SFENCE.VMA, and

⚫ reads and writes following the SFENCE.INVAL.IR are considered to be those subsequent to the
SFENCE.VMA.

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
vaddr

5
asid

7
HINVAL.VVMA

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM

5
0

3
PRIV

5
gaddr

5
vmid

7
HINVAL.GVMA

If the hypervisor extension is implemented, the Svinval extension also provides two additional

Chapter 15. "Svinval" Extension for Fine-Grained Address-Translation Cache Invalidation, Version 1.0 | Page 146

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

instructions: HINVAL.VVMA and HINVAL.GVMA. These have the same semantics as SINVAL.VMA,
except that they combine with SFENCE.W.INVAL and SFENCE.INVAL.IR to replace HFENCE.VVMA and
HFENCE.GVMA, respectively, instead of SFENCE.VMA. In addition, HINVAL.GVMA uses VMIDs instead
of ASIDs.

SINVAL.VMA, HINVAL.VVMA, and HINVAL.GVMA require the same permissions and raise the same
exceptions as SFENCE.VMA, HFENCE.VVMA, and HFENCE.GVMA, respectively. In particular, an attempt
to execute any of these instructions in U-mode always raises an illegal-instruction exception, and an
attempt to execute SINVAL.VMA or HINVAL.GVMA in S-mode or HS-mode when mstatus.TVM=1 also
raises an illegal-instruction exception. An attempt to execute HINVAL.VVMA or HINVAL.GVMA in VS-
mode or VU-mode, or to execute SINVAL.VMA in VU-mode, raises a virtual-instruction exception. When
hstatus.VTVM=1, an attempt to execute SINVAL.VMA in VS-mode also raises a virtual instruction
exception.

Attempting to execute SFENCE.W.INVAL or SFENCE.INVAL.IR in U-mode raises an illegal-instruction
exception. Doing so in VU-mode raises a virtual-instruction exception. SFENCE.W.INVAL and
SFENCE.INVAL.IR are unaffected by the mstatus.TVM and hstatus.VTVM fields and hence are always
permitted in S-mode and VS-mode.



SFENCE.W.INVAL and SFENCE.INVAL.IR instructions do not need to be trapped
when mstatus.TVM=1 or when hstatus.VTVM=1, as they only have ordering effects but
no visible side effects. Trapping of the SINVAL.VMA instruction is sufficient to enable
emulation of the intended overall TLB maintenance functionality.

In typical usage, software will invalidate a range of virtual addresses in the address-
translation caches by executing an SFENCE.W.INVAL instruction, executing a series
of SINVAL.VMA, HINVAL.VVMA, or HINVAL.GVMA instructions to the addresses (and
optionally ASIDs or VMIDs) in question, and then executing an SFENCE.INVAL.IR
instruction.

High-performance implementations will be able to pipeline the address-translation
cache invalidation operations, and will defer any pipeline stalls or other memory
ordering enforcement until an SFENCE.W.INVAL, SFENCE.INVAL.IR, SFENCE.VMA,
HFENCE.GVMA, or HFENCE.VVMA instruction is executed.

Simpler implementations may implement SINVAL.VMA, HINVAL.VVMA, and
HINVAL.GVMA identically to SFENCE.VMA, HFENCE.VVMA, and HFENCE.GVMA,
respectively, while implementing SFENCE.W.INVAL and SFENCE.INVAL.IR
instructions as no-ops.

Chapter 15. "Svinval" Extension for Fine-Grained Address-Translation Cache Invalidation, Version 1.0 | Page 147

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 16. "Svadu" Extension for Hardware Updating of A/D
Bits, Version 1.0

The Svadu extension adds support and CSR controls for hardware updating of PTE A/D bits.

If the Svadu extension is implemented, the menvcfg.ADUE field is writable. If the hypervisor extension is
additionally implemented, the henvcfg.ADUE field is also writable. See Section 3.1.18 and Section 21.2.5
for the definitions of those fields.

Section 12.3.1 defines the semantics of hardware updating of A/D bits. When hardware updating of A/D
bits is disabled, the Svade extension, which mandates exceptions when A/D bits need be set, instead
takes effect. The Svade extension is also defined in Section 12.3.1.

Chapter 16. "Svadu" Extension for Hardware Updating of A/D Bits, Version 1.0 | Page 148

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 17. "Svvptc" Extension for Obviating Memory-
Management Instructions after Marking PTEs Valid, Version 1.0

When the Svvptc extension is implemented, explicit stores by a hart that update the Valid bit of leaf
and/or non-leaf PTEs from 0 to 1 and are visible to a hart will eventually become visible within a
bounded timeframe to subsequent implicit accesses by that hart to such PTEs.



Svvptc relieves an operating system from executing certain memory-management
instructions, such as SFENCE.VMA or SINVAL.VMA, which would normally be used to
synchronize the hart’s address-translation caches when a memory-resident PTE is
changed from Invalid to Valid. Synchronizing the hart’s address-translation caches
with other forms of updates to a memory-resident PTE, including when a PTE is
changed from Valid to Invalid, requires the use of suitable memory-management
instructions. Svvptc guarantees that a change to a PTE from Invalid to Valid is made
visible within a bounded time, thereby making the execution of these memory-
management instructions redundant. The performance benefit of eliding these
instructions outweighs the cost of an occasional gratuitous additional page fault that
may occur.

Depending on the microarchitecture, some possible ways to facilitate implementation
of Svvptc include: not having any address-translation caches, not storing Invalid PTEs
in the address-translation caches, automatically evicting Invalid PTEs using a
bounded timer, or making address-translation caches coherent with store
instructions that modify PTEs.

Chapter 17. "Svvptc" Extension for Obviating Memory-Management Instructions after Marking PTEs Valid, Version 1.0 | Page

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 18. "Ssqosid" Extension for Quality-of-Service (QoS)
Identifiers, Version 1.0

Quality of Service (QoS) is defined as the minimal end-to-end performance guaranteed in advance by
a service level agreement (SLA) to a workload. Performance metrics might include measures such as
instructions per cycle (IPC), latency of service, etc.

When multiple workloads execute concurrently on modern processors—equipped with large core
counts, multiple cache hierarchies, and multiple memory controllers—the performance of any given
workload becomes less deterministic, or even non-deterministic, due to shared resource contention.

To manage performance variability, system software needs resource allocation and monitoring
capabilities. These capabilities allow for the reservation of resources like cache and bandwidth, thus
meeting individual performance targets while minimizing interference. For resource management,
hardware should provide monitoring features that allow system software to profile workload resource
consumption and allocate resources accordingly.

To facilitate this, the QoS Identifiers extension (Ssqosid) introduces the srmcfg register, which
configures a hart with two identifiers: a Resource Control ID (RCID) and a Monitoring Counter ID (MCID).
These identifiers accompany each request issued by the hart to shared resource controllers.

Additional metadata, like the nature of the memory access and the ID of the originating supervisor
domain, can accompany RCID and MCID. Resource controllers may use this metadata for differentiated
service such as a different capacity allocation for code storage vs. data storage. Resource controllers
can use this data for security policies such as not exposing statistics of one security domain to
another.

These identifiers are crucial for the RISC-V Capacity and Bandwidth Controller QoS Register Interface
(CBQRI) specification, which provides methods for setting resource usage limits and monitoring
resource consumption. The RCID controls resource allocations, while the MCID is used for tracking
resource usage.

 The Ssqosid extension does not require that S-mode mode be implemented.

18.1. Supervisor Resource Management Configuration (srmcfg) register

The srmcfg register is an SXLEN-bit read/write register used to configure a Resource Control ID (RCID)
and a Monitoring Counter ID (MCID). Both RCID and MCID are WARL fields. The register is formatted as
shown in Figure 77 when SXLEN=64 and Figure 78 when SXLEN=32.

The RCID and MCID accompany each request made by the hart to shared resource controllers. The RCID is
used to determine the resource allocations (e.g., cache occupancy limits, memory bandwidth limits,
etc.) to enforce. The MCID is used to identify a counter to monitor resource usage.

Figure 77. Supervisor Resource Management Configuration (srmcfg) register for SXLEN=64

18.1. Supervisor Resource Management Configuration (srmcfg) register | Page 150

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Figure 78. Supervisor Resource Management Configuration (srmcfg) register for SXLEN=32

The RCID and MCID configured in the srmcfg CSR apply to all privilege modes of software execution on
that hart by default, but this behavior may be overridden by future extensions.

If extension Smstateen is implemented together with Ssqosid, then Ssqosid also requires the P1P14
bit in mstateen0 to be implemented. If P1P14 of mstateen0 is 0, attempts to access srmcfg in privilege
modes less privileged than M-mode raise an illegal-instruction exception. If P1P14 bit of mstateen0 is 1
or if extension Smstateen is not implemented, attempts to access srmcfg when V=1 raise a virtual-
instruction exception.



A reset value of 0 is suggested for the RCID field matching resource controllers'
default behavior of associating all capacity with RCID=0. The MCID reset value does not
affect functionality and may be implementation-defined.

Typically, fewer bits are allocated for RCID (e.g., to support tens of RCIDs) than for MCID
(e.g., to support hundreds of MCIDs). A common RCID is usually used to group apps or
VMs, pooling resource allocations to meet collective SLAs. If an SLA breach occurs,
unique MCIDs enable granular monitoring, aiding decisions on resource adjustment,
associating a different RCID with a subset of members, or migrating members to other
machines. The larger pool of MCIDs speeds up this analysis.

The RCID and MCID in srmcfg apply across all privilege levels on the hart. Typically,
higher-privilege modes don’t modify srmcfg, as they often serve lower-privileged
tasks. If differentiation is needed, higher privilege code can update srmcfg and
restore it before returning to a lower privilege level.

In VM environments, hypervisors usually manage resource allocations, keeping the
Guest OS out of QoS flows. If needed, the hypervisor can virtualize srmcfg CSR for a
VM using the virtual-instruction exceptions triggered upon Guest access. If the direct
selection of RCID and MCID by the VM becomes common and emulation overhead is an
issue, future extensions may allow VS-mode to use a selector for a hypervisor-
configured set of CSRs holding RCID and MCID values designated for that Guest OS
use.

During context switches, the supervisor may choose to execute with the srmcfg of the
outgoing context to attribute the execution to it. Prior to restoring the new context, it
switches to the new VM’s srmcfg. The supervisor can also use a separate
configuration for execution not to be attributed to either contexts.

18.1. Supervisor Resource Management Configuration (srmcfg) register | Page 151

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 19. "Sstc" Extension for Supervisor-mode Timer
Interrupts, Version 1.0

The current Privileged arch specification only defines a hardware mechanism for generating machine-
mode timer interrupts (based on the mtime and mtimecmp registers). With the resultant requirement
that timer services for S-mode/HS-mode (and for VS-mode) have to all be provided by M-mode - via
SBI calls from S/HS-mode up to M-mode (or VS-mode calls to HS-mode and then to M-mode). M-
mode software then multiplexes these multiple logical timers onto its one physical M-mode timer
facility, and the M-mode timer interrupt handler passes timer interrupts back down to the appropriate
lower privilege mode.

This extension serves to provide supervisor mode with its own CSR-based timer interrupt facility that it
can directly manage to provide its own timer service (in the form of having its own stimecmp register)
- thus eliminating the large overheads for emulating S/HS-mode timers and timer interrupt generation
up in M-mode. Further, this extension adds a similar facility to the Hypervisor extension for VS-mode.

The extension name is "Sstc" ('Ss' for Privileged arch and Supervisor-level extensions, and 'tc' for
timecmp). This extension adds the S-level stimecmp CSR and the VS-level vstimecmp CSR.

19.1. Machine and Supervisor Level Additions

19.1.1. Supervisor Timer (stimecmp) Register

This extension adds this new CSR.

The stimecmp CSR is a 64-bit register and has 64-bit precision on all RV32 and RV64 systems. In RV32
only, accesses to the stimecmp CSR access the low 32 bits, while accesses to the stimecmph CSR access
the high 32 bits of stimecmp.

The CSR numbers for stimecmp / stimecmph are 0x14D / 0x15D (within the Supervisor Trap Setup block of
CSRs).

A supervisor timer interrupt becomes pending, as reflected in the STIP bit in the mip and sip registers
whenever time contains a value greater than or equal to stimecmp, treating the values as unsigned
integers. If the result of this comparison changes, it is guaranteed to be reflected in STIP eventually,
but not necessarily immediately. The interrupt remains posted until stimecmp becomes greater than
time, typically as a result of writing stimecmp. The interrupt will be taken based on the standard interrupt
enable and delegation rules.



A spurious timer interrupt might occur if an interrupt handler advances stimecmp then
immediately returns, because STIP might not yet have fallen in the interim. All
software should be written to assume this event is possible, but most software should
assume this event is extremely unlikely. It is almost always more performant to incur
an occasional spurious timer interrupt than to poll STIP until it falls.



In systems in which a supervisor execution environment (SEE) provides timer
facilities via an SBI function call, this SBI call will continue to support requests to
schedule a timer interrupt. The SEE will simply make use of stimecmp, changing its
value as appropriate. This ensures compatibility with existing S-mode software that
uses this SEE facility, while new S-mode software takes advantage of stimecmp
directly.)

19.1. Machine and Supervisor Level Additions | Page 152

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

19.1.2. Machine Interrupt (mip and mie) Registers

This extension modifies the description of the STIP/STIE bits in these registers as follows:

If supervisor mode is implemented, its mip.STIP and mie.STIE are the interrupt-pending and interrupt-
enable bits for supervisor-level timer interrupts. If the stimecmp register is not implemented, STIP is
writable in mip, and may be written by M-mode software to deliver timer interrupts to S-mode. If the
stimecmp (supervisor-mode timer compare) register is implemented, STIP is read-only in mip and
reflects the supervisor-level timer interrupt signal resulting from stimecmp. This timer interrupt signal
is cleared by writing stimecmp with a value greater than the current time value.

19.1.3. Supervisor Interrupt (sip and sie) Registers

This extension modifies the description of the STIP/STIE bits in these registers as follows:

Bits sip.STIP and sie.STIE are the interrupt-pending and interrupt-enable bits for supervisor level timer
interrupts. If implemented, STIP is read-only in sip, and is either set and cleared by the execution
environment (if stimecmp is not implemented), or reflects the timer interrupt signal resulting from
stimecmp (if stimecmp is implemented). The sip.STIP bit, in response to timer interrupts generated by
stimecmp, is set and cleared by writing stimecmp with a value that respectively is less than or equal to, or
greater than, the current time value.

19.1.4. Machine Counter-Enable (mcounteren) Register

This extension adds to the description of the TM bit in this register as follows:

In addition, when the TM bit in the mcounteren register is clear, attempts to access the stimecmp or
vstimecmp register while executing in a mode less privileged than M will cause an illegal instruction
exception. When this bit is set, access to the stimecmp or vstimecmp register is permitted in S-mode if
implemented, and access to the vstimecmp register (via stimecmp) is permitted in VS-mode if
implemented and not otherwise prevented by the TM bit in hcounteren.

19.2. Hypervisor Extension Additions

19.2.1. Virtual Supervisor Timer (vstimecmp) Register

This extension adds this new CSR.

The vstimecmp CSR is a 64-bit register and has 64-bit precision on all RV32 and RV64 systems. In
RV32 only, accesses to the vstimecmp CSR access the low 32 bits, while accesses to the vstimecmph CSR
access the high 32 bits of vstimecmp.

The proposed CSR numbers for vstimecmp / vstimecmph are 0x24D / 0x25D (within the Virtual Supervisor
Registers block of CSRs, and mirroring the CSR numbers for stimecmp/stimecmph).

A virtual supervisor timer interrupt becomes pending, as reflected in the VSTIP bit in the hip register,
whenever (time + htimedelta), truncated to 64 bits, contains a value greater than or equal to vstimecmp,
treating the values as unsigned integers. If the result of this comparison changes, it is guaranteed to
be reflected in VSTIP eventually, but not necessarily immediately. The interrupt remains posted until
vstimecmp becomes greater than (time + htimedelta), typically as a result of writing vstimecmp. The
interrupt will be taken based on the standard interrupt enable and delegation rules while V=1.

19.2. Hypervisor Extension Additions | Page 153

The RISC-V Instruction Set Manual: Volume II | © RISC-V International



In systems in which a supervisor execution environment (SEE) implemented by an
HS-mode hypervisor provides timer facilities via an SBI function call, this SBI call will
continue to support requests to schedule a timer interrupt. The SEE will simply make
use of vstimecmp, changing its value as appropriate. This ensures compatibility with
existing guest VS-mode software that uses this SEE facility, while new VS-mode
software takes advantage of vstimecmp directly.)

19.2.2. Hypervisor Interrupt (hvip, hip, and hie) Registers

This extension modifies the description of the VSTIP/VSTIE bits in the hip/hie registers as follows:

Bits hip.VSTIP and hie.VSTIE are the interrupt-pending and interrupt-enable bits for VS-level timer
interrupts. VSTIP is read-only in hip, and is the logical-OR of hvip.VSTIP and the timer interrupt signal
resulting from vstimecmp (if vstimecmp is implemented). The hip.VSTIP bit, in response to timer interrupts
generated by vstimecmp, is set and cleared by writing vstimecmp with a value that respectively is less than
or equal to, or greater than, the current (time + htimedelta) value. The hip.VSTIP bit remains defined
while V=0 as well as V=1.

19.2.3. Hypervisor Counter-Enable (hcounteren) Register

This extension adds to the description of the TM bit in this register as follows:

In addition, when the TM bit in the hcounteren register is clear, attempts to access the vstimecmp
register (via stimecmp) while executing in VS-mode will cause a virtual instruction exception if the
same bit in mcounteren is set. When this bit and the same bit in mcounteren are both set, access to the
vstimecmp register (if implemented) is permitted in VS-mode.

19.3. Environment Config (menvcfg and henvcfg) Support

Enable/disable bits for this extension are provided in the new menvcfg / henvcfg CSRs.

Bit 63 of menvcfg (or bit 31 of menvcfgh) - named STCE (STimecmp Enable) - enables stimecmp for S-
mode when set to one, and the same bit of henvcfg enables vstimecmp for VS-mode. These STCE bits
are WARL and are hard-wired to 0 when this extension is not implemented.

When this extension is implemented and STCE in menvcfg is zero, an attempt to access stimecmp or
vstimecmp in a mode other than M-mode raises an illegal instruction exception, STCE in henvcfg is read-
only zero, and STIP in mip and sip reverts to its defined behavior as if this extension is not
implemented. Further, if the H extension is implemented, then hip.VSTIP also reverts its defined
behavior as if this extension is not implemented.

But when STCE in menvcfg is one and STCE in henvcfg is zero, an attempt to access stimecmp (really
vstimecmp) when V = 1 raises a virtual instruction exception, and VSTIP in hip reverts to its defined
behavior as if this extension is not implemented.

19.3. Environment Config (menvcfg and henvcfg) Support | Page 154

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 20. "Sscofpmf" Extension for Count Overflow and
Mode-Based Filtering, Version 1.0

The current Privileged specification defines mhpmevent CSRs to select and control event counting by
the associated hpmcounter CSRs, but provides no standardization of any fields within these CSRs. For
at least Linux-class rich-OS systems it is desirable to standardize certain basic features that are
broadly desired (and have come up over the past year plus on RISC-V lists, as well as have been the
subject of past proposals). This enables there to be standard upstream software support that
eliminates the need for implementations to provide their own custom software support.

This extension serves to accomplish exactly this within the existing mhpmevent CSRs (and
correspondingly avoids the unnecessary creation of whole new sets of CSRs - past just one new CSR).

This extension sticks to addressing two basic well-understood needs that have been requested by
various people. To make it easy to understand the deltas from the current Priv 1.11/1.12 specs, this is
written as the actual exact changes to be made to existing paragraphs of Priv spec text (or additional
paragraphs within the existing text).

The extension name is "Sscofpmf" ('Ss' for Privileged arch and Supervisor-level extensions, and 'cofpmf'
for Count OverFlow and Privilege Mode Filtering).

Note that the new count overflow interrupt will be treated as a standard local interrupt that is assigned
to bit 13 in the mip/mie/sip/sie registers.

20.1. Count Overflow Control

The following bits are added to mhpmevent:

63 62 61 60 59 58 57 56

OF MINH SINH UINH VSINH VUINH WPRI WPRI

Field Description

OF Overflow status and interrupt disable bit that is set when counter overflows

MINH If set, then counting of events in M-mode is inhibited

SINH If set, then counting of events in S/HS-mode is inhibited

UINH If set, then counting of events in U-mode is inhibited

VSINH If set, then counting of events in VS-mode is inhibited

VUINH If set, then counting of events in VU-mode is inhibited

WPRI Reserved

WPRI Reserved

For each xINH bit, if the associated privilege mode is not implemented, the bit is read-only zero.

Each of the five xINH bits, when set, inhibit counting of events while in privilege mode x. All-zeroes for
these bits results in counting of events in all modes.

The OF bit is set when the corresponding hpmcounter overflows, and remains set until written by

20.1. Count Overflow Control | Page 155

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

software. Since hpmcounter values are unsigned values, overflow is defined as unsigned overflow of
the implemented counter bits. Note that there is no loss of information after an overflow since the
counter wraps around and keeps counting while the sticky OF bit remains set.

If supervisor mode is implemented, the 32-bit scountovf register contains read-only shadow copies of
the OF bits in all 32 mhpmevent registers.

If an hpmcounter overflows while the associated OF bit is zero, then a "count overflow interrupt
request" is generated. If the OF bit is one, then no interrupt request is generated. Consequently the OF
bit also functions as a count overflow interrupt disable for the associated hpmcounter.

Count overflow never results from writes to the mhpmcountern or mhpmeventn registers, only from
hardware increments of counter registers.

This count-overflow-interrupt-request signal is treated as a standard local interrupt that corresponds to
bit 13 in the mip/mie/sip/sie registers. The mip/sip LCOFIP and mie/sie LCOFIE bits are, respectively, the
interrupt-pending and interrupt-enable bits for this interrupt. ('LCOFI' represents 'Local Count Overflow
Interrupt'.)

Generation of a count-overflow-interrupt request by an hpmcounter sets the associated OF bit. When an
OF bit is set, it eventually, but not necessarily immediately, sets the LCOFIP bit in the mip/sip registers.
The LCOFIP bit is cleared by software before servicing the count overflow interrupt resulting from one
or more count overflows. The mideleg register controls the delegation of this interrupt to S-mode versus
M-mode.



There are not separate overflow status and overflow interrupt enable bits. In practice,
enabling overflow interrupt generation (by clearing the OF bit) is done in conjunction
with initializing the counter to a starting value. Once a counter has overflowed, it and
the OF bit must be reinitialized before another overflow interrupt can be generated.



Software can distinguish newly overflowed counters (yet to be serviced by an overflow
interrupt handler) from overflowed counters that have already been serviced or that
are configured to not generate an interrupt on overflow, by maintaining a bit mask
reflecting which counters are active and due to eventually overflow.

20.2. Supervisor Count Overflow (scountovf) Register

This extension adds the scountovf CSR, a 32-bit read-only register that contains shadow copies of the
OF bits in the 29 mhpmevent CSRs (mhpmevent3 - mhpmevent31) - where scountovf bit X
corresponds to mhpmeventX.

This register enables supervisor-level overflow interrupt handler software to quickly and easily
determine which counter(s) have overflowed (without needing to make an execution environment call
or series of calls ultimately up to M-mode).

Read access to bit X is subject to the same mcounteren (or mcounteren and hcounteren) CSRs that
mediate access to the hpmcounter CSRs by S-mode (or VS-mode). In M-mode, scountovf bit X is
always readable. In S/HS-mode, scountovf bit X is readable when mcounteren bit X is set, and
otherwise reads as zero. Similarly, in VS mode, scountovf bit X is readable when mcounteren bit X and
hcounteren bit X are both set, and otherwise reads as zero.

20.2. Supervisor Count Overflow (scountovf) Register | Page 156

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 21. "H" Extension for Hypervisor Support, Version 1.0

This chapter describes the RISC-V hypervisor extension, which virtualizes the supervisor-level
architecture to support the efficient hosting of guest operating systems atop a type-1 or type-2
hypervisor. The hypervisor extension changes supervisor mode into hypervisor-extended supervisor
mode (HS-mode, or hypervisor mode for short), where a hypervisor or a hosting-capable operating
system runs. The hypervisor extension also adds another stage of address translation, from guest
physical addresses to supervisor physical addresses, to virtualize the memory and memory-mapped
I/O subsystems for a guest operating system. HS-mode acts the same as S-mode, but with additional
instructions and CSRs that control the new stage of address translation and support hosting a guest
OS in virtual S-mode (VS-mode). Regular S-mode operating systems can execute without modification
either in HS-mode or as VS-mode guests.

In HS-mode, an OS or hypervisor interacts with the machine through the same SBI as an OS normally
does from S-mode. An HS-mode hypervisor is expected to implement the SBI for its VS-mode guest.

The hypervisor extension depends on an "I" base integer ISA with 32 x registers (RV32I or RV64I), not
RV32E or RV64E, which have only 16 x registers. CSR mtval must not be read-only zero, and standard
page-based address translation must be supported, either Sv32 for RV32, or a minimum of Sv39 for
RV64.

The hypervisor extension is enabled by setting bit 7 in the misa CSR, which corresponds to the letter H.
RISC-V harts that implement the hypervisor extension are encouraged not to hardwire misa[7], so that
the extension may be disabled.



The baseline privileged architecture is designed to simplify the use of classic
virtualization techniques, where a guest OS is run at user-level, as the few privileged
instructions can be easily detected and trapped. The hypervisor extension improves
virtualization performance by reducing the frequency of these traps.

The hypervisor extension has been designed to be efficiently emulable on platforms
that do not implement the extension, by running the hypervisor in S-mode and
trapping into M-mode for hypervisor CSR accesses and to maintain shadow page
tables. The majority of CSR accesses for type-2 hypervisors are valid S-mode
accesses so need not be trapped. Hypervisors can support nested virtualization
analogously.

21.1. Privilege Modes

The current virtualization mode, denoted V, indicates whether the hart is currently executing in a guest.
When V=1, the hart is either in virtual S-mode (VS-mode), or in virtual U-mode (VU-mode) atop a guest
OS running in VS-mode. When V=0, the hart is either in M-mode, in HS-mode, or in U-mode atop an
OS running in HS-mode. The virtualization mode also indicates whether two-stage address translation
is active (V=1) or inactive (V=0). Table 38 lists the possible privilege modes of a RISC-V hart with the
hypervisor extension.

21.1. Privilege Modes | Page 157

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 38. Privilege modes with the hypervisor extension.

Virtualization
Mode (V)

Nominal Privilege Abbreviation Name Two-Stage
Translation

0
0
0

U
S
M

U-mode
HS-mode
M-mode

User mode
Hypervisor-extended
supervisor mode
Machine mode

Off
Off
Off

1
1

U
S

VU-mode
VS-mode

Virtual user mode
Virtual supervisor
mode

On
On

For privilege modes U and VU, the nominal privilege mode is U, and for privilege modes HS and VS,
the nominal privilege mode is S.

HS-mode is more privileged than VS-mode, and VS-mode is more privileged than VU-mode. VS-mode
interrupts are globally disabled when executing in U-mode.


This description does not consider the possibility of U-mode or VU-mode interrupts
and will be revised if an extension for user-level interrupts is adopted.

21.2. Hypervisor and Virtual Supervisor CSRs

An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the exception,
interrupt, and address-translation subsystems. Additional CSRs are provided to HS-mode, but not to
VS-mode, to manage two-stage address translation and to control the behavior of a VS-mode guest:
hstatus, hedeleg, hideleg, hvip, hip, hie, hgeip, hgeie, henvcfg, henvcfgh, hcounteren, htimedelta, htimedeltah,
htval, htinst, and hgatp.

Furthermore, several virtual supervisor CSRs (VS CSRs) are replicas of the normal supervisor CSRs. For
example, vsstatus is the VS CSR that duplicates the usual sstatus CSR.

When V=1, the VS CSRs substitute for the corresponding supervisor CSRs, taking over all functions of
the usual supervisor CSRs except as specified otherwise. Instructions that normally read or modify a
supervisor CSR shall instead access the corresponding VS CSR. When V=1, an attempt to read or write
a VS CSR directly by its own separate CSR address causes a virtual-instruction exception. (Attempts
from U-mode cause an illegal-instruction exception as usual.) The VS CSRs can be accessed as
themselves only from M-mode or HS-mode.

While V=1, the normal HS-level supervisor CSRs that are replaced by VS CSRs retain their values but do
not affect the behavior of the machine unless specifically documented to do so. Conversely, when V=0,
the VS CSRs do not ordinarily affect the behavior of the machine other than being readable and
writable by CSR instructions.

Some standard supervisor CSRs (senvcfg, scounteren, and scontext, possibly others) have no matching
VS CSR. These supervisor CSRs continue to have their usual function and accessibility even when V=1,
except with VS-mode and VU-mode substituting for HS-mode and U-mode. Hypervisor software is
expected to manually swap the contents of these registers as needed.


Matching VS CSRs exist only for the supervisor CSRs that must be duplicated, which
are mainly those that get automatically written by traps or that impact instruction
execution immediately after trap entry and/or right before SRET, when software alone

21.2. Hypervisor and Virtual Supervisor CSRs | Page 158

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

is unable to swap a CSR at exactly the right moment. Currently, most supervisor CSRs
fall into this category, but future ones might not.

In this chapter, we use the term HSXLEN to refer to the effective XLEN when executing in HS-mode,
and VSXLEN to refer to the effective XLEN when executing in VS-mode.

21.2.1. Hypervisor Status (hstatus) Register

The hstatus register is an HSXLEN-bit read/write register formatted as shown in Figure 79 when
HSXLEN=32 and Figure 80 when HSXLEN=64. The hstatus register provides facilities analogous to the
mstatus register for tracking and controlling the exception behavior of a VS-mode guest.

31 23 22 21 20 19 18 17 12 11 10 9 8 7 6 5 4 0
WPRI VTSR VTW VTVM WPRI VGEIN[5:0] WPRI HU SPVP SPV GVA VSBE WPRI

9 1 1 1 2 6 2 1 1 1 1 1 5

Figure 79. Hypervisor status register (hstatus) when HSXLEN=32

63 34 33 32 31 23 22 21 20
WPRI VSXL[1:0] WPRI VTSR VTW VTVM

30 2 9 1 1 1

19 18 17 12 11 10 9 8 7 6 5 4 0
WPRI VGEIN[5:0] WPRI HU SPVP SPV GVA VSBE WPRI

2 6 2 1 1 1 1 1 5

Figure 80. Hypervisor status register (hstatus) when HSXLEN=64.

The VSXL field controls the effective XLEN for VS-mode (known as VSXLEN), which may differ from the
XLEN for HS-mode (HSXLEN). When HSXLEN=32, the VSXL field does not exist, and VSXLEN=32.
When HSXLEN=64, VSXL is a WARL field that is encoded the same as the MXL field of misa, shown in
Table 9. In particular, an implementation may make VSXL be a read-only field whose value always
ensures that VSXLEN=HSXLEN.

If HSXLEN is changed from 32 to a wider width, and if field VSXL is not restricted to a single value, it
gets the value corresponding to the widest supported width not wider than the new HSXLEN.

The hstatus fields VTSR, VTW, and VTVM are defined analogously to the mstatus fields TSR, TW, and
TVM, but affect execution only in VS-mode, and cause virtual-instruction exceptions instead of illegal-
instruction exceptions. When VTSR=1, an attempt in VS-mode to execute SRET raises a virtual-
instruction exception. When VTW=1 (and assuming mstatus.TW=0), an attempt in VS-mode to execute
WFI raises a virtual-instruction exception if the WFI does not complete within an implementation-
specific, bounded time limit. An implementation may have WFI always raise a virtual-instruction
exception in VS-mode when VTW=1 (and mstatus.TW=0), even if there are pending globally-disabled
interrupts when the instruction is executed. When VTVM=1, an attempt in VS-mode to execute
SFENCE.VMA or SINVAL.VMA or to access CSR satp raises a virtual-instruction exception.

The VGEIN (Virtual Guest External Interrupt Number) field selects a guest external interrupt source for
VS-level external interrupts. VGEIN is a WLRL field that must be able to hold values between zero and
the maximum guest external interrupt number (known as GEILEN), inclusive. When VGEIN=0, no guest
external interrupt source is selected for VS-level external interrupts. GEILEN may be zero, in which
case VGEIN may be read-only zero. Guest external interrupts are explained in Section 21.2.4, and the
use of VGEIN is covered further in Section 21.2.3.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 159

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Field HU (Hypervisor in U-mode) controls whether the virtual-machine load/store instructions, HLV,
HLVX, and HSV, can be used also in U-mode. When HU=1, these instructions can be executed in U-
mode the same as in HS-mode. When HU=0, all hypervisor instructions cause an illegal-instruction
exception in U-mode.


The HU bit allows a portion of a hypervisor to be run in U-mode for greater protection
against software bugs, while still retaining access to a virtual machine’s memory.

The SPV bit (Supervisor Previous Virtualization mode) is written by the implementation whenever a
trap is taken into HS-mode. Just as the SPP bit in sstatus is set to the (nominal) privilege mode at the
time of the trap, the SPV bit in hstatus is set to the value of the virtualization mode V at the time of the
trap. When an SRET instruction is executed when V=0, V is set to SPV.

When V=1 and a trap is taken into HS-mode, bit SPVP (Supervisor Previous Virtual Privilege) is set to
the nominal privilege mode at the time of the trap, the same as sstatus.SPP. But if V=0 before a trap,
SPVP is left unchanged on trap entry. SPVP controls the effective privilege of explicit memory accesses
made by the virtual-machine load/store instructions, HLV, HLVX, and HSV.



Without SPVP, if instructions HLV, HLVX, and HSV looked instead to sstatus.SPP for
the effective privilege of their memory accesses, then, even with HU=1, U-mode
could not access virtual machine memory at VS-level, because to enter U-mode using
SRET always leaves SPP=0. Unlike SPP, field SPVP is untouched by transitions back-
and-forth between HS-mode and U-mode.

Field GVA (Guest Virtual Address) is written by the implementation whenever a trap is taken into HS-
mode. For any trap (breakpoint, address misaligned, access fault, page fault, or guest-page fault) that
writes a guest virtual address to stval, GVA is set to 1. For any other trap into HS-mode, GVA is set
to 0.



For breakpoint and memory access traps that write a nonzero value to stval, GVA is
redundant with field SPV (the two bits are set the same) except when the explicit
memory access of an HLV, HLVX, or HSV instruction causes a fault. In that case,
SPV=0 but GVA=1.

The VSBE bit is a WARL field that controls the endianness of explicit memory accesses made from VS-
mode. If VSBE=0, explicit load and store memory accesses made from VS-mode are little-endian, and
if VSBE=1, they are big-endian. VSBE also controls the endianness of all implicit accesses to VS-level
memory management data structures, such as page tables. An implementation may make VSBE a
read-only field that always specifies the same endianness as HS-mode.

21.2.2. Hypervisor Trap Delegation (hedeleg and hideleg) Registers

Register hedeleg is a 64-bit read/write register, formatted as shown in Figure 81. Register hideleg is an
HSXLEN-bit read/write register, formatted as shown in Figure 82. By default, all traps at any privilege
level are handled in M-mode, though M-mode usually uses the medeleg and mideleg CSRs to delegate
some traps to HS-mode. The hedeleg and hideleg CSRs allow these traps to be further delegated to a
VS-mode guest; their layout is the same as medeleg and mideleg.

63 0
Synchronous Exceptions (WARL)

64

Figure 81. Hypervisor exception delegation register (hedeleg).

21.2. Hypervisor and Virtual Supervisor CSRs | Page 160

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

HSXLEN-1 0
Interrupts (WARL)

HSXLEN

Figure 82. Hypervisor exception delegation register (hideleg).

A synchronous trap that has been delegated to HS-mode (using medeleg) is further delegated to VS-
mode if V=1 before the trap and the corresponding hedeleg bit is set. Each bit of hedeleg shall be either
writable or read-only zero. Many bits of hedeleg are required specifically to be writable or zero, as
enumerated in Table 39. Bit 0, corresponding to instruction address misaligned exceptions, must be
writable if IALIGN=32.


Requiring that certain bits of hedeleg be writable reduces some of the burden on a
hypervisor to handle variations of implementation.

When XLEN=32, hedelegh is a 32-bit read/write register that aliases bits 63:32 of hedeleg. Register
hedelegh does not exist when XLEN=64.

An interrupt that has been delegated to HS-mode (using mideleg) is further delegated to VS-mode if
the corresponding hideleg bit is set. Among bits 15:0 of hideleg, bits 10, 6, and 2 (corresponding to the
standard VS-level interrupts) are writable, and bits 12, 9, 5, and 1 (corresponding to the standard S-
level interrupts) are read-only zeros.

When a virtual supervisor external interrupt (code 10) is delegated to VS-mode, it is automatically
translated by the machine into a supervisor external interrupt (code 9) for VS-mode, including the
value written to vscause on an interrupt trap. Likewise, a virtual supervisor timer interrupt (6) is
translated into a supervisor timer interrupt (5) for VS-mode, and a virtual supervisor software interrupt
(2) is translated into a supervisor software interrupt (1) for VS-mode. Similar translations may or may
not be done for platform interrupt causes (codes 16 and above).

Table 39. Bits of hedeleg that must be writable or must be read-only zero.

Bit Attribute Corresponding Exception

0
1
2
3
4
5
6
7
8
9

10
11
12
13
15
16
18
19
20
21
22
23

(See text)
Writable
Writable
Writable
Writable
Writable
Writable
Writable
Writable
Read-only 0
Read-only 0
Read-only 0
Writable
Writable
Writable
Read-only 0
Writable
Writable
Read-only 0
Read-only 0
Read-only 0
Read-only 0

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode or VU-mode
Environment call from HS-mode
Environment call from VS-mode
Environment call from M-mode
Instruction page fault
Load page fault
Store/AMO page fault
Double trap
Software check
Hardware error
Instruction guest-page fault
Load guest-page fault
Virtual instruction
Store/AMO guest-page fault

21.2. Hypervisor and Virtual Supervisor CSRs | Page 161

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

21.2.3. Hypervisor Interrupt (hvip, hip, and hie) Registers

Register hvip is an HSXLEN-bit read/write register that a hypervisor can write to indicate virtual
interrupts intended for VS-mode. Bits of hvip that are not writable are read-only zeros.

HSXLEN-1 0
Virtual Interrupts (WARL)

HSXLEN

Figure 83. Hypervisor virtual-interrupt-pending register(hvip).

The standard portion (bits 15:0) of hvip is formatted as shown in Figure 84. Bits VSEIP, VSTIP, and
VSSIP of hvip are writable. Setting VSEIP=1 in hvip asserts a VS-level external interrupt; setting VSTIP
asserts a VS-level timer interrupt; and setting VSSIP asserts a VS-level software interrupt.

15 11 10 9 7 6 5 3 2 1 0
0 VSEIP 0 VSTIP 0 VSSIP 0
5 1 3 1 3 1 2

Figure 84. Standard portion (bits 15:0) of hvip.

Registers hip and hie are HSXLEN-bit read/write registers that supplement HS-level’s sip and sie
respectively. The hip register indicates pending VS-level and hypervisor-specific interrupts, while hie
contains enable bits for the same interrupts.

HSXLEN-1 0
Interrupts (WARL)

HSXLEN

Figure 85. Hypervisor interrupt-pending register (hip).

HSXLEN-1 0
Interrupts (WARL)

HSXLEN

Figure 86. Hypervisor interrupt-enable register (hie).

For each writable bit in sie, the corresponding bit shall be read-only zero in both hip and hie. Hence,
the nonzero bits in sie and hie are always mutually exclusive, and likewise for sip and hip.


The active bits of hip and hie cannot be placed in HS-level’s sip and sie because
doing so would make it impossible for software to emulate the hypervisor extension
on platforms that do not implement it in hardware.

An interrupt i will trap to HS-mode whenever all of the following are true: (a) either the current
operating mode is HS-mode and the SIE bit in the sstatus register is set, or the current operating
mode has less privilege than HS-mode; (b) bit i is set in both sip and sie, or in both hip and hie; and (c)
bit i is not set in hideleg.

If bit i of sie is read-only zero, the same bit in register hip may be writable or may be read-only. When
bit i in hip is writable, a pending interrupt i can be cleared by writing 0 to this bit. If interrupt i can
become pending in hip but bit i in hip is read-only, then either the interrupt can be cleared by clearing
bit i of hvip, or the implementation must provide some other mechanism for clearing the pending
interrupt (which may involve a call to the execution environment).

A bit in hie shall be writable if the corresponding interrupt can ever become pending in hip. Bits of hie

21.2. Hypervisor and Virtual Supervisor CSRs | Page 162

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

that are not writable shall be read-only zero.

The standard portions (bits 15:0) of registers hip and hie are formatted as shown in Figure 87 and
Figure 88 respectively.

15 13 12 11 10 9 7 6 5 3 2 1 0
0 SGEIP 0 VSEIP 0 VSTIP 0 VSSIP 0
3 1 1 1 3 1 3 1 2

Figure 87. Standard portion (bits 15:0) of hip.

15 13 12 11 10 9 7 6 5 3 2 1 0
0 SGEIE 0 VSEIE 0 VSTIE 0 VSSIE 0
3 1 1 1 3 1 3 1 2

Figure 88. Standard portion (bits 15:0) of hie.

Bits hip.SGEIP and hie.SGEIE are the interrupt-pending and interrupt-enable bits for guest external
interrupts at supervisor level (HS-level). SGEIP is read-only in hip, and is 1 if and only if the bitwise
logical-AND of CSRs hgeip and hgeie is nonzero in any bit. (See Section 21.2.4.)

Bits hip.VSEIP and hie.VSEIE are the interrupt-pending and interrupt-enable bits for VS-level external
interrupts. VSEIP is read-only in hip, and is the logical-OR of these interrupt sources:

⚫ bit VSEIP of hvip;

⚫ the bit of hgeip selected by hstatus.VGEIN; and

⚫ any other platform-specific external interrupt signal directed to VS-level.

Bits hip.VSTIP and hie.VSTIE are the interrupt-pending and interrupt-enable bits for VS-level timer
interrupts. VSTIP is read-only in hip, and is the logical-OR of hvip.VSTIP and any other platform-
specific timer interrupt signal directed to VS-level.

Bits hip.VSSIP and hie.VSSIE are the interrupt-pending and interrupt-enable bits for VS-level software
interrupts. VSSIP in hip is an alias (writable) of the same bit in hvip.

Multiple simultaneous interrupts destined for HS-mode are handled in the following decreasing priority
order: SEI, SSI, STI, SGEI, VSEI, VSSI, VSTI, LCOFI.

21.2.4. Hypervisor Guest External Interrupt Registers (hgeip and hgeie)

The hgeip register is an HSXLEN-bit read-only register, formatted as shown in Figure 89, that indicates
pending guest external interrupts for this hart. The hgeie register is an HSXLEN-bit read/write register,
formatted as shown in Figure 90, that contains enable bits for the guest external interrupts at this hart.
Guest external interrupt number i corresponds with bit i in both hgeip and hgeie.

HSXLEN-1 1 0

Guest External Interrupts 0
HSXLEN 1

Figure 89. Hypervisor guest external interrupt-pending register (hgeip).

21.2. Hypervisor and Virtual Supervisor CSRs | Page 163

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

HSXLEN-1 1 0

Guest External Interrupts (WARL) 0
HSXLEN 1

Figure 90. Hypervisor guest external interrupt-enable register (hgeie).

Guest external interrupts represent interrupts directed to individual virtual machines at VS-level. If a
RISC-V platform supports placing a physical device under the direct control of a guest OS with
minimal hypervisor intervention (known as pass-through or direct assignment between a virtual
machine and the physical device), then, in such circumstance, interrupts from the device are intended
for a specific virtual machine. Each bit of hgeip summarizes all pending interrupts directed to one
virtual hart, as collected and reported by an interrupt controller. To distinguish specific pending
interrupts from multiple devices, software must query the interrupt controller.


Support for guest external interrupts requires an interrupt controller that can collect
virtual-machine-directed interrupts separately from other interrupts.

The number of bits implemented in hgeip and hgeie for guest external interrupts is UNSPECIFIED and
may be zero. This number is known as GEILEN. The least-significant bits are implemented first, apart
from bit 0. Hence, if GEILEN is nonzero, bits GEILEN:1 shall be writable in hgeie, and all other bit
positions shall be read-only zeros in both hgeip and hgeie.



The set of guest external interrupts received and handled at one physical hart may
differ from those received at other harts. Guest external interrupt number i at one
physical hart is typically expected not to be the same as guest external interrupt i at
any other hart. For any one physical hart, the maximum number of virtual harts that
may directly receive guest external interrupts is limited by GEILEN. The maximum
this number can be for any implementation is 31 for RV32 and 63 for RV64, per
physical hart.

A hypervisor is always free to emulate devices for any number of virtual harts without
being limited by GEILEN. Only direct pass-through (direct assignment) of interrupts
is affected by the GEILEN limit, and the limit is on the number of virtual harts
receiving such interrupts, not the number of distinct interrupts received. The number
of distinct interrupts a single virtual hart may receive is determined by the interrupt
controller.

Register hgeie selects the subset of guest external interrupts that cause a supervisor-level (HS-level)
guest external interrupt. The enable bits in hgeie do not affect the VS-level external interrupt signal
selected from hgeip by hstatus.VGEIN.

21.2.5. Hypervisor Environment Configuration Register (henvcfg)

The henvcfg CSR is a 64-bit read/write register, formatted as shown in Figure 91, that controls certain
characteristics of the execution environment when virtualization mode V=1.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 164

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

01234567815

FIOMWPRILPESSECBIECBCFECBZEWPRI

1631

WPRI

32333447

PMMWPRI

48585960616263

WPRIDTEWPRIADUEPBMTESTCE

Figure 91. Hypervisor environment configuration register (henvcfg).

If bit FIOM (Fence of I/O implies Memory) is set to one in henvcfg, FENCE instructions executed when
V=1 are modified so the requirement to order accesses to device I/O implies also the requirement to
order main memory accesses. Table 40 details the modified interpretation of FENCE instruction bits
PI, PO, SI, and SO when FIOM=1 and V=1.

Similarly, when FIOM=1 and V=1, if an atomic instruction that accesses a region ordered as device I/O
has its aq and/or rl bit set, then that instruction is ordered as though it accesses both device I/O and
memory.

Table 40. Modified interpretation of FENCE predecessor and successor sets when FIOM=1 and
virtualization mode V=1.

Instruction bit Meaning when set

PI
PO

Predecessor device input and memory reads (PR implied)
Predecessor device output and memory writes (PW implied)

SI
SO

Successor device input and memory reads (SR implied)
Successor device output and memory writes (SW implied)

The PBMTE bit controls whether the Svpbmt extension is available for use in VS-stage address
translation. When PBMTE=1, Svpbmt is available for VS-stage address translation. When PBMTE=0, the
implementation behaves as though Svpbmt were not implemented for VS-stage address translation. If
Svpbmt is not implemented, PBMTE is read-only zero.

If the Svadu extension is implemented, the ADUE bit controls whether hardware updating of PTE A/D
bits is enabled for VS-stage address translation. When ADUE=1, hardware updating of PTE A/D bits is
enabled during VS-stage address translation, and the implementation behaves as though the Svade
extension were not implemented for VS-mode address translation. When ADUE=0, the implementation
behaves as though Svade were implemented for VS-stage address translation. If Svadu is not
implemented, ADUE is read-only zero.

The definition of the STCE field is furnished by the Sstc extension.

The definition of the CBZE field is furnished by the Zicboz extension.

The definitions of the CBCFE and CBIE fields are furnished by the Zicbom extension.

The definition of the PMM field is furnished by the Ssnpm extension.

The Zicfilp extension adds the LPE field in henvcfg. When the LPE field is set to 1, the Zicfilp extension is
enabled in VS-mode. When the LPE field is 0, the Zicfilp extension is not enabled in VS-mode and the
following rules apply to VS-mode:

⚫ The hart does not update the ELP state; it remains as NO_LP_EXPECTED.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 165

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ The LPAD instruction operates as a no-op.

The Zicfiss extension adds the SSE field in henvcfg. If the SSE field is set to 1, the Zicfiss extension is
activated in VS-mode. When the SSE field is 0, the Zicfiss extension remains inactive in VS-mode, and
the following rules apply when V=1:

⚫ 32-bit Zicfiss instructions will revert to their behavior as defined by Zimop.

⚫ 16-bit Zicfiss instructions will revert to their behavior as defined by Zcmop.

⚫ The pte.xwr=010b encoding in VS-stage page tables becomes reserved.

⚫ The senvcfg.SSE field will read as zero and is read-only.

⚫ When menvcfg.SSE is one, SSAMOSWAP.W/D raises a virtual instruction exception.

The Ssdbltrp extension adds the double-trap-enable (DTE) field in henvcfg. When henvcfg.DTE is zero, the
implementation behaves as though Ssdbltrp is not implemented for VS-mode and the vsstatus.SDT bit
is read-only zero.

When XLEN=32, henvcfgh is a 32-bit read/write register that aliases bits 63:32 of henvcfg. Register
henvcfgh does not exist when XLEN=64.

21.2.6. Hypervisor Counter-Enable (hcounteren) Register

The counter-enable register hcounteren is a 32-bit register that controls the availability of the hardware
performance monitoring counters to the guest virtual machine.

31 30 29 28 6 5 4 3 2 1 0
HPM31HPM30HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 92. Hypervisor counter-enable register (hcounteren).

When the CY, TM, IR, or HPM_n_ bit in the hcounteren register is clear, attempts to read the cycle, time,
instret, or hpmcounter n register while V=1 will cause a virtual-instruction exception if the same bit in
mcounteren is 1. When one of these bits is set, access to the corresponding register is permitted when
V=1, unless prevented for some other reason. In VU-mode, a counter is not readable unless the
applicable bits are set in both hcounteren and scounteren.

hcounteren must be implemented. However, any of the bits may be read-only zero, indicating reads to
the corresponding counter will cause an exception when V=1. Hence, they are effectively WARL fields.

21.2.7. Hypervisor Time Delta (htimedelta) Register

The htimedelta CSR is a 64-bit read/write register that contains the delta between the value of the time
CSR and the value returned in VS-mode or VU-mode. That is, reading the time CSR in VS or VU mode
returns the sum of the contents of htimedelta and the actual value of time.


Because overflow is ignored when summing htimedelta and time, large values of
htimedelta may be used to represent negative time offsets.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 166

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

63 0
htimedelta

64

Figure 93. Hypervisor time delta register.

When XLEN=32, htimedeltah is a 32-bit read/write register that aliases bits 63:32 of htimedelta.
Register htimedeltah does not exist when XLEN=64.

If the time CSR is implemented, htimedelta (and htimedeltah for XLEN=32) must be implemented.

21.2.8. Hypervisor Trap Value (htval) Register

The htval register is an HSXLEN-bit read/write register formatted as shown in Figure 94. When a trap
is taken into HS-mode, htval is written with additional exception-specific information, alongside stval,
to assist software in handling the trap.

HSXLEN-1 0
htval

HSXLEN

Figure 94. Hypervisor trap value register (htval).

When a guest-page-fault trap is taken into HS-mode, htval is written with either zero or the guest
physical address that faulted, shifted right by 2 bits. For other traps, htval is set to zero, but a future
standard or extension may redefine htval’s setting for other traps.

A guest-page fault may arise due to an implicit memory access during first-stage (VS-stage) address
translation, in which case a guest physical address written to htval is that of the implicit memory
access that faulted—for example, the address of a VS-level page table entry that could not be read.
(The guest physical address corresponding to the original virtual address is unknown when VS-stage
translation fails to complete.) Additional information is provided in CSR htinst to disambiguate such
situations.

Otherwise, for misaligned loads and stores that cause guest-page faults, a nonzero guest physical
address in htval corresponds to the faulting portion of the access as indicated by the virtual address in
stval. For instruction guest-page faults on systems with variable-length instructions, a nonzero htval
corresponds to the faulting portion of the instruction as indicated by the virtual address in stval.



A guest physical address written to htval is shifted right by 2 bits to accommodate
addresses wider than the current XLEN. For RV32, the hypervisor extension permits
guest physical addresses as wide as 34 bits, and htval reports bits 33:2 of the
address. This shift-by-2 encoding of guest physical addresses matches the encoding
of physical addresses in PMP address registers (Section 3.7) and in page table
entries (Section 12.3, Section 12.4, Section 12.5, and Section 12.6).

If the least-significant two bits of a faulting guest physical address are needed, these
bits are ordinarily the same as the least-significant two bits of the faulting virtual
address in stval. For faults due to implicit memory accesses for VS-stage address
translation, the least-significant two bits are instead zeros. These cases can be
distinguished using the value provided in register htinst.

htval is a WARL register that must be able to hold zero and may be capable of holding only an
arbitrary subset of other 2-bit-shifted guest physical addresses, if any.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 167

The RISC-V Instruction Set Manual: Volume II | © RISC-V International


Unless it has reason to assume otherwise (such as a platform standard), software
that writes a value to htval should read back from htval to confirm the stored value.

21.2.9. Hypervisor Trap Instruction (htinst) Register

The htinst register is an HSXLEN-bit read/write register formatted as shown in Figure 95. When a trap
is taken into HS-mode, htinst is written with a value that, if nonzero, provides information about the
instruction that trapped, to assist software in handling the trap. The values that may be written to
htinst on a trap are documented in Section 21.6.3.

HSXLEN-1 0
htinst

HSXLEN

Figure 95. Hypervisor trap instruction (htinst) register.

htinst is a WARL register that need only be able to hold the values that the implementation may
automatically write to it on a trap.

21.2.10. Hypervisor Guest Address Translation and Protection (hgatp) Register

The hgatp register is an HSXLEN-bit read/write register, formatted as shown in Figure 96 for
HSXLEN=32 and Figure 97 for HSXLEN=64, which controls G-stage address translation and protection,
the second stage of two-stage translation for guest virtual addresses (see Section 21.5). Similar to CSR
satp, this register holds the physical page number (PPN) of the guest-physical root page table; a virtual
machine identifier (VMID), which facilitates address-translation fences on a per-virtual-machine basis;
and the MODE field, which selects the address-translation scheme for guest physical addresses. When
mstatus.TVM=1, attempts to read or write hgatp while executing in HS-mode will raise an illegal-
instruction exception.

31 30 29 28 22 21 0
MODE 0 (WARL) VMID (WARL) PPN (WARL)

1 2 7 22

Figure 96. Hypervisor guest address translation and protection register hgatp when HSXLEN=32.

63 60 59 58 57 44 43 0
MODE (WARL) 0 (WARL) VMID (WARL) PPN (WARL)

4 2 14 44

Figure 97. Hypervisor guest address translation and protection register hgatp when HSXLEN=64 for MODE
values Bare, Sv39x4, and Sv57x4.

Table 41 shows the encodings of the MODE field when HSXLEN=32 and HSXLEN=64. When
MODE=Bare, guest physical addresses are equal to supervisor physical addresses, and there is no
further memory protection for a guest virtual machine beyond the physical memory protection scheme
described in Section 3.7. In this case, the remaining fields in hgatp must be set to zeros.

When HSXLEN=32, the only other valid setting for MODE is Sv32x4, which is a modification of the
usual Sv32 paged virtual-memory scheme, extended to support 34-bit guest physical addresses. When
HSXLEN=64, modes Sv39x4, Sv48x4, and Sv57x4 are defined as modifications of the Sv39, Sv48, and
Sv57 paged virtual-memory schemes. All of these paged virtual-memory schemes are described in
Section 21.5.1.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 168

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The remaining MODE settings when HSXLEN=64 are reserved for future use and may define different
interpretations of the other fields in hgatp.

Table 41. Encoding of hgatp MODE field.

HSXLEN=32

Value Name Description

0
1

Bare
Sv32x4

No translation or protection.
Page-based 34-bit virtual addressing (2-bit extension of Sv32).

HSXLEN=64

Value Name Description

0
1-7
8
9
10

11-15

Bare
—

Sv39x4
Sv48x4
Sv57x4

—

No translation or protection.
Reserved
Page-based 41-bit virtual addressing (2-bit extension of Sv39).
Page-based 50-bit virtual addressing (2-bit extension of Sv48).
Page-based 59-bit virtual addressing (2-bit extension of Sv57).
Reserved

Implementations are not required to support all defined MODE settings when HSXLEN=64.

A write to hgatp with an unsupported MODE value is not ignored as it is for satp. Instead, the fields of
hgatp are WARL in the normal way, when so indicated.

As explained in Section 21.5.1, for the paged virtual-memory schemes (Sv32x4, Sv39x4, Sv48x4, and
Sv57x4), the root page table is 16 KiB and must be aligned to a 16-KiB boundary. In these modes, the
lowest two bits of the physical page number (PPN) in hgatp always read as zeros. An implementation
that supports only the defined paged virtual-memory schemes and/or Bare may make PPN[1:0] read-
only zero.

The number of VMID bits is UNSPECIFIED and may be zero. The number of implemented VMID bits,
termed VMIDLEN, may be determined by writing one to every bit position in the VMID field, then
reading back the value in hgatp to see which bit positions in the VMID field hold a one. The least-
significant bits of VMID are implemented first: that is, if VMIDLEN > 0, VMID[VMIDLEN-1:0] is
writable. The maximal value of VMIDLEN, termed VMIDMAX, is 7 for Sv32x4 or 14 for Sv39x4, Sv48x4,
and Sv57x4.

The hgatp register is considered active for the purposes of the address-translation algorithm unless the
effective privilege mode is U and hstatus.HU=0.


This definition simplifies the implementation of speculative execution of HLV, HLVX,
and HSV instructions.

Note that writing hgatp does not imply any ordering constraints between page-table updates and
subsequent G-stage address translations. If the new virtual machine’s guest physical page tables have
been modified, or if a VMID is reused, it may be necessary to execute an HFENCE.GVMA instruction
(see Section 21.3.2) before or after writing hgatp.

21.2.11. Virtual Supervisor Status (vsstatus) Register

The vsstatus register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register sstatus, formatted as shown in Figure 98 when VSXLEN=32 and Figure 99 when VSXLEN=64.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 169

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

When V=1, vsstatus substitutes for the usual sstatus, so instructions that normally read or modify
sstatus actually access vsstatus instead.

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

1617181920222324253031

XS[1:0]WPRISUMMXRWPRISPELPSDTWPRISD

Figure 98. Virtual supervisor status (vsstatus) register when VSXLEN=32.

012456789101112131415

WPRISIEWPRISPIEUBEWPRISPPVS[1:0]WPRIFS[1:0]XS[1:0]

16171819202223242531

XS[1:0]WPRISUMMXRWPRISPELPSDTWPRI

32333447

UXL[1:0]WPRI

486263

WPRISD

Figure 99. Virtual supervisor status (vsstatus) register when VSXLEN=64.

The UXL field controls the effective XLEN for VU-mode, which may differ from the XLEN for VS-mode
(VSXLEN). When VSXLEN=32, the UXL field does not exist, and VU-mode XLEN=32. When VSXLEN=64,
UXL is a WARL field that is encoded the same as the MXL field of misa, shown in Table 9. In particular,
an implementation may make UXL be a read-only copy of field VSXL of hstatus, forcing VU-mode
XLEN=VSXLEN.

If VSXLEN is changed from 32 to a wider width, and if field UXL is not restricted to a single value, it
gets the value corresponding to the widest supported width not wider than the new VSXLEN.

When V=1, both vsstatus.FS and the HS-level sstatus.FS are in effect. Attempts to execute a floating-
point instruction when either field is 0 (Off) raise an illegal-instruction exception. Modifying the
floating-point state when V=1 causes both fields to be set to 3 (Dirty).



For a hypervisor to benefit from the extension context status, it must have its own
copy in the HS-level sstatus, maintained independently of a guest OS running in VS-
mode. While a version of the extension context status obviously must exist in vsstatus
for VS-mode, a hypervisor cannot rely on this version being maintained correctly,
given that VS-level software can change vsstatus.FS arbitrarily. If the HS-level
sstatus.FS were not independently active and maintained by the hardware in parallel
with vsstatus.FS while V=1, hypervisors would always be forced to conservatively swap
all floating-point state when context-switching between virtual machines.

Similarly, when V=1, both vsstatus.VS and the HS-level sstatus.VS are in effect. Attempts to execute a
vector instruction when either field is 0 (Off) raise an illegal-instruction exception. Modifying the vector
state when V=1 causes both fields to be set to 3 (Dirty).

Read-only fields SD and XS summarize the extension context status as it is visible to VS-mode only.
For example, the value of the HS-level sstatus.FS does not affect vsstatus.SD.

An implementation may make field UBE be a read-only copy of hstatus.VSBE.

When V=0, vsstatus does not directly affect the behavior of the machine, unless a virtual-machine
load/store (HLV, HLVX, or HSV) or the MPRV feature in the mstatus register is used to execute a load or
store as though V=1.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 170

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

The Zicfilp extension adds the SPELP field that holds the previous ELP, and is updated as specified in
Section 22.1.2. The SPELP field is encoded as follows:

⚫ 0 - NO_LP_EXPECTED - no landing pad instruction expected.

⚫ 1 - LP_EXPECTED - a landing pad instruction is expected.

The Ssdbltrp adds an S-mode-disable-trap (SDT) field extension to address double trap (See Section
12.1.1.5) in VS-mode.

21.2.12. Virtual Supervisor Interrupt (vsip and vsie) Registers

The vsip and vsie registers are VSXLEN-bit read/write registers that are VS-mode’s versions of
supervisor CSRs sip and sie, formatted as shown in Figure 100 and Figure 101 respectively. When V=1,
vsip and vsie substitute for the usual sip and sie, so instructions that normally read or modify sip/sie
actually access vsip/vsie instead. However, interrupts directed to HS-level continue to be indicated in
the HS-level sip register, not in vsip, when V=1.

VSXLEN-1 0
Interrupts (WARL)

VSXLEN

Figure 100. Virtual supervisor interrupt-pending register (vsip).

VSXLEN-1 0
Interrupts (WARL)

VSXLEN

Figure 101. Virtual supervisor interrupt-enable register (vsie).

The standard portions (bits 15:0) of registers vsip and vsie are formatted as shown in Figure 102 and
Figure 103 respectively.

15 14 13 12 10 9 8 6 5 4 2 1 0
0 LCOFIP 0 SEIP 0 STIP 0 SSIP 0
2 1 3 1 3 1 3 1 1

Figure 102. Standard portion (bits 15:0) of vsip.

15 14 13 12 10 9 8 6 5 4 2 1 0
0 LCOFIE 0 SEIE 0 STIE 0 SSIE 0
2 1 3 1 3 1 3 1 1

Figure 103. Standard portion (bits 15:0) of vsie.

Extension Shlcofideleg supports delegating LCOFI interrupts to VS-mode. If the Shlcofideleg
extension is implemented, hideleg bit 13 is writable; otherwise, it is read-only zero. When bit 13 of
hideleg is zero, vsip.LCOFIP and vsie.LCOFIE are read-only zeros. Else, vsip.LCOFIP and vsie.LCOFIE
are aliases of sip.LCOFIP and sie.LCOFIE.

When bit 10 of hideleg is zero, vsip.SEIP and vsie.SEIE are read-only zeros. Else, vsip.SEIP and
vsie.SEIE are aliases of hip.VSEIP and hie.VSEIE.

When bit 6 of hideleg is zero, vsip.STIP and vsie.STIE are read-only zeros. Else, vsip.STIP and vsie.STIE
are aliases of hip.VSTIP and hie.VSTIE.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 171

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

When bit 2 of hideleg is zero, vsip.SSIP and vsie.SSIE are read-only zeros. Else, vsip.SSIP and
vsie.SSIE are aliases of hip.VSSIP and hie.VSSIE.

21.2.13. Virtual Supervisor Trap Vector Base Address (vstvec) Register

The vstvec register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor register
stvec, formatted as shown in Figure 104. When V=1, vstvec substitutes for the usual stvec, so
instructions that normally read or modify stvec actually access vstvec instead. When V=0, vstvec does
not directly affect the behavior of the machine.

VSXLEN-1 2 1 0
BASE[VSXLEN-1:2] (WARL) MODE (WARL)

VSXLEN-2 2

Figure 104. Virtual supervisor trap vector base address register vstvec.

21.2.14. Virtual Supervisor Scratch (vsscratch) Register

The vsscratch register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register sscratch, formatted as shown in Figure 105. When V=1, vsscratch substitutes for the usual
sscratch, so instructions that normally read or modify sscratch actually access vsscratch instead. The
contents of vsscratch never directly affect the behavior of the machine.

VSXLEN-1 0
vsscratch
VSXLEN

Figure 105. Virtual supervisor scratch register vsscratch.

21.2.15. Virtual Supervisor Exception Program Counter (vsepc) Register

The vsepc register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor register
sepc, formatted as shown in Figure 106. When V=1, vsepc substitutes for the usual sepc, so instructions
that normally read or modify sepc actually access vsepc instead. When V=0, vsepc does not directly
affect the behavior of the machine.

vsepc is a WARL register that must be able to hold the same set of values that sepc can hold.

VSXLEN-1 0
vsepc

VSXLEN

Figure 106. Virtual supervisor exception program counter (vsepc).

21.2.16. Virtual Supervisor Cause (vscause) Register

The vscause register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor
register scause, formatted as shown in Figure 107. When V=1, vscause substitutes for the usual scause, so
instructions that normally read or modify scause actually access vscause instead. When V=0, vscause
does not directly affect the behavior of the machine.

vscause is a WLRL register that must be able to hold the same set of values that scause can hold.

21.2. Hypervisor and Virtual Supervisor CSRs | Page 172

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

VSXLEN-1 VSXLEN-2 0
Interrupt Exception Code (WLRL)

1 VSXLEN-1

Figure 107. Virtual supervisor cause register (vscause).

21.2.17. Virtual Supervisor Trap Value (vstval) Register

The vstval register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor register
stval, formatted as shown in Figure 108. When V=1, vstval substitutes for the usual stval, so
instructions that normally read or modify stval actually access vstval instead. When V=0, vstval does
not directly affect the behavior of the machine.

vstval is a WARL register that must be able to hold the same set of values that stval can hold.

VSXLEN-1 0
vstval

VSXLEN

Figure 108. Virtual supervisor trap value register (vstval).

21.2.18. Virtual Supervisor Address Translation and Protection (vsatp) Register

The vsatp register is a VSXLEN-bit read/write register that is VS-mode’s version of supervisor register
satp, formatted as shown in Figure 109 for VSXLEN=32 and Figure 110 for VSXLEN=64. When V=1,
vsatp substitutes for the usual satp, so instructions that normally read or modify satp actually access
vsatp instead. vsatp controls VS-stage address translation, the first stage of two-stage translation for
guest virtual addresses (see Section 21.5).

31 30 22 21 0
Mode (WARL) ASID (WARL) PPN (WARL)

1 9 22

Figure 109. Virtual supervisor address translation and protection vsatp register when VSXLEN=32.

63 60 59 44 43 0
Mode (WARL) ASID (WARL) PPN (WARL)

4 16 44

Figure 110. Virtual supervisor address translation and protection vsatp register when VSXLEN=64.

The vsatp register is considered active for the purposes of the address-translation algorithm unless the
effective privilege mode is U and hstatus.HU=0. However, even when vsatp is active, VS-stage page-
table entries’ A bits must not be set as a result of speculative execution, unless the effective privilege
mode is VS or VU.


In particular, virtual-machine load/store (HLV, HLVX, or HSV) instructions that are
misspeculatively executed must not cause VS-stage A bits to be set.

When V=0, a write to vsatp with an unsupported MODE value is either ignored as it is for satp, or the
fields of vsatp are treated as WARL in the normal way. However, when V=1, a write to satp with an
unsupported MODE value is ignored and no write to vsatp is effected.

When V=0, vsatp does not directly affect the behavior of the machine, unless a virtual-machine
load/store (HLV, HLVX, or HSV) or the MPRV feature in the mstatus register is used to execute a load or

21.2. Hypervisor and Virtual Supervisor CSRs | Page 173

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

store as though V=1.

21.3. Hypervisor Instructions

The hypervisor extension adds virtual-machine load and store instructions and two privileged fence
instructions.

21.3.1. Hypervisor Virtual-Machine Load and Store Instructions

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM
SYSTEM
SYSTEM

5
dest
dest

0

3
PRIVM
PRIVM
PRIVM

5
addr
addr
addr

5
[U]

HLVX
src

7
HLV.width

HLVX.HU/WU
HSV.width

The hypervisor virtual-machine load and store instructions are valid only in M-mode or HS-mode, or in
U-mode when hstatus.HU=1. Each instruction performs an explicit memory access as though V=1; i.e.,
with the address translation and protection, and the endianness, that apply to memory accesses in
either VS-mode or VU-mode. Field SPVP of hstatus controls the privilege level of the access. The
explicit memory access is done as though in VU-mode when SPVP=0, and as though in VS-mode when
SPVP=1. As usual when V=1, two-stage address translation is applied, and the HS-level sstatus.SUM is
ignored. HS-level sstatus.MXR makes execute-only pages readable by explicit loads for both stages of
address translation (VS-stage and G-stage), whereas vsstatus.MXR affects only the first translation
stage (VS-stage).

For every RV32I or RV64I load instruction, LB, LBU, LH, LHU, LW, LWU, and LD, there is a
corresponding virtual-machine load instruction: HLV.B, HLV.BU, HLV.H, HLV.HU, HLV.W, HLV.WU, and
HLV.D. For every RV32I or RV64I store instruction, SB, SH, SW, and SD, there is a corresponding
virtual-machine store instruction: HSV.B, HSV.H, HSV.W, and HSV.D. Instructions HLV.WU, HLV.D, and
HSV.D are not valid for RV32, of course.

Instructions HLVX.HU and HLVX.WU are the same as HLV.HU and HLV.WU, except that execute
permission takes the place of read permission during address translation. That is, the memory being
read must be executable in both stages of address translation, but read permission is not required. For
the supervisor physical address that results from address translation, the supervisor physical memory
attributes must grant both execute and read permissions. (The supervisor physical memory attributes
are the machine’s physical memory attributes as modified by physical memory protection, Section 3.7,
for supervisor level.)



HLVX cannot override machine-level physical memory protection (PMP), so
attempting to read memory that PMP designates as execute-only still results in an
access-fault exception.

Although HLVX instructions’ explicit memory accesses require execute permissions,
they still raise the same exceptions as other load instructions, rather than raising
fetch exceptions instead.

HLVX.WU is valid for RV32, even though LWU and HLV.WU are not. (For RV32, HLVX.WU can be
considered a variant of HLV.W, as sign extension is irrelevant for 32-bit values.)

Attempts to execute a virtual-machine load/store instruction (HLV, HLVX, or HSV) when V=1 cause a
virtual-instruction exception. Attempts to execute one of these same instructions from U-mode when

21.3. Hypervisor Instructions | Page 174

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

hstatus.HU=0 cause an illegal-instruction exception.

21.3.2. Hypervisor Memory-Management Fence Instructions

067111214151920242531

opcoderdfunct3rs1rs2funct7

7
SYSTEM
SYSTEM

5
0
0

3
PRIV
PRIV

5
vaddr
gaddr

5
asid
vmid

7
HFENCE.VVMA
HFENCE.GVMA

The hypervisor memory-management fence instructions, HFENCE.VVMA and HFENCE.GVMA, perform a
function similar to SFENCE.VMA (Section 12.2.1), except applying to the VS-level memory-management
data structures controlled by CSR vsatp (HFENCE.VVMA) or the guest-physical memory-management
data structures controlled by CSR hgatp (HFENCE.GVMA). Instruction SFENCE.VMA applies only to the
memory-management data structures controlled by the current satp (either the HS-level satp when V=0
or vsatp when V=1).

HFENCE.VVMA is valid only in M-mode or HS-mode. Its effect is much the same as temporarily
entering VS-mode and executing SFENCE.VMA. Executing an HFENCE.VVMA guarantees that any
previous stores already visible to the current hart are ordered before all implicit reads by that hart
done for VS-stage address translation for instructions that

⚫ are subsequent to the HFENCE.VVMA, and

⚫ execute when hgatp.VMID has the same setting as it did when HFENCE.VVMA executed.

Implicit reads need not be ordered when hgatp.VMID is different than at the time HFENCE.VVMA
executed. If operand rs1≠x0, it specifies a single guest virtual address, and if operand rs2≠x0, it
specifies a single guest address-space identifier (ASID).


An HFENCE.VVMA instruction applies only to a single virtual machine, identified by
the setting of hgatp.VMID when HFENCE.VVMA executes.

When rs2≠x0, bits XLEN-1:ASIDMAX of the value held in rs2 are reserved for future standard use. Until
their use is defined by a standard extension, they should be zeroed by software and ignored by current
implementations. Furthermore, if ASIDLEN < ASIDMAX, the implementation shall ignore bits
ASIDMAX-1:ASIDLEN of the value held in rs2.



Simpler implementations of HFENCE.VVMA can ignore the guest virtual address in
rs1 and the guest ASID value in rs2, as well as hgatp.VMID, and always perform a
global fence for the VS-level memory management of all virtual machines, or even a
global fence for all memory-management data structures.

Neither mstatus.TVM nor hstatus.VTVM causes HFENCE.VVMA to trap.

HFENCE.GVMA is valid only in HS-mode when mstatus.TVM=0, or in M-mode (irrespective of
mstatus.TVM). Executing an HFENCE.GVMA instruction guarantees that any previous stores already
visible to the current hart are ordered before all implicit reads by that hart done for G-stage address
translation for instructions that follow the HFENCE.GVMA. If operand rs1≠x0, it specifies a single guest
physical address, shifted right by 2 bits, and if operand rs2≠x0, it specifies a single virtual machine
identifier (VMID).


Conceptually, an implementation might contain two address-translation caches: one
that maps guest virtual addresses to guest physical addresses, and another that

21.3. Hypervisor Instructions | Page 175

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

maps guest physical addresses to supervisor physical addresses. HFENCE.GVMA
need not flush the former cache, but it must flush entries from the latter cache that
match the HFENCE.GVMA’s address and VMID arguments.

More commonly, implementations contain address-translation caches that map guest
virtual addresses directly to supervisor physical addresses, removing a level of
indirection. For such implementations, any entry whose guest virtual address maps to
a guest physical address that matches the HFENCE.GVMA’s address and VMID
arguments must be flushed. Selectively flushing entries in this fashion requires
tagging them with the guest physical address, which is costly, and so a common
technique is to flush all entries that match the HFENCE.GVMA’s VMID argument,
regardless of the address argument.

Like for a guest physical address written to htval on a trap, a guest physical address
specified in rs1 is shifted right by 2 bits to accommodate addresses wider than the
current XLEN.

When rs2≠x0, bits XLEN-1:VMIDMAX of the value held in rs2 are reserved for future standard use. Until
their use is defined by a standard extension, they should be zeroed by software and ignored by current
implementations. Furthermore, if VMIDLEN < VMIDMAX, the implementation shall ignore bits
VMIDMAX-1:VMIDLEN of the value held in rs2.



Simpler implementations of HFENCE.GVMA can ignore the guest physical address in
rs1 and the VMID value in rs2 and always perform a global fence for the guest-
physical memory management of all virtual machines, or even a global fence for all
memory-management data structures.

If hgatp.MODE is changed for a given VMID, an HFENCE.GVMA with rs1=x0 (and rs2 set to either x0 or
the VMID) must be executed to order subsequent guest translations with the MODE change—even if
the old MODE or new MODE is Bare.

Attempts to execute HFENCE.VVMA or HFENCE.GVMA when V=1 cause a virtual-instruction exception,
while attempts to do the same in U-mode cause an illegal-instruction exception. Attempting to execute
HFENCE.GVMA in HS-mode when mstatus.TVM=1 also causes an illegal-instruction exception.

21.4. Machine-Level CSRs

The hypervisor extension augments or modifies machine CSRs mstatus, mstatush, mideleg, mip, and mie,
and adds CSRs mtval2 and mtinst.

21.4.1. Machine Status (mstatus and mstatush) Registers

The hypervisor extension adds two fields, MPV and GVA, to the machine-level mstatus or mstatush CSR,
and modifies the behavior of several existing mstatus fields. Figure 111 shows the modified mstatus
register when the hypervisor extension is implemented and MXLEN=64. When MXLEN=32, the
hypervisor extension adds MPV and GVA not to mstatus but to mstatush. Figure 112 shows the mstatush
register when the hypervisor extension is implemented and MXLEN=32.

21.4. Machine-Level CSRs | Page 176

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

63 62 40 39 38 37 36 35 34 33 32
SD WPRI MPV GVA MBE SBE SXL[1:0] UXL[1:0]
1 23 1 1 1 1 2 2

31 23 22 21 20 19 18 17 16 15 14 13
WPRI TSR TW TVM MXR SUM MPRV XS[1:0] FS[1:0]

9 1 1 1 1 1 1 2 2

12 11 10 9 8 7 6 5 4 3 2 1 0
MPP[1:0] VS[1:0] SPP MPIE UBE SPIE WPRI MIE WPRI SIE WPRI

2 2 1 1 1 1 1 1 1 1 1

Figure 111. Machine status (mstatus) register for RV64 when the hypervisor extension is implemented.

31 8 7 6 5 4 3 0
WPRI MPV GVA MBE SBE WPRI

24 1 1 1 1 4

Figure 112. Additional machine status (mstatush) register for RV32 when the hypervisor extension is
implemented. The format of mstatus is unchanged for RV32.

The MPV bit (Machine Previous Virtualization Mode) is written by the implementation whenever a trap
is taken into M-mode. Just as the MPP field is set to the (nominal) privilege mode at the time of the
trap, the MPV bit is set to the value of the virtualization mode V at the time of the trap. When an MRET
instruction is executed, the virtualization mode V is set to MPV, unless MPP=3, in which case V
remains 0.

Field GVA (Guest Virtual Address) is written by the implementation whenever a trap is taken into M-
mode. For any trap (breakpoint, address misaligned, access fault, page fault, or guest-page fault) that
writes a guest virtual address to mtval, GVA is set to 1. For any other trap into M-mode, GVA is set to 0.

The TSR and TVM fields of mstatus affect execution only in HS-mode, not in VS-mode. The TW field
affects execution in all modes except M-mode.

Setting TVM=1 prevents HS-mode from accessing hgatp or executing HFENCE.GVMA or HINVAL.GVMA,
but has no effect on accesses to vsatp or instructions HFENCE.VVMA or HINVAL.VVMA.



TVM exists in mstatus to allow machine-level software to modify the address
translations managed by a supervisor-level OS, usually for the purpose of inserting
another stage of address translation below that controlled by the OS. The instruction
traps enabled by TVM=1 permit machine level to co-opt both satp and hgatp and
substitute shadow page tables that merge the OS’s chosen page translations with M-
level’s lower-stage translations, all without the OS being aware. M-level software
needs this ability not only to emulate the hypervisor extension if not already
supported, but also to emulate any future RISC-V extensions that may modify or add
address translation stages, perhaps, for example, to improve support for nested
hypervisors, i.e., running hypervisors atop other hypervisors.

However, setting TVM=1 does not cause traps for accesses to vsatp or instructions
HFENCE.VVMA or HINVAL.VVMA, or for any actions taken in VS-mode, because M-
level software is not expected to need to involve itself in VS-stage address
translation. For virtual machines, it should be sufficient, and in all likelihood faster as
well, to leave VS-stage address translation alone and merge all other translation
stages into G-stage shadow page tables controlled by hgatp. This assumption does

21.4. Machine-Level CSRs | Page 177

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

place some constraints on possible future RISC-V extensions that current machines
will be able to emulate efficiently.

The hypervisor extension changes the behavior of the Modify Privilege field, MPRV, of mstatus. When
MPRV=0, translation and protection behave as normal. When MPRV=1, explicit memory accesses are
translated and protected, and endianness is applied, as though the current virtualization mode were
set to MPV and the current nominal privilege mode were set to MPP. Table 42 enumerates the cases.

Table 42. Effect of MPRV on the translation and protection of explicit memory accesses.

MPRV MPV MPP Effect

0 - - Normal access; current privilege mode applies.

1 0 0 U-level access with HS-level translation and protection only.

1 0 1 HS-level access with HS-level translation and protection only.

1 - 3 M-level access with no translation.

1 1 0 VU-level access with two-stage translation and protection. The HS-level
MXR bit makes any executable page readable. vsstatus.MXR makes
readable those pages marked executable at the VS translation stage, but
only if readable at the guest-physical translation stage.

1 1 1 VS-level access with two-stage translation and protection. The HS-level
MXR bit makes any executable page readable. vsstatus.MXR makes
readable those pages marked executable at the VS translation stage, but
only if readable at the guest-physical translation stage. vsstatus.SUM
applies instead of the HS-level SUM bit.

MPRV does not affect the virtual-machine load/store instructions, HLV, HLVX, and HSV. The explicit
loads and stores of these instructions always act as though V=1 and the nominal privilege mode were
hstatus.SPVP, overriding MPRV.

The mstatus register is a superset of the HS-level sstatus register but is not a superset of vsstatus.

21.4.2. Machine Interrupt Delegation (mideleg) Register

When the hypervisor extension is implemented, bits 10, 6, and 2 of mideleg (corresponding to the
standard VS-level interrupts) are each read-only one. Furthermore, if any guest external interrupts are
implemented (GEILEN is nonzero), bit 12 of mideleg (corresponding to supervisor-level guest external
interrupts) is also read-only one. VS-level interrupts and guest external interrupts are always delegated
past M-mode to HS-mode.

For bits of mideleg that are zero, the corresponding bits in hideleg, hip, and hie are read-only zeros.

21.4.3. Machine Interrupt (mip and mie) Registers

The hypervisor extension gives registers mip and mie additional active bits for the hypervisor-added
interrupts. Figure 113 and Figure 114 show the standard portions (bits 15:0) of registers mip and mie
when the hypervisor extension is implemented.

21.4. Machine-Level CSRs | Page 178

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 LCOFIP SGEIP MEIP VSEIP SEIP 0 MTIP VSTIP STIP 0 MSIP VSSIP SSIP 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 113. Standard portion (bits 15:0) of mip.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 LCOFIE SGEIE MEIE VSEIE SEIE 0 MTIE VSTIE STIE 0 MSIE VSSIE SSIE 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 114. Standard portion (bits 15:0) of mie.

Bits SGEIP, VSEIP, VSTIP, and VSSIP in mip are aliases for the same bits in hypervisor CSR hip, while
SGEIE, VSEIE, VSTIE, and VSSIE in mie are aliases for the same bits in hie.

21.4.4. Machine Second Trap Value (mtval2) Register

The mtval2 register is an MXLEN-bit read/write register formatted as shown in Figure 115. When a trap
is taken into M-mode, mtval2 is written with additional exception-specific information, alongside mtval,
to assist software in handling the trap.

MXLEN-1 0
mtval2
MXLEN

Figure 115. Machine second trap value register (mtval2).

When a guest-page-fault trap is taken into M-mode, mtval2 is written with either zero or the guest
physical address that faulted, shifted right by 2 bits. For other traps, mtval2 is set to zero, but a future
standard or extension may redefine mtval2’s setting for other traps.

If a guest-page fault is due to an implicit memory access during first-stage (VS-stage) address
translation, a guest physical address written to mtval2 is that of the implicit memory access that
faulted. Additional information is provided in CSR mtinst to disambiguate such situations.

Otherwise, for misaligned loads and stores that cause guest-page faults, a nonzero guest physical
address in mtval2 corresponds to the faulting portion of the access as indicated by the virtual address
in mtval. For instruction guest-page faults on systems with variable-length instructions, a nonzero
mtval2 corresponds to the faulting portion of the instruction as indicated by the virtual address in mtval.

mtval2 is a WARL register that must be able to hold zero and may be capable of holding only an
arbitrary subset of other 2-bit-shifted guest physical addresses, if any.

The Ssdbltrap extension (See Chapter 23) requires the implementation of the mtval2 CSR.

21.4.5. Machine Trap Instruction (mtinst) Register

The mtinst register is an MXLEN-bit read/write register formatted as shown in Figure 116. When a trap
is taken into M-mode, mtinst is written with a value that, if nonzero, provides information about the
instruction that trapped, to assist software in handling the trap. The values that may be written to
mtinst on a trap are documented in Section 21.6.3.

21.4. Machine-Level CSRs | Page 179

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

MXLEN-1 0
mtinst
MXLEN

Figure 116. Machine trap instruction (mtinst) register.

mtinst is a WARL register that need only be able to hold the values that the implementation may
automatically write to it on a trap.

21.5. Two-Stage Address Translation

Whenever the current virtualization mode V is 1, two-stage address translation and protection is in
effect. For any virtual memory access, the original virtual address is converted in the first stage by VS-
level address translation, as controlled by the vsatp register, into a guest physical address. The guest
physical address is then converted in the second stage by guest physical address translation, as
controlled by the hgatp register, into a supervisor physical address. The two stages are known also as
VS-stage and G-stage translation. Although there is no option to disable two-stage address translation
when V=1, either stage of translation can be effectively disabled by zeroing the corresponding vsatp or
hgatp register.

The vsstatus field MXR, which makes execute-only pages readable by explicit loads, only overrides VS-
stage page protection. Setting MXR at VS-level does not override guest-physical page protections.
Setting MXR at HS-level, however, overrides both VS-stage and G-stage execute-only permissions.

When V=1, memory accesses that would normally bypass address translation are subject to G-stage
address translation alone. This includes memory accesses made in support of VS-stage address
translation, such as reads and writes of VS-level page tables.

Machine-level physical memory protection applies to supervisor physical addresses and is in effect
regardless of virtualization mode.

21.5.1. Guest Physical Address Translation

The mapping of guest physical addresses to supervisor physical addresses is controlled by CSR hgatp
(Section 21.2.10).

When the address translation scheme selected by the MODE field of hgatp is Bare, guest physical
addresses are equal to supervisor physical addresses without modification, and no memory protection
applies in the trivial translation of guest physical addresses to supervisor physical addresses.

When hgatp.MODE specifies a translation scheme of Sv32x4, Sv39x4, Sv48x4, or Sv57x4, G-stage
address translation is a variation on the usual page-based virtual address translation scheme of Sv32,
Sv39, Sv48, or Sv57, respectively. In each case, the size of the incoming address is widened by 2 bits
(to 34, 41, 50, or 59 bits). To accommodate the 2 extra bits, the root page table (only) is expanded by a
factor of four to be 16 KiB instead of the usual 4 KiB. Matching its larger size, the root page table also
must be aligned to a 16 KiB boundary instead of the usual 4 KiB page boundary. Except as noted, all
other aspects of Sv32, Sv39, Sv48, or Sv57 are adopted unchanged for G-stage translation. Non-root
page tables and all page table entries (PTEs) have the same formats as documented in Section 12.3,
Section 12.4, Section 12.5, and Section 12.6.

For Sv32x4, an incoming guest physical address is partitioned into a virtual page number (VPN) and
page offset as shown in Figure 117. This partitioning is identical to that for an Sv32 virtual address as

21.5. Two-Stage Address Translation | Page 180

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

depicted in Figure 65, except with 2 more bits at the high end in VPN[1]. (Note that the fields of a
partitioned guest physical address also correspond one-for-one with the structure that Sv32 assigns to
a physical address, depicted in Figure 65.)

33 22 21 12 11 0
VPN[1] VPN[0] page offset

12 10 12

Figure 117. Sv32x4 virtual address (guest physical address).

For Sv39x4, an incoming guest physical address is partitioned as shown in Figure 118. This partitioning
is identical to that for an Sv39 virtual address as depicted in Figure 68, except with 2 more bits at the
high end in VPN[2]. Address bits 63:41 must all be zeros, or else a guest-page-fault exception occurs.

40 30 29 21 20 12 11 0
VPN[2] VPN[1] VPN[0] page offset

11 9 9 12

Figure 118. Sv39x4 virtual address (guest physical address).

For Sv48x4, an incoming guest physical address is partitioned as shown in Figure 119. This
partitioning is identical to that for an Sv48 virtual address as depicted in Figure 71, except with 2 more
bits at the high end in VPN[3]. Address bits 63:50 must all be zeros, or else a guest-page-fault
exception occurs.

49 39 38 30 29 21 20 12 11 0
VPN[3] VPN[2] VPN[1] VPN[0] page offset

11 9 9 9 12

Figure 119. Sv48x4 virtual address (guest physical address).

For Sv57x4, an incoming guest physical address is partitioned as shown in Figure 120. This
partitioning is identical to that for an Sv57 virtual address as depicted in Figure 74, except with 2 more
bits at the high end in VPN[4]. Address bits 63:59 must all be zeros, or else a guest-page-fault
exception occurs.

58 48 47 39 38 30 29 21 20 12 11 0
VPN[4] VPN[3] VPN[2] VPN[1] VPN[0] page offset

11 9 9 9 9 12

Figure 120. Sv57x4 virtual address (guest physical address).



The page-based G-stage address translation scheme for RV32, Sv32x4, is defined to
support a 34-bit guest physical address so that an RV32 hypervisor need not be
limited in its ability to virtualize real 32-bit RISC-V machines, even those with 33-bit
or 34-bit physical addresses. This may include the possibility of a machine
virtualizing itself, if it happens to use 33-bit or 34-bit physical addresses. Multiplying
the size and alignment of the root page table by a factor of four is the cheapest way
to extend Sv32 to cover a 34-bit address. The possible wastage of 12 KiB for an
unnecessarily large root page table is expected to be of negligible consequence for
most (maybe all) real uses.

A consistent ability to virtualize machines having as much as four times the physical
address space as virtual address space is believed to be of some utility also for
RV64. For a machine implementing 39-bit virtual addresses (Sv39), for example, this

21.5. Two-Stage Address Translation | Page 181

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

allows the hypervisor extension to support up to a 41-bit guest physical address
space without either necessitating hardware support for 48-bit virtual addresses
(Sv48) or falling back to emulating the larger address space using shadow page
tables.

The conversion of an Sv32x4, Sv39x4, Sv48x4, or Sv57x4 guest physical address is accomplished with
the same algorithm used for Sv32, Sv39, Sv48, or Sv57, as presented in Section 12.3.2, except that:

⚫ hgatp substitutes for the usual satp;

⚫ for the translation to begin, the effective privilege mode must be VS-mode or VU-mode;

⚫ when checking the U bit, the current privilege mode is always taken to be U-mode; and

⚫ guest-page-fault exceptions are raised instead of regular page-fault exceptions.

For G-stage address translation, all memory accesses (including those made to access data structures
for VS-stage address translation) are considered to be user-level accesses, as though executed in U-
mode. Access type permissions—readable, writable, or executable—are checked during G-stage
translation the same as for VS-stage translation. For a memory access made to support VS-stage
address translation (such as to read/write a VS-level page table), permissions and the need to set A
and/or D bits at the G-stage level are checked as though for an implicit load or store, not for the
original access type. However, any exception is always reported for the original access type
(instruction, load, or store/AMO).

The G bit in all G-stage PTEs is reserved for future standard use. Until its use is defined by a standard
extension, it should be cleared by software for forward compatibility, and must be ignored by hardware.



G-stage address translation uses the identical format for PTEs as regular address
translation, even including the U bit, due to the possibility of sharing some (or all)
page tables between G-stage translation and regular HS-level address translation.
Regardless of whether this usage will ever become common, we chose not to
preclude it.

21.5.2. Guest-Page Faults

Guest-page-fault traps may be delegated from M-mode to HS-mode under the control of CSR medeleg,
but cannot be delegated to other privilege modes. On a guest-page fault, CSR mtval or stval is written
with the faulting guest virtual address as usual, and mtval2 or htval is written either with zero or with
the faulting guest physical address, shifted right by 2 bits. CSR mtinst or htinst may also be written
with information about the faulting instruction or other reason for the access, as explained in Section
21.6.3.

When an instruction fetch or a misaligned memory access straddles a page boundary, two different
address translations are involved. When a guest-page fault occurs in such a circumstance, the faulting
virtual address written to mtval/stval is the same as would be required for a regular page fault. Thus,
the faulting virtual address may be a page-boundary address that is higher than the instruction’s
original virtual address, if the byte at that page boundary is among the accessed bytes.

When a guest-page fault is not due to an implicit memory access for VS-stage address translation, a
nonzero guest physical address written to mtval2/htval shall correspond to the exact virtual address
written to mtval/stval.

21.5. Two-Stage Address Translation | Page 182

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

21.5.3. Memory-Management Fences

The behavior of the SFENCE.VMA instruction is affected by the current virtualization mode V. When
V=0, the virtual-address argument is an HS-level virtual address, and the ASID argument is an HS-level
ASID. The instruction orders stores only to HS-level address-translation structures with subsequent
HS-level address translations.

When V=1, the virtual-address argument to SFENCE.VMA is a guest virtual address within the current
virtual machine, and the ASID argument is a VS-level ASID within the current virtual machine. The
current virtual machine is identified by the VMID field of CSR hgatp, and the effective ASID can be
considered to be the combination of this VMID with the VS-level ASID. The SFENCE.VMA instruction
orders stores only to the VS-level address-translation structures with subsequent VS-stage address
translations for the same virtual machine, i.e., only when hgatp.VMID is the same as when the
SFENCE.VMA executed.

Hypervisor instructions HFENCE.VVMA and HFENCE.GVMA provide additional memory-management
fences to complement SFENCE.VMA. These instructions are described in Section 21.3.2.

Section 3.7.2 discusses the intersection between physical memory protection (PMP) and page-based
address translation. It is noted there that, when PMP settings are modified in a manner that affects
either the physical memory that holds page tables or the physical memory to which page tables point,
M-mode software must synchronize the PMP settings with the virtual memory system. For HS-level
address translation, this is accomplished by executing in M-mode an SFENCE.VMA instruction with
rs1=x0 and rs2=x0, after the PMP CSRs are written. Synchronization with G-stage and VS-stage data
structures is also needed. Executing an HFENCE.GVMA instruction with rs1=x0 and rs2=x0 suffices to
flush all G-stage or VS-stage address-translation cache entries that have cached PMP settings
corresponding to the final translated supervisor physical address. An HFENCE.VVMA instruction is not
required.

Similarly, if the setting of the PBMTE bit in menvcfg is changed, an HFENCE.GVMA instruction with rs1
=x0 and rs2=x0 suffices to synchronize with respect to the altered interpretation of G-stage and VS-
stage PTEs' PBMT fields.

By contrast, if the PBMTE bit in henvcfg is changed, executing an HFENCE.VVMA with rs1=x0 and rs2=x0
suffices to synchronize with respect to the altered interpretation of VS-stage PTEs' PBMT fields for the
currently active VMID.



No mechanism is provided to atomically change vsatp and hgatp together. Hence, to
prevent speculative execution causing one guest’s VS-stage translations to be
cached under another guest’s VMID, world-switch code should zero vsatp, then swap
hgatp, then finally write the new vsatp value. Similarly, if henvcfg.PBMTE need be world-
switched, it should be switched after zeroing vsatp but before writing the new vsatp
value, obviating the need to execute an HFENCE.VVMA instruction.

21.6. Traps

21.6.1. Trap Cause Codes

The hypervisor extension augments the trap cause encoding. Table 43 lists the possible M-mode and
HS-mode trap cause codes when the hypervisor extension is implemented. Codes are added for VS-
level interrupts (interrupts 2, 6, 10), for supervisor-level guest external interrupts (interrupt 12), for

21.6. Traps | Page 183

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

virtual-instruction exceptions (exception 22), and for guest-page faults (exceptions 20, 21, 23).
Furthermore, environment calls from VS-mode are assigned cause 10, whereas those from HS-mode or
S-mode use cause 9 as usual.

Table 43. Machine and supervisor cause register (mcause and scause) values when the hypervisor extension
is implemented.

Interrupt Exception Code Description

1
1
1
1

0
1
2
3

Reserved
Supervisor software interrupt
Virtual supervisor software interrupt
Machine software interrupt

1
1
1
1

4
5
6
7

Reserved
Supervisor timer interrupt
Virtual supervisor timer interrupt
Machine timer interrupt

1
1
1
1

8
9

10
11

Reserved
Supervisor external interrupt
Virtual supervisor external interrupt
Machine external interrupt

1
1
1
1

12
13

14-15
≥16

Supervisor guest external interrupt
Reserved for counter-overflow interrupt
Reserved
Designated for platform use

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16-19
20
21
22
23

24-31
32-47
48-63

≥64

Instruction address misaligned
Instruction access fault
Illegal instruction
Breakpoint
Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault
Environment call from U-mode or VU-mode
Environment call from HS-mode
Environment call from VS-mode
Environment call from M-mode
Instruction page fault
Load page fault
Reserved
Store/AMO page fault
Reserved
Instruction guest-page fault
Load guest-page fault
Virtual instruction
Store/AMO guest-page fault
Designated for custom use
Reserved
Designated for custom use
Reserved

HS-mode and VS-mode ECALLs use different cause values so they can be delegated separately.

When V=1, a virtual-instruction exception (code 22) is normally raised instead of an illegal-instruction

21.6. Traps | Page 184

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

exception if the attempted instruction is HS-qualified but is prevented from executing when V=1 either
due to insufficient privilege or because the instruction is expressly disabled by a supervisor or
hypervisor CSR such as scounteren or hcounteren. An instruction is HS-qualified if it would be valid to
execute in HS-mode (for some values of the instruction’s register operands), assuming fields TSR and
TVM of CSR mstatus are both zero.

A special rule applies for CSR instructions that access 32-bit high-half CSRs such as cycleh and
htimedeltah. When V=1 and XLEN=32, an invalid attempt to access a high-half CSR raises a virtual-
instruction exception instead of an illegal-instruction exception if the same CSR instruction for the
corresponding low-half CSR (e.g.cycle or htimedelta) is HS-qualified.


When XLEN>32, an attempt to access a high-half CSR always raises an illegal-
instruction exception.

Specifically, a virtual-instruction exception is raised for the following cases:

⚫ in VS-mode, attempts to access a non-high-half counter CSR when the corresponding bit in
hcounteren is 0 and the same bit in mcounteren is 1;

⚫ in VS-mode, if XLEN=32, attempts to access a high-half counter CSR when the corresponding bit in
hcounteren is 0 and the same bit in mcounteren is 1;

⚫ in VU-mode, attempts to access a non-high-half counter CSR when the corresponding bit in either
hcounteren or scounteren is 0 and the same bit in mcounteren is 1;

⚫ in VU-mode, if XLEN=32, attempts to access a high-half counter CSR when the corresponding bit
in either hcounteren or scounteren is 0 and the same bit in mcounteren is 1;

⚫ in VS-mode or VU-mode, attempts to execute a hypervisor instruction (HLV, HLVX, HSV, or
HFENCE);

⚫ in VS-mode or VU-mode, attempts to access an implemented non-high-half hypervisor CSR or VS
CSR when the same access (read/write) would be allowed in HS-mode, assuming mstatus.TVM=0;

⚫ in VS-mode or VU-mode, if XLEN=32, attempts to access an implemented high-half hypervisor CSR
or high-half VS CSR when the same access (read/write) to the CSR"s low-half partner would be
allowed in HS-mode, assuming mstatus.TVM=0;

⚫ in VU-mode, attempts to execute WFI when mstatus.TW=0, or to execute a supervisor instruction
(SRET or SFENCE);

⚫ in VU-mode, attempts to access an implemented non-high-half supervisor CSR when the same
access (read/write) would be allowed in HS-mode, assuming mstatus.TVM=0;

⚫ in VU-mode, if XLEN=32, attempts to access an implemented high-half supervisor CSR when the
same access to the CSR’s low-half partner would be allowed in HS-mode, assuming mstatus.TVM=0;

⚫ in VS-mode, attempts to execute WFI when hstatus.VTW=1 and mstatus.TW=0, unless the instruction
completes within an implementation-specific, bounded time;

⚫ in VS-mode, attempts to execute SRET when hstatus.VTSR=1; and

⚫ in VS-mode, attempts to execute an SFENCE.VMA or SINVAL.VMA instruction or to access satp,
when hstatus.VTVM=1.

Other extensions to the RISC-V Privileged Architecture may add to the set of circumstances that cause
a virtual-instruction exception when V=1.

On a virtual-instruction trap, mtval or stval is written the same as for an illegal-instruction trap.

21.6. Traps | Page 185

The RISC-V Instruction Set Manual: Volume II | © RISC-V International



It is not unusual that hypervisors must emulate the instructions that raise virtual-
instruction exceptions, to support nested hypervisors or for other reasons. Machine
level is expected ordinarily to delegate virtual-instruction traps directly to HS-level,
whereas illegal-instruction traps are likely to be processed first in M-mode before
being conditionally delegated (by software) to HS-level. Consequently, virtual-
instruction traps are expected typically to be handled faster than illegal-instruction
traps.

When not emulating the trapping instruction, a hypervisor should convert a virtual-
instruction trap into an illegal-instruction exception for the guest virtual machine.

Because TSR and TVM in mstatus are intended to impact only S-mode (HS-mode),
they are ignored for determining exceptions in VS-mode.

Fields FS and VS in registers sstatus and vsstatus deviate from the usual HS-qualified rule. If an
instruction is prevented from executing because FS or VS is zero in either sstatus or vsstatus, the
exception raised is always an illegal-instruction exception, never a virtual-instruction exception.


Early implementations of the H extension treated FS and VS in sstatus and vsstatus
specially this way, and the behavior has been codified to maintain compatibility for
software.

21.6. Traps | Page 186

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 44. Synchronous exception priority when the hypervisor extension is implemented.

Priority Exc.Code Description

Highest 3 Instruction address breakpoint

12, 20, 1

During instruction address translation:
 First encountered page fault, guest-page fault, or access fault

1

With physical address for instruction:
 Instruction access fault

2
22
0

8, 9, 10, 11
3
3

Illegal instruction
Virtual instruction
Instruction address misaligned
Environment call
Environment break
 Load/store/AMO address breakpoint

4,6

Optionally:
 Load/store/AMO address misaligned

13, 15, 21, 23, 5, 7

During address translation for an explicit memory access:
 First encountered page fault, guest-page fault, or access fault

5, 7

With physical address for an explicit memory access:
 Load/store/AMO access fault

Lowest 4, 6

If not higher priority:
 Load/store/AMO address misaligned

If an instruction may raise multiple synchronous exceptions, the decreasing priority order of Table 44
indicates which exception is taken and reported in mcause or scause.

21.6.2. Trap Entry

When a trap occurs in HS-mode or U-mode, it goes to M-mode, unless delegated by medeleg or mideleg,
in which case it goes to HS-mode. When a trap occurs in VS-mode or VU-mode, it goes to M-mode,
unless delegated by medeleg or mideleg, in which case it goes to HS-mode, unless further delegated by
hedeleg or hideleg, in which case it goes to VS-mode.

When a trap is taken into M-mode, virtualization mode V gets set to 0, and fields MPV and MPP in
mstatus (or mstatush) are set according to Table 45. A trap into M-mode also writes fields GVA, MPIE,
and MIE in mstatus/mstatush and writes CSRs mepc, mcause, mtval, mtval2, and mtinst.

Table 45. Value of mstatus/mstatush fields MPV and MPP after a trap into M-mode. Upon trap return, MPV is
ignored when MPP=3.

Previous Mode MPV MPP

U-mode
HS-mode
M-mode

0
0
0

0
1
3

VU-mode
VS-mode

1
1

0
1

When a trap is taken into HS-mode, virtualization mode V is set to 0, and hstatus.SPV and sstatus.SPP
are set according to Table 46. If V was 1 before the trap, field SPVP in hstatus is set the same as

21.6. Traps | Page 187

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

sstatus.SPP; otherwise, SPVP is left unchanged. A trap into HS-mode also writes field GVA in hstatus,
fields SPIE and SIE in sstatus, and CSRs sepc, scause, stval, htval, and htinst.

Table 46. Value of hstatus field SPV and sstatus field SPP after a trap into HS-mode.

Previous Mode SPV SPP

U-mode
HS-mode

0
0

0
1

VU-mode
VS-mode

1
1

0
1

When a trap is taken into VS-mode, vsstatus.SPP is set according to Table 47. Register hstatus and the
HS-level sstatus are not modified, and the virtualization mode V remains 1. A trap into VS-mode also
writes fields SPIE and SIE in vsstatus and writes CSRs vsepc, vscause, and vstval.

Table 47. Value of vsstatus field SPP after a trap into VS-mode.

Previous Mode SPP

VU-mode
VS-mode

0
1

21.6.3. Transformed Instruction or Pseudoinstruction for mtinst or htinst

On any trap into M-mode or HS-mode, one of these values is written automatically into the appropriate
trap instruction CSR, mtinst or htinst:

⚫ zero;

⚫ a transformation of the trapping instruction;

⚫ a custom value (allowed only if the trapping instruction is non-standard); or

⚫ a special pseudoinstruction.

Except when a pseudoinstruction value is required (described later), the value written to mtinst or
htinst may always be zero, indicating that the hardware is providing no information in the register for
this particular trap.



The value written to the trap instruction CSR serves two purposes. The first is to
improve the speed of instruction emulation in a trap handler, partly by allowing the
handler to skip loading the trapping instruction from memory, and partly by obviating
some of the work of decoding and executing the instruction. The second purpose is
to supply, via pseudoinstructions, additional information about guest-page-fault
exceptions caused by implicit memory accesses done for VS-stage address
translation.

A transformation of the trapping instruction is written instead of simply a copy of the
original instruction in order to minimize the burden for hardware yet still provide to a
trap handler the information needed to emulate the instruction. An implementation
may at any time reduce its effort by substituting zero in place of the transformed
instruction.

On an interrupt, the value written to the trap instruction register is always zero. On a synchronous
exception, if a nonzero value is written, one of the following shall be true about the value:

21.6. Traps | Page 188

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Bit 0 is 1, and replacing bit 1 with 1 makes the value into a valid encoding of a standard instruction.

In this case, the instruction that trapped is the same kind as indicated by the register value, and
the register value is the transformation of the trapping instruction, as defined later. For example, if
bits 1:0 are binary 11 and the register value is the encoding of a standard LW (load word)
instruction, then the trapping instruction is LW, and the register value is the transformation of the
trapping LW instruction.

⚫ Bit 0 is 1, and replacing bit 1 with 1 makes the value into an instruction encoding that is explicitly
designated for a custom instruction (not an unused reserved encoding).

This is a custom value. The instruction that trapped is a non-standard instruction. The
interpretation of a custom value is not otherwise specified by this standard.

⚫ The value is one of the special pseudoinstructions defined later, all of which have bits 1:0 equal to
00.

These three cases exclude a large number of other possible values, such as all those having bits 1:0
equal to binary 10. A future standard or extension may define additional cases, thus allowing values
that are currently excluded. Software may safely treat an unrecognized value in a trap instruction
register the same as zero.



To be forward-compatible with future revisions of this standard, software that
interprets a nonzero value from mtinst or htinst must fully verify that the value
conforms to one of the cases listed above. For instance, for RV64, discovering that
bits 6:0 of mtinst are 0000011 and bits 14:12 are 010 is not sufficient to establish that
the first case applies and the trapping instruction is a standard LW instruction; rather,
software must also confirm that bits 63:32 of mtinst are all zeros. A future standard
might define new values for 64-bit mtinst that are nonzero in bits 63:32 yet may
coincidentally have in bits 31:0 the same bit patterns as standard RV64 instructions.

Unlike for standard instructions, there is no requirement that the instruction
encoding of a custom value be of the same ``kind'' as the instruction that trapped (or
even have any correlation with the trapping instruction).

Table 48 shows the values that may be automatically written to the trap instruction register for each
standard exception cause. For exceptions that prevent the fetching of an instruction, only zero or a
pseudoinstruction value may be written. A custom value may be automatically written only if the
instruction that traps is non-standard. A future standard or extension may permit other values to be
written, chosen from the set of allowed values established earlier.

21.6. Traps | Page 189

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Table 48. Values that may be automatically written to the trap instruction (mtinst or htinst) register on an
exception trap.

Exception Zero

Transformed
Standard

Instruction Custom Value
Pseudoinstructi

on Value

Instruction address misaligned Yes No Yes No

Instruction access fault
Illegal instruction
Breakpoint
Virtual instruction

Yes
Yes
Yes
Yes

No
No
No
No

No
No
Yes
Yes

No
No
No
No

Load address misaligned
Load access fault
Store/AMO address misaligned
Store/AMO access fault

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes

No
No
No
No

Environment call Yes No Yes No

Instruction page fault
Load page fault
Store/AMO page fault

Yes
Yes
Yes

No
Yes
Yes

No
Yes
Yes

No
No
No

Instruction guest-page fault
Load guest-page fault
Store/AMO guest-page fault

Yes
Yes
Yes

No
Yes
Yes

No
Yes
Yes

Yes
Yes
Yes

As enumerated in the table, a synchronous exception may write to the trap instruction register a
standard transformation of the trapping instruction only for exceptions that arise from explicit memory
accesses (from loads, stores, and AMO instructions). Accordingly, standard transformations are
currently defined only for these memory-access instructions. If a synchronous trap occurs for a
standard instruction for which no transformation has been defined, the trap instruction register shall
be written with zero (or, under certain circumstances, with a special pseudoinstruction value).

For a standard load instruction that is not a compressed instruction and is one of LB, LBU, LH, LHU,
LW, LWU, LD, FLW, FLD, FLQ, or FLH, the transformed instruction has the format shown in Figure 121.

067111214151920242531

opcoderdfunct3Addr. Offset00

753557

Figure 121. Transformed noncompressed load instruction (LB, LBU, LH, LHU, LW, LWU, LD, FLW, FLD, FLQ,
or FLH). Fields funct3, rd, and opcode are the same as the trapping load instruction.

For a standard store instruction that is not a compressed instruction and is one of SB, SH, SW, SD,
FSW, FSD, FSQ, or FSH, the transformed instruction has the format shown in Figure 122.

067111214151920242531

opcode0funct3Addr. Offsetrs20

753557

Figure 122. Transformed noncompressed store instruction (SB, SH, SW, SD, FSW, FSD, FSQ, or FSH). Fields
rs2, funct3, and opcode are the same as the trapping store instruction.

For a standard atomic instruction (load-reserved, store-conditional, or AMO instruction), the
transformed instruction has the format shown in Figure 123.

21.6. Traps | Page 190

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

0671112141519202425262731

opcoderdfunct3Addr. Offsetrs2rlaqfunct5

75355115

Figure 123. Transformed atomic instruction (load-reserved, store-conditional, or AMO instruc-tion). All fields
are the same as the trapping instruction except bits 19:15, Addr. Offset.

For a standard virtual-machine load/store instruction (HLV, HLVX, or HSV), the transformed instruction
has the format shown in Figure 124.

067111214151920242531

opcoderdfunct3Addr. Offsetrs2funct7

753557

Figure 124. Transformed virtual-machine load/store instruction (HLV, HLVX, HSV). All fields are the same as
the trapping instruction except bits 19:15, Addr. Offset

In all the transformed instructions above, the Addr. Offset field that replaces the instruction’s rs1 field
in bits 19:15 is the positive difference between the faulting virtual address (written to mtval or stval)
and the original virtual address. This difference can be nonzero only for a misaligned memory access.
Note also that, for basic loads and stores, the transformations replace the instruction’s immediate
offset fields with zero.

For a standard compressed instruction (16-bit size), the transformed instruction is found as follows:

1. Expand the compressed instruction to its 32-bit equivalent.

2. Transform the 32-bit equivalent instruction.

3. Replace bit 1 with a 0.

Bits 1:0 of a transformed standard instruction will be binary 01 if the trapping instruction is compressed
and 11 if not.



In decoding the contents of mtinst or htinst, once software has determined that the
register contains the encoding of a standard basic load (LB, LBU, LH, LHU, LW, LWU,
LD, FLW, FLD, FLQ, or FLH) or basic store (SB, SH, SW, SD, FSW, FSD, FSQ, or FSH),
it is not necessary to confirm also that the immediate offset fields (31:25, and 24:20
or 11:7) are zeros. The knowledge that the register’s value is the encoding of a basic
load/store is sufficient to prove that the trapping instruction is of the same kind.

A future version of this standard may add information to the fields that are currently
zeros. However, for backwards compatibility, any such information will be for
performance purposes only and can safely be ignored.

For guest-page faults, the trap instruction register is written with a special pseudoinstruction value if:
(a) the fault is caused by an implicit memory access for VS-stage address translation, and (b) a
nonzero value (the faulting guest physical address) is written to mtval2 or htval. If both conditions are
met, the value written to mtinst or htinst must be taken from Table 49; zero is not allowed.

Table 49. Special pseudoinstruction values for guest-page faults. The RV32 values are used when
VSXLEN=32, and the RV64 values when VSXLEN=64.

Value Meaning

0x00002000
0x00002020

32-bit read for VS-stage address translation (RV32)
32-bit write for VS-stage address translation (RV32)

21.6. Traps | Page 191

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Value Meaning

0x00003000
0x00003020

64-bit read for VS-stage address translation (RV64)
64-bit write for VS-stage address translation (RV64)

The defined pseudoinstruction values are designed to correspond closely with the encodings of basic
loads and stores, as illustrated by Table 50.

Table 50. Standard instructions corresponding to the special pseudoinstructions of Table 49.

Encoding Instruction

0x00002003
0x00002023

lw x0,0(x0)
sw x0,0(x0)

0x00003003
0x00003023

ld x0,0(x0)
sd x0,0(x0)

A write pseudoinstruction (0x00002020 or 0x00003020) is used for the case that the machine is attempting
automatically to update bits A and/or D in VS-level page tables. All other implicit memory accesses for
VS-stage address translation will be reads. If a machine never automatically updates bits A or D in VS-
level page tables (leaving this to software), the write case will never arise. The fact that such a page
table update must actually be atomic, not just a simple write, is ignored for the pseudoinstruction.



If the conditions that necessitate a pseudoinstruction value can ever occur for M-
mode, then mtinst cannot be entirely read-only zero; and likewise for HS-mode and
htinst. However, in that case, the trap instruction registers may minimally support
only values 0 and 0x00002000 or 0x00003000, and possibly 0x00002020 or 0x00003020,
requiring as few as one or two flip-flops in hardware, per register.

There is no harm here in ignoring the atomicity requirement for page table updates,
because a hypervisor is not expected in these circumstances to emulate an implicit
memory access that fails. Rather, the hypervisor is given enough information about
the faulting access to be able to make the memory accessible (e.g. by restoring a
missing page of virtual memory) before resuming execution by retrying the faulting
instruction.

21.6.4. Trap Return

The MRET instruction is used to return from a trap taken into M-mode. MRET first determines what the
new privilege mode will be according to the values of MPP and MPV in mstatus or mstatush, as encoded
in Table 45. MRET then in mstatus/mstatush sets MPV=0, MPP=0, MIE=MPIE, and MPIE=1. Lastly, MRET
sets the privilege mode as previously determined, and sets pc=mepc.

The SRET instruction is used to return from a trap taken into HS-mode or VS-mode. Its behavior
depends on the current virtualization mode.

When executed in M-mode or HS-mode (i.e., V=0), SRET first determines what the new privilege mode
will be according to the values in hstatus.SPV and sstatus.SPP, as encoded in Table 46. SRET then sets
hstatus.SPV=0, and in sstatus sets SPP=0, SIE=SPIE, and SPIE=1. Lastly, SRET sets the privilege mode
as previously determined, and sets pc=sepc.

When executed in VS-mode (i.e., V=1), SRET sets the privilege mode according to Table 47, in vsstatus

21.6. Traps | Page 192

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

sets SPP=0, SIE=SPIE, and SPIE=1, and lastly sets pc=vsepc.

If the Ssdbltrp extension is implemented, when SRET is executed in HS-mode, if the new privilege mode
is VU, the SRET instruction sets vsstatus.SDT to 0. When executed in VS-mode, vsstatus.SDT is set to 0.

21.6. Traps | Page 193

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 22. Control-flow Integrity (CFI)

Control-flow Integrity (CFI) capabilities help defend against Return-Oriented Programming (ROP) and
Call/Jump-Oriented Programming (COP/JOP) style control-flow subversion attacks. The Zicfiss and
Zicfilp extensions provide backward-edge and forward-edge control flow integrity respectively. Please
see the Control-flow Integrity chapter of the Unprivileged ISA specification for further details on these
CFI capabilities and the associated Unprivileged ISA.

22.1. Landing Pad (Zicfilp)

This section specifies the Privileged ISA for the Zicfilp extension.

22.1.1. Landing-Pad-Enabled (LPE) State

The term xLPE is used to determine if forward-edge CFI using landing pads provided by the Zicfilp
extension is enabled at a privilege mode.

When S-mode is implemented, it is determined as follows:

Table 51. xLPE determination when S-mode is implemented

Privilege Mode xLPE

M mseccfg.MLPE

S or HS menvcfg.LPE

VS henvcfg.LPE

U or VU senvcfg.LPE

When S-mode is not implemented, it is determined as follows:

Table 52. xLPE determination when S-mode is not implemented

Privilege Mode xLPE

M mseccfg.MLPE

U menvcfg.LPE



The Zicfilp must be explicitly enabled for use at each privilege mode.

Programs compiled with the LPAD instruction continue to function correctly, but
without forward-edge CFI protection, when the Zicfilp extension is not implemented
or is not enabled.

22.1. Landing Pad (Zicfilp) | Page 194

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

22.1.2. Preserving Expected Landing Pad State on Traps

A trap may need to be delivered to the same or to a higher privilege mode upon completion of JALR
/C.JALR/C.JR, but before the instruction at the target of indirect call/jump was decoded, due to:

⚫ Asynchronous interrupts.

⚫ Synchronous exceptions with priority higher than that of a software-check exception with xtval set
to "landing pad fault (code=2)" (See Table 15 of Privileged Specification).

The software-check exception caused by Zicfilp has higher priority than an illegal-instruction exception
but lower priority than instruction access-fault.

The software-check exception due to the instruction not being an LPAD instruction when ELP is
LP_EXPECTED or an software-check exception caused by the LPAD instruction itself (See [LP_INST]) leads
to a trap being delivered to the same or to a higher privilege mode.

In such cases, the ELP prior to the trap, the previous ELP, must be preserved by the trap delivery such
that it can be restored on a return from the trap. To store the previous ELP state on trap delivery to M-
mode, an MPELP bit is provided in the mstatus CSR. To store the previous ELP state on trap delivery to
S/HS-mode, an SPELP bit is provided in the mstatus CSR. The SPELP bit in mstatus can be accessed
through the sstatus CSR. To store the previous ELP state on traps to VS-mode, a SPELP bit is defined in
the vsstatus (VS-modes version of sstatus). To store the previous ELP state on transition to Debug
Mode, a pelp bit is defined in the dcsr register.

When a trap is taken into privilege mode x, the xPELP is set to ELP and ELP is set to NO_LP_EXPECTED.

An MRET or SRET instruction is used to return from a trap in M-mode or S-mode, respectively. When
executing an xRET instruction, if the new privilege mode is y, then ELP is set to the value of xPELP if yLPE
(see Section 22.1.1) is 1; otherwise, it is set to NO_LP_EXPECTED; xPELP is set to NO_LP_EXPECTED.

Upon entry into Debug Mode, the pelp bit in dcsr is updated with the ELP at the privilege level the hart
was previously in, and the ELP is set to NO_LP_EXPECTED. When a hart resumes from Debug Mode, if the
new privilege mode is y, then ELP is set to the value of pelp if yLPE (see Section 22.1.1) is 1; otherwise, it
is set to NO_LP_EXPECTED.

See also Chapter 8 for semantics added to the RNMI trap and the MNRET instruction when this
extension is implemented.



The trap handler in privilege mode x must save the xPELP bit and the x7 register
before performing an indirect call/jump if xLPE=1. If the privilege mode x can respond
to interrupts and xLPE=1, then the trap handler should also save these values before
enabling interrupts.

The trap handler in privilege mode x must restore the saved xPELP bit and the x7
register before executing the xRET instruction to return from a trap.

22.1. Landing Pad (Zicfilp) | Page 195

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

22.2. Shadow Stack (Zicfiss)

This section specifies the Privileged ISA for the Zicfiss extension.

22.2.1. Shadow Stack Pointer (ssp) CSR access control

Attempts to access the ssp CSR may result in either an illegal-instruction exception or a virtual
instruction exception, contingent upon the state of the xenvcfg.SSE fields. The conditions are specified
as follows:

⚫ If the privilege mode is less than M and menvcfg.SSE is 0, an illegal-instruction exception is raised.

⚫ Otherwise, if in U-mode and senvcfg.SSE is 0, an illegal-instruction exception is raised.

⚫ Otherwise, if in VS-mode and henvcfg.SSE is 0, a virtual instruction exception is raised.

⚫ Otherwise, if in VU-mode and either henvcfg.SSE or senvcfg.SSE is 0, a virtual instruction exception is
raised.

⚫ Otherwise, the access is allowed.

22.2.2. Shadow-Stack-Enabled (SSE) State

The term xSSE is used to determine if backward-edge CFI using shadow stacks provided by the Zicfiss
extension is enabled at a privilege mode.

When S-mode is implemented, it is determined as follows:

Table 53. xSSE determination when S-mode is implemented

Privilege Mode xSSE

M 0

S or HS menvcfg.SSE

VS henvcfg.SSE

U or VU senvcfg.SSE

When S-mode is not implemented, then xSSE is 0 at both M and U privilege modes.



Activating Zicfiss in U-mode must be done explicitly per process. Not activating
Zicfiss at U-mode for a process when that application is not compiled with Zicfiss
allows it to invoke shared libraries that may contain Zicfiss instructions. The Zicfiss
instructions in the shared library revert to their Zimop/Zcmop-defined behavior in
this case.

When Zicfiss is enabled in S-mode it is benign to use an operating system that is not
compiled with Zicfiss instructions. Such an operating system that does not use
backward-edge CFI for S-mode execution may still activate Zicfiss for U-mode
applications.

When programs that use Zicfiss instructions are installed on a processor that
supports the Zicfiss extension but the extension is not enabled at the privilege mode
where the program executes, the program continues to function correctly but without
backward-edge CFI protection as the Zicfiss instructions will revert to their

22.2. Shadow Stack (Zicfiss) | Page 196

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Zimop/Zcmop-defined behavior.

When programs that use Zicfiss instructions are installed on a processor that does
not support the Zicfiss extension but supports the Zimop and Zcmop extensions, the
programs continues to function correctly but without backward-edge CFI protection
as the Zicfiss instructions will revert to their Zimop/Zcmop-defined behavior.

On processors that do not support Zimop/Zcmop extensions, all Zimop/Zcmop code
points including those used for Zicfiss instructions may cause an illegal-instruction
exception. Execution of programs that use these instructions on such machines is not
supported.

Activating Zicfiss in M-mode is currently not supported. Additionally, when S-mode is
not implemented, activation in U-mode is also not supported. These functionalities
may be introduced in a future standard extension.


Changes to xSSE take effect immediately; address-translation caches need not be
synchronized with SFENCE.VMA, HFENCE.GVMA, or HFENCE.VVMA instructions.

22.2.3. Shadow Stack Memory Protection

To protect shadow stack memory, the memory is associated with a new page type – the Shadow Stack
(SS) page – in the single-stage and VS-stage page tables. The encoding R=0, W=1, and X=0, is defined to
represent an SS page. When menvcfg.SSE=0, this encoding remains reserved. Similarly, when V=1 and
henvcfg.SSE=0, this encoding remains reserved at VS and VU levels.

If satp.MODE (or vsatp.MODE when V=1) is set to Bare and the effective privilege mode is below M, shadow
stack memory accesses are prohibited, and shadow stack instructions will raise a store/AMO access-
fault exception. When the effective privilege mode is M, any memory access by an SSAMOSWAP.W/D
instruction will result in a store/AMO access-fault exception.

Memory mapped as an SS page cannot be written to by instructions other than SSAMOSWAP.W/D, SSPUSH,
and C.SSPUSH. Attempts will raise a store/AMO access-fault exception. Access to a SS page using
cache-block operation (CBO.*) instructions is not permitted. Such accesses will raise a store/AMO
access-fault exception. Implicit accesses, including instruction fetches to an SS page, are not
permitted. Such accesses will raise an access-fault exception appropriate to the access type. However,
the shadow stack is readable by all instructions that only load from memory.



Stores to shadow stack pages by instructions other than SSAMOSWAP, SSPUSH, and
C.SSPUSH will trigger a store/AMO access-fault exception, not a store/AMO page-fault
exception, signaling a fatal error. A store/AMO page-fault suggests that the operating
system could address and rectify the fault, which is not feasible in this scenario.
Hence, the page fault handler must decode the opcode of the faulting instruction to
discern whether the fault was caused by a non-shadow-stack instruction writing to an
SS page (a fatal condition) or by a shadow stack instruction to a non-resident page (a
recoverable condition). The performance-critical nature of operating system page
fault handlers necessitates triggering an access-fault instead of a page fault,
allowing for a straightforward distinction between fatal conditions and recoverable
faults.

Operating systems must ensure that no writable, non-shadow-stack alias virtual
address mappings exist for the physical memory backing the shadow stack.

22.2. Shadow Stack (Zicfiss) | Page 197

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Furthermore, in systems where an address-misaligned exception supersedes the
access-fault exception, handlers emulating misaligned stores must be designed to
cause an access-fault exception when the store is directed to a shadow stack page.

All instructions that perform load operations are allowed to read from the shadow
stack. This feature facilitates debugging and performance profiling by allowing
examination of the link register values backed up in the shadow stack.


As of the drafting of this specification, instruction fetches are the sole type of implicit
access subjected to single- or VS-stage address translation.

If a shadow stack (SS) instruction raises an access-fault, page-fault, or guest-page-fault exception that
is supposed to indicate the original instruction type (load or store/AMO), then the reported exception
cause is respectively a store/AMO access fault (code 7), a store/AMO page fault (code 15), or a
store/AMO guest-page fault (code 23). For shadow stack instructions, the reported instruction type is
always as though it were a store or AMO, even for instructions SSPOPCHK and C.SSPOPCHK that only read
from memory and do not write to it.


When Zicfiss is implemented, the existing "store/AMO" exceptions can be thought of
as "store/AMO/SS" exceptions, indicating that the trapping instruction is either a
store, an AMO, or a shadow stack instruction.

Shadow stack instructions are restricted to accessing shadow stack (pte.xwr=010b) pages. Should a
shadow stack instruction access a page that is not designated as a shadow stack page and is not
marked as read-only (pte.xwr=001), a store/AMO access-fault exception will be invoked. Conversely, if
the page being accessed by a shadow stack instruction is a read-only page, a store/AMO page-fault
exception will be triggered.



Shadow stack loads and stores will trigger a store/AMO page-fault if the accessed
page is read-only, to support copy-on-write (COW) of a shadow stack page. If the
page has been marked read-only for COW tracking, the page fault handler responds
by creating a copy of the page and updates the pte.xwr to 010b, thereby designating
each copy as a shadow stack page. Conversely, if the access targets a genuinely
read-only page, the fault being reported as a store/AMO page-fault signals to the
operating system that the fault is fatal and non-recoverable. Reporting the fault as a
store/AMO page-fault, even for SSPOPCHK initiated memory access, aids in the
determination of fatality; if these were reported as load page-faults, access to a truly
read-only page might be mistakenly treated as a recoverable fault, leading to the
faulting instruction being retried indefinitely. The PTE does not provide a read-only
shadow stack encoding.

Attempts by shadow stack instructions to access pages marked as read-write, read-
write-execute, read-execute, or execute-only result in a store/AMO access-fault
exception, similarly indicating a fatal condition.

Shadow stacks should be bounded at each end by guard pages to prevent accidental
underflows or overflows from one shadow stack into another. Conventionally, a guard
page for a stack is a page that is not accessible by the process that owns the stack.

22.2. Shadow Stack (Zicfiss) | Page 198

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

If the virtual address in ssp is not XLEN aligned, then the SSPUSH/ C.SSPUSH/SSPOPCHK/C.SSPOPCHK instructions
cause a store/AMO access-fault exception.



Misaligned accesses to shadow stack are not required and enforcing alignment is
more secure to detect errors in the program. An access-fault exception is raised
instead of address-misaligned exception in such cases to indicate fatality and that
the instruction must not be emulated by a trap handler.

Correct execution of shadow stack instructions that access memory requires the the accessed memory
to be idempotent. If the memory referenced by SSPUSH/C.SSPUSH/SSPOPCHK/C.SSPOPCHK/SSAMOSWAP.W/D
instructions is not idempotent, then the instructions cause a store/AMO access-fault exception.



The SSPOPCHK instruction performs a load followed by a check of the loaded data value
with the link register as source. If the check against the link register faults, and the
instruction is restarted by the trap handler, then the instruction will perform a load
again. If the memory from which the load is performed is non-idempotent, then the
second load may cause unexpected side effects. Shadow stack instructions that
access the shadow stack require the memory referenced by ssp to be idempotent to
avoid such concerns. Locating shadow stacks in non-idempotent memory, such as
non-idempotent device memory, is not an expected usage, and requiring memory
referenced to be idempotent does not pose a significant restriction.

The U and SUM bit enforcement is performed normally for shadow stack instruction initiated memory
accesses. The state of the MXR bit does not affect read access to a shadow stack page as the shadow
stack page is always readable by all instructions that load from memory.

The G-stage address translation and protections remain unaffected by the Zicfiss extension. The xwr
== 010b encoding in the G-stage PTE remains reserved. When G-stage page tables are active, the
shadow stack instructions that access memory require the G-stage page table to have read-write
permission for the accessed memory; else a store/AMO guest-page fault exception is raised.


A future extension may define a shadow stack encoding in the G-stage page table to
support use cases such as a hypervisor enforcing shadow stack protections for its
guests.

Svpbmt and Svnapot extensions are supported for shadow stack pages.

The PMA checks are extended to require memory referenced by shadow stack instructions to be
idempotent. The PMP checks are extended to require read-write permission for memory accessed by
shadow stack instructions. If the PMP does not provide read-write permissions or if the accessed
memory is not idempotent then a store/AMO access-fault exception is raised.

The SSAMOSWAP.W/D instructions require the PMA of the accessed memory range to provide AMOSwap
level support.

22.2. Shadow Stack (Zicfiss) | Page 199

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 23. "Ssdbltrp" Double Trap Extension, Version 1.0

The Ssdbltrp extension addresses a double trap (See Section 3.1.6.2) privilege modes lower than M. It
enables HS-mode to invoke a critical error handler in a virtual machine on a double trap in VS-mode. It
also allows M-mode to invoke a critical error handler in the OS/Hypervisor on a double trap in S/HS-
mode.

The Ssdbltrp extension adds the menvcfg.DTE (See Section 3.1.18) and the sstatus.SDT fields (See
Section 12.1.1). If the hypervisor extension is additionally implemented, then the extension adds the
henvcfg.DTE (See Section 21.2.5) and the vsstatus.SDT fields (See Section 21.2.11).

See Section 12.1.1.5 for the operational details.

Chapter 23. "Ssdbltrp" Double Trap Extension, Version 1.0 | Page 200

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 24. Pointer Masking Extensions, Version 1.0.0

24.1. Introduction

RISC-V Pointer Masking (PM) is a feature that, when enabled, causes the CPU to ignore the upper bits
of the effective address (these terms will be defined more precisely in the Background section). This
allows these bits to be used in whichever way the application chooses. The version of the extension
being described here specifically targets tag checks: When an address is accessed, the tag stored in
the masked bits can be compared against a range-based tag. This is used for dynamic safety checkers
such as HWASAN (Serebryany et al., 2018). Such tools can be applied in all privilege modes (U, S and
M).

HWASAN leverages tags in the upper bits of the address to identify memory errors such as use-after-
free or buffer overflow errors. By storing a pointer tag in the upper bits of the address and checking it
against a memory tag stored in a side table, it can identify whether a pointer is pointing to a valid
location. Doing this without hardware support introduces significant overheads since the pointer tag
needs to be manually removed for every conventional memory operation. Pointer masking support
reduces these overheads.

Pointer masking only adds the ability to ignore pointer tags during regular memory accesses. The tag
checks themselves can be implemented in software or hardware. If implemented in software, pointer
masking still provides performance benefits since non-checked accesses do not need to transform the
address before every memory access. Hardware implementations are expected to provide even larger
benefits due to performing tag checks out-of-band and hardening security guarantees derived from
these checks. We anticipate that future extensions may build on pointer masking to support this
functionality in hardware.

It is worth mentioning that while HWASAN is the primary use-case for the current pointer masking
extension, a number of other hardware/software features may be implemented leveraging Pointer
Masking. Some of these use cases include sandboxing, object type checks and garbage collection bits
in runtime systems. Note that the current version of the spec does not explicitly address these use
cases, but future extensions may build on it to do so.

While we describe the high-level concepts of pointer masking as if it was a single extension, it is, in
reality, a family of extensions that implementations or profiles may choose to individually include or
exclude (see Section 24.2.7).

24.2. Background

24.2.1. Definitions

We now define basic terms. Note that these rely on the definition of an “ignore” transformation, which
is defined in Chapter 2.2.

⚫ Effective address (as defined in the RISC-V Base ISA): A load/store effective address sent to
the memory subsystem (e.g., as generated during the execution of load/store instructions). This
does not include addresses corresponding to implicit accesses, such as page table walks.

⚫ Masked bits: The upper PMLEN bits of an address, where PMLEN is a configurable parameter. We
will use PMLEN consistently throughout this document to refer to this parameter.

24.1. Introduction | Page 201

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

⚫ Transformed address: An effective address after the ignore transformation has been applied.

⚫ Address translation mode: The MODE of the currently active address translation scheme as
defined in the RISC-V privileged specification. This could, for example, refer to Bare, Sv39, Sv48,
and Sv57. In accordance with the privileged specification, non-Bare translation modes are referred
to as virtual-memory schemes. For the purpose of this specification, M-mode translation is treated
as equivalent to Bare.

⚫ Address validity: The RISC-V privileged spec defines validity of addresses based on the address
translation mode that is currently in use (e.g., Sv57, Sv48, Sv39, etc.). For a virtual address to be
valid, all bits in the unused portion of the address must be the same as the Most Significant Bit
(MSB) of the used portion. For example, when page-based 48-bit virtual memory (Sv48) is used,
load/store effective addresses, which are 64 bits, must have bits 63–48 all set to bit 47, or else a
page-fault exception will occur. For physical addresses, validity means that bits XLEN-1 to PABITS
are zero, where PABITS is the number of physical address bits supported by the processor.

⚫ NVBITS: The upper bits within a virtual address that have no effect on addressing memory and are
only used for validity checks. These bits depend on the currently active address translation mode.
For example, in Sv48, these are bits 63-48.

⚫ VBITS: The bits within a virtual address that affect which memory is addressed. These are the bits
of an address which are used to index into page tables.

24.2.2. The “Ignore” Transformation

The ignore transformation differs depending on whether it applies to a virtual or physical address. For
virtual addresses, it replaces the upper PMLEN bits with the sign extension of the PMLEN+1st bit.

transformed_effective_address =
 {{PMLEN{effective_address[XLEN-PMLEN-1]}}, effective_address[XLEN-PMLEN-1:0]}

Listing 1. "Ignore" Transformation for virtual addresses, expressed in Verilog code.



If PMLEN is less than or equal to NVBITS for the largest supported address
translation mode on a given architecture, this is equivalent to ignoring a subset of
NVBITS. This enables cheap implementations that modify validity checks in the CPU
instead of performing the sign extension.

When applied to a physical address, including guest-physical addresses (i.e., all cases except when the
active satp register’s MODE field != Bare), the ignore transformation replaces the upper PMLEN bits
with 0. This includes both the case of running in M-mode and running in other privilege modes with
Bare address translation mode.

transformed_effective_address =
 {{PMLEN{0}}, effective_address[XLEN-PMLEN-1:0]}

Listing 2. "Ignore" Transformation for physical addresses, expressed in Verilog code.



This definition is consistent with the way that RISC-V already handles physical and
virtual addresses differently. While the unused upper bits of virtual addresses are the
sign-extension of the used bits (see the definition of "address validity" in Section
24.2.1), the equivalent bits in physical addresses are zero-extended. This is necessary
due to their interactions with other mechanisms such as Physical Memory Protection

24.2. Background | Page 202

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

(PMP).

When pointer masking is enabled, the ignore transformation will be applied to every explicit memory
access (e.g., loads/stores, atomics operations, and floating point loads/stores). The transformation
does not apply to implicit accesses such as page table walks or instruction fetches. The set of
accesses that pointer masking applies to is described in Section 24.2.6.



Pointer masking does not change the underlying address generation logic or
permission checks. Under a fixed address translation mode, it is semantically
equivalent to replacing a subset of instructions (e.g., loads and stores) with an
instruction sequence that applies the ignore operation to the target address of this
instruction and then applies the instruction to the transformed address. References
to address translation and other implementation details in the text are primarily to
explain design decisions and common implementation patterns.

Note that pointer masking is purely an arithmetic operation on the address that makes no assumption
about the meaning of the addresses it is applied to. Pointer masking with the same value of PMLEN
always has the same effect for the same type of address (virtual or physical). This ensures that code
that relies on pointer masking does not need to be aware of the environment it runs in once pointer
masking has been enabled, as long as the value of PMLEN is known, and whether or not addresses are
virtual or physical. For example, the same application or library code can run in user mode, supervisor
mode or M-mode (with different address translation modes) without modification.



A common scenario for such code is that addresses are generated by mmap system
calls. This abstracts away the details of the underlying address translation mode from
the application code. Software therefore needs to be aware of the value of PMLEN to
ensure that its minimally required number of tag bits is supported. Section 24.2.4
covers how this value is derived.

24.2.3. Example

Table 1 shows an example of the pointer masking transformation on a virtual address when PM is
enabled for RV64 under Sv57 (PMLEN=7).

Table 54. Example of PM address translation for RV64 under Sv57

Page-based profile Sv57 on RV64

Effective Address 0xABFFFFFF12345678
NVBITS[1010101] VBITS[11111111111111111111111110001…000]

PMLEN 7

Mask 0x01FFFFFFFFFFFFFF
NVBITS[0000000] VBITS[11111111111111111111111111111…111]

PMLEN+1st bit from the
top (i.e., bit XLEN-PMLEN-
1)

1

Transformed effective
address

0xFFFFFFFF12345678
NVBITS[1111111] VBITS[11111111111111111111111110001…000]

If the address was a physical address rather than a virtual address with Sv57, the transformed address
with PMLEN=7 would be 0x1FFFFFF12345678.

24.2. Background | Page 203

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

24.2.4. Determining the Value of PMLEN

From an implementation perspective, ignoring bits is deeply connected to the maximum virtual and
physical address space supported by the processor (e.g., Bare, Sv48, Sv57). In particular, applying the
above transformation is cheap if it covers only bits that are not used by any supported address
translation mode (as it is equivalent to switching off validity checks). Masking NVBITS beyond those
bits is more expensive as it requires ignoring them in the TLB tag, and even more expensive if the
masked bits extend into the VBITS portion of the address (as it requires performing the actual sign
extension). Similarly, when running in Bare or M mode, it is common for implementations to not use a
particular number of bits at the top of the physical address range and fix them to zero. Applying the
ignore transformation to those bits is cheap as well, since it will result in a valid physical address with
all the upper bits fixed to 0.

The current standard only supports PMLEN=XLEN-48 (i.e., PMLEN=16 in RV64) and PMLEN=XLEN-57
(i.e., PMLEN=7 in RV64). A setting has been reserved to potentially support other values of PMLEN in
future standards. In such future standards, different supported values of PMLEN may be defined for
each privilege mode (U/VU, S/HS, and M).



Future versions of the pointer masking extension may introduce the ability to freely
configure the value of PMLEN. The current extension does not define the behavior if
PMLEN was different from the values defined above. In particular, there is no
guarantee that a future pointer masking extension would define the ignore operation
in the same way for those values of PMLEN.

24.2.5. Pointer Masking and Privilege Modes

Pointer masking is controlled separately for different privilege modes. The subset of supported
privilege modes is determined by the set of supported pointer masking extensions. Different privilege
modes may have different pointer masking settings active simultaneously and the hardware will
automatically apply the pointer masking settings of the currently active privilege mode. A privilege
mode’s pointer masking setting is configured by bits in configuration registers of the next-higher
privilege mode.

Note that the pointer masking setting that is applied only depends on the active privilege mode, not on
the address that is being masked. Some operating systems (e.g., Linux) may use certain bits in the
address to disambiguate between different types of addresses (e.g., kernel and user-mode addresses).
Pointer masking does not take these semantics into account and is purely an arithmetic operation on
the address it is given.



Linux places kernel addresses in the upper half of the address space and user
addresses in the lower half of the address space. As such, the MSB is often used to
identify the type of a particular address. With pointer masking enabled, this role is
now played by bit XLEN-PMLEN-1 and code that checks whether a pointer is a kernel
or a user address needs to inspect this bit instead. For backward compatibility, it may
be desirable that the MSB still indicates whether an address is a user or a kernel
address. An operating system’s ABI may mandate this, but it does not affect the
pointer masking mechanism itself. For example, the Linux ABI may choose to
mandate that the MSB is not used for tagging and replicates bit XLEN-PMLEN-1 bit
(note that for such a mechanism to be secure, the kernel needs to check the MSB of
any user mode-supplied address and ensure that this invariant holds before using it;
alternatively, it can apply the transformation from Listing 1 or 2 to ensure that the
MSB is set to the correct value).

24.2. Background | Page 204

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

24.2.6. Memory Accesses Subject to Pointer Masking

Pointer masking applies to all explicit memory accesses. Currently, in the Base and Privileged ISAs,
these are:

⚫ Base Instruction Set: LB, LH, LW, LBU, LHU, LWU, LD, SB, SH, SW, SD.

⚫ Atomics: All instructions in RV32A and RV64A.

⚫ Floating Point: FLW, FLD, FLQ, FSW, FSD, FSQ.

⚫ Compressed: All instructions mapping to any of the above, and C.LWSP, C.LDSP, C.LQSP,
C.FLWSP, C.FLDSP, C.SWSP, C.SDSP, C.SQSP, C.FSWSP, C.FSDSP.

⚫ Hypervisor Extension: HLV.*, HSV.* (in some cases; see Section 24.3.1).

⚫ Cache Management Operations: All instructions in Zicbom, Zicbop and Zicboz.

⚫ Vector Extension: All vector load and store instructions in the ratified RVV 1.0 spec.

⚫ Zicfiss Extension: SSPUSH, C.SSPUSH, SSPOPCHK, C.SSPOPCHK, SSAMOSWAP.W/D.

⚫ Assorted: FENCE, FENCE.I (if the currently unused address fields become enabled in the future).


This list will grow over time as new extensions introduce new instructions that
perform explicit memory accesses.

For other extensions, pointer masking applies to all explicit memory accesses by default. Future
extensions may add specific language to indicate whether particular accesses are or are not included
in pointer masking.


It is worth noting that pointer masking is not applied to SFENCE.*, HFENCE.*, SINVAL.*, or
HINVAL.*. When such an operation is invoked, it is the responsibility of the software to
provide the correct address.

MPRV and SPVP affect pointer masking as well, causing the pointer masking settings of the effective
privilege mode to be applied. When MXR is in effect at the effective privilege mode where explicit
memory access is performed, pointer masking does not apply.



Note that this includes cases where page-based virtual memory is not in effect; i.e.,
although MXR has no effect on permissions checks when page-based virtual memory
is not in effect, it is still used in determining whether or not pointer masking should
be applied.



Cache Management Operations (CMOs) must respect and take into account pointer
masking. Otherwise, a few serious security problems can appear, including:

⚫ CBO.ZERO may work as a STORE operation. If pointer masking is not respected,
it would be possible to write to memory bypassing the mask enforcement.

⚫ If CMOs did not respect pointer masking, it would be possible to weaponize this
in a side-channel attack. For example, U-mode would be able to flush a physical
address (without masking) that it should not be permitted to.

Pointer masking only applies to accesses generated by instructions on the CPU (including CPU
extensions such as an FPU). E.g., it does not apply to accesses generated by page table walks, the
IOMMU, or devices.

24.2. Background | Page 205

The RISC-V Instruction Set Manual: Volume II | © RISC-V International


Pointer Masking does not apply to DMA controllers and other devices. It is therefore
the responsibility of the software to manually untag these addresses.

Misaligned accesses are supported, subject to the same limitations as in the absence of pointer
masking. The behavior is identical to applying the pointer masking transformation to every constituent
aligned memory access. In other words, the accessed bytes should be identical to the bytes that would
be accessed if the pointer masking transformation was individually applied to every byte of the access
without pointer masking. This ensures that both hardware implementations and emulation of
misaligned accesses in M-mode behave the same way, and that the M-mode implementation is
identical whether or not pointer masking is enabled (e.g., such an implementation may leverage MPRV
to apply the correct privilege mode’s pointer masking setting).

No pointer masking operations are applied when software reads/writes to CSRs, including those meant
to hold addresses. If software stores tagged addresses into such CSRs, data load or data store
operations based on those addresses are subject to pointer masking only if they are explicit (Section
24.2.6) and pointer masking is enabled for the privilege mode that performs the access. The
implemented WARL width of CSRs is unaffected by pointer masking (e.g., if a CSR supports 52 bits of
valid addresses and pointer masking is supported with PMLEN=16, the necessary number of WARL bits
remains 52 independently of whether pointer masking is enabled or disabled).

In contrast to software writes, pointer masking is applied for hardware writes to a CSR (e.g., when the
hardware writes the transformed address to stval when taking an exception). Pointer masking is also
applied to the memory access address when matching address triggers in debug.

For example, software is free to write a tagged or untagged address to stvec, but on trap delivery (e.g.,
due to an exception or interrupt), pointer masking will not be applied to the address of the trap
handler. However, pointer masking will be applied by the hardware to any address written into stval
when delivering an exception.



The rationale for this choice is that delivering the additional bits may add overheads
in some hardware implementations. Further, pointer masking is configured per
privilege mode, so all trap handlers in supervisor mode would need to be careful to
configure pointer masking the same way as user mode or manually unmask (which is
expensive).

24.2.7. Pointer Masking Extensions

Pointer masking refers to a number of separate extensions, all of which are privileged. This approach
is used to capture optionality of pointer masking features. Profiles and implementations may choose to
support an arbitrary subset of these extensions and must define valid ranges for their corresponding
values of PMLEN.

Extensions:

⚫ Ssnpm: A supervisor-level extension that provides pointer masking for the next lower privilege
mode (U-mode), and for VS- and VU-modes if the H extension is present.

⚫ Smnpm: A machine-level extension that provides pointer masking for the next lower privilege
mode (S/HS if S-mode is implemented, or U-mode otherwise).

⚫ Smmpm: A machine-level extension that provides pointer masking for M-mode.

See Section 24.3 for details on how each of these extensions is configured.

24.2. Background | Page 206

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

In addition, the pointer masking standard defines two extensions that describe an execution
environment but have no bearing on hardware implementations. These extensions are intended to be
used in profile specifications where a User profile or a Supervisor profile can only reference User level
or Supervisor level pointer masking functionality, and not the associated CSR controls that exist at a
higher privilege level (i.e., in the execution environment).

⚫ Sspm: An extension that indicates that there is pointer-masking support available in supervisor
mode, with some facility provided in the supervisor execution environment to control pointer
masking.

⚫ Supm: An extension that indicates that there is pointer-masking support available in user mode,
with some facility provided in the application execution environment to control pointer masking.

The precise nature of these facilities is left to the respective execution environment.

Pointer masking only applies to RV64. In RV32, trying to enable pointer masking will result in an illegal
WARL write and not update the pointer masking configuration bits (see Section 24.3 for details). The
same is the case on RV64 or larger systems when UXL/SXL/MXL is set to 1 for the corresponding
privilege mode. Note that in RV32, the CSR bits introduced by pointer masking are still present, for
compatibility between RV32 and larger systems with UXL/SXL/MXL set to 1. Setting UXL/SXL/MXL to 1
will clear the corresponding pointer masking configuration bits.


Note that setting UXL/SXL/MXL to 1 and back to 0 does not preserve the previous
values of the PMM bits. This includes the case of entering an RV32 virtual machine
from an RV64 hypervisor and returning.

24.3. ISA Extensions

This section describes the pointer masking extensions Smmpm, Smnpm and Ssnpm. All of these extensions
are privileged ISA extensions and do not add any new CSRs. For the definitions of Sspm and Supm, see
Section 24.2.7.



Future extensions may introduce additional CSRs to allow different privilege modes
to modify their own pointer masking settings. This may be required for future use
cases in managed runtime systems that are not currently addressed as part of this
extension.

Each extension introduces a 2-bit WARL field (PMM) that may take on the following values to set the
pointer masking settings for a particular privilege mode.

Table 55. Possible values of PMM WARL field.

Value Description

00 Pointer masking is disabled (PMLEN=0)

01 Reserved

10 Pointer masking is enabled with PMLEN=XLEN-57 (PMLEN=7 on RV64)

11 Pointer masking is enabled with PMLEN=XLEN-48 (PMLEN=16 on RV64)

All of these fields are read-only 0 on RV32 systems.

24.3.1. Ssnpm

24.3. ISA Extensions | Page 207

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Ssnpm adds a new 2-bit WARL field (PMM) to bits 33:32 of senvcfg. Setting PMM enables or disables pointer
masking for the next lower privilege mode (U/VU mode), according to the values in Table 2.

In systems where the H Extension is present, Ssnpm also adds a new 2-bit WARL field (PMM) to bits 33:32
of henvcfg. Setting PMM enables or disables pointer masking for VS-mode, according to the values in
Table 2. Further, a 2-bit WARL field (HUPMM) is added to bits 49:48 of hstatus. Setting hstatus.HUPMM
enables or disables pointer masking for HLV.* and HSV.* instructions in U-mode, according to the
values in Table 2, when their explicit memory access is performed as though in VU-mode. In HS- and
M-modes, pointer masking for these instructions is enabled or disabled by senvcfg.PMM, when their
explicit memory access is performed as though in VU-mode. Setting henvcfg.PMM enables or disables
pointer masking for HLV.* and HSV.* when their explicit memory access is performed as though in VS-
mode.


The hypervisor should copy the value written to senvcfg.PMM by the guest to the
hstatus.HUPMM field prior to invoking HLV.* or HSV.* instructions in U-mode.

The memory accesses performed by the HLVX.* instructions are not subject to pointer masking.



HLVX.* instructions, designed for emulating implicit access to fetch instructions from
guest memory, perform memory accesses that are exempt from pointer masking to
facilitate this emulation. For the same reason, pointer masking does not apply when
MXR is set.

24.3.2. Smnpm

Smnpm adds a new 2-bit WARL field (PMM) to bits 33:32 of menvcfg. Setting PMM enables or disables pointer
masking for the next lower privilege mode (S-/HS-mode if S-mode is implemented, or U-mode
otherwise), according to the values in Table 2.


The type of address determines which type of pointer masking is applied. For
example, when running with virtualization in VS/VU mode with vsatp.MODE = Bare,
physical address pointer masking (zero extension) applies.

24.3.3. Smmpm

Smmpm adds a new 2-bit WARL field (PMM) to bits 33:32 of mseccfg. The presence of Smmpm implies the
presence of the mseccfg register, even if it would not otherwise be present. Setting PMM enables or
disables pointer masking for M mode, according to the values in Table 2.

24.3.4. Interaction with SFENCE.VMA

Since pointer masking applies to the effective address only and does not affect any memory-
management data structures, no SFENCE.VMA is required after enabling/disabling pointer masking.

24.3.5. Interaction with Two-Stage Address Translation

Guest physical addresses (GPAs) are 2 bits wider than the corresponding virtual address translation
modes, resulting in additional address translation schemes Sv32x4, Sv39x4, Sv48x4 and Sv57x4 for
translating guest physical addresses to supervisor physical addresses. When running with virtualization
in VS/VU mode with vsatp.MODE = Bare, this means that those two bits may be subject to pointer
masking, depending on hgatp.MODE and senvcfg.PMM/henvcfg.PMM (for VU/VS mode). If vsatp.MODE != BARE,

24.3. ISA Extensions | Page 208

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

this issue does not apply.



An implementation could mask those two bits on the TLB access path, but this can
have a significant timing impact. Alternatively, an implementation may choose to
"waste" TLB capacity by having up to 4 duplicate entries for each page. In this case,
the pointer masking operation can be applied on the TLB refill path, where it is
unlikely to affect timing. To support this approach, some TLB entries need to be
flushed when PMLEN changes in a way that may affect these duplicate entries.

To support implementations where (XLEN-PMLEN) can be less than the GPA width supported by
hgatp.MODE, hypervisors should execute an HFENCE.GVMA with rs1=x0 if the henvcfg.PMM is changed from or
to a value where (XLEN-PMLEN) is less than GPA width supported by the hgatp translation mode of that
guest. Specifically, these cases are:

⚫ PMLEN=7 and hgatp.MODE=sv57x4

⚫ PMLEN=16 and hgatp.MODE=sv57x4

⚫ PMLEN=16 and hgatp.MODE=sv48x4


Smmpm implementations need to satisfy max(largest supported virtual address size,
largest supported supervisor physical address size) ⇐ (XLEN - PMLEN) bits to avoid
any masking logic on the TLB access path.

Implementation of an address-specific HFENCE.GVMA should either ignore the address argument, or
should ignore the top masked GPA bits of entries when comparing for an address match.

24.3.6. Number of Masked Bits

As described in Section 24.2.4, the supported values of PMLEN may depend on the effective privilege
mode. The current standard only defines PMLEN=XLEN-48 and PMLEN=XLEN-57, but this assumption
may be relaxed in future extensions and profiles. Trying to enable pointer masking in an unsupported
scenario represents an illegal write to the corresponding pointer masking enable bit and follows WARL
semantics. Future profiles may choose to define certain combinations of privilege modes and
supported values of PMLEN as mandatory.



An option that was considered but discarded was to allow implementations to set
PMLEN depending on the active addressing mode. For example, PMLEN could be set
to 16 for Sv48 and to 25 for Sv39. However, having a single value of PMLEN (e.g.,
setting PMLEN to 16 for both Sv39 and Sv48 rather than 25) facilitates TLB
implementations in designs that support Sv39 and Sv48 but not Sv57. 16 bits are
sufficient for current pointer masking use cases but allow for a TLB implementation
that matches against the same number of virtual tag bits independently of whether it
is running with Sv39 or Sv48. However, if Sv57 is supported, tag matching may need
to be conditional on the current address translation mode.

24.3. ISA Extensions | Page 209

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 25. RISC-V Privileged Instruction Set Listings

This chapter presents instruction-set listings for all instructions defined in the RISC-V Privileged
Architecture.

The instruction-set listings for unprivileged instructions, including the ECALL and EBREAK instructions,
are provided in Volume I of this manual.

Chapter 25. RISC-V Privileged Instruction Set Listings | Page 210

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

Trap-Return Instructions

0001000 00010 00000 000 00000 1110011 SRET
0011000 00010 00000 000 00000 1110011 MRET
0111000 00010 00000 000 00000 1110011 MNRET

Interrupt-Management Instructions

0001000 00101 00000 000 00000 1110011 WFI

Supervisor Memory-Management Instructions

0001001 rs2 rs1 000 00000 1110011 SFENCE.VMA

Hypervisor Memory-Management Instructions

0010001 rs2 rs1 000 00000 1110011 HFENCE.VVMA
0110001 rs2 rs1 000 00000 1110011 HFENCE.GVMA

Hypervisor Virtual-Machine Load and Store Instructions

0110000 00000 rs1 100 rd 1110011 HLV.B
0110000 00001 rs1 100 rd 1110011 HLV.BU
0110010 00000 rs1 100 rd 1110011 HLV.H
0110010 00001 rs1 100 rd 1110011 HLV.HU
0110100 00000 rs1 100 rd 1110011 HLV.W
0110010 00011 rs1 100 rd 1110011 HLVX.HU
0110100 00011 rs1 100 rd 1110011 HLVX.WU
0110001 rs2 rs1 100 00000 1110011 HSV.B
0110011 rs2 rs1 100 00000 1110011 HSV.H
0110101 rs2 rs1 100 00000 1110011 HSV.W

Hypervisor Virtual-Machine Load and Store Instructions, RV64 only

0110100 00001 rs1 100 rd 1110011 HLV.WU
0110110 00000 rs1 100 rd 1110011 HLV.D
0110111 rs2 rs1 100 00000 1110011 HSV.D

Svinval Memory-Management Extension

0001011 rs2 rs1 000 00000 1110011 SINVAL.VMA
0001100 00000 00000 000 00000 1110011 SFENCE.W.INVAL
0001100 00001 00000 000 00000 1110011 SFENCE.INVAL.IR
0010011 rs2 rs1 000 00000 1110011 HINVAL.VVMA
0110011 rs2 rs1 000 00000 1110011 HINVAL.GVMA

Figure 125. RISC-V Privileged Instructions

Chapter 25. RISC-V Privileged Instruction Set Listings | Page 211

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Chapter 26. History

26.1. Research Funding at UC Berkeley

Development of the RISC-V architecture and implementations has been partially funded by the
following sponsors.

⚫ Par Lab: Research supported by Microsoft (Award #024263) and Intel (Award #024894) funding
and by matching funding by U.C. Discovery (Award #DIG07-10227). Additional support came from
Par Lab affiliates Nokia, NVIDIA, Oracle, and Samsung.

⚫ Project Isis: DoE Award DE-SC0003624.

⚫ ASPIRE Lab: DARPA PERFECT program, Award HR0011-12-2-0016. DARPA POEM program Award
HR0011-11-C-0100. The Center for Future Architectures Research (C-FAR), a STARnet center
funded by the Semiconductor Research Corporation. Additional support from ASPIRE industrial
sponsor, Intel, and ASPIRE affiliates, Google, Huawei, Nokia, NVIDIA, Oracle, and Samsung.

The content of this paper does not necessarily reflect the position or the policy of the US government
and no official endorsement should be inferred.

26.1. Research Funding at UC Berkeley | Page 212

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

Bibliography

The RISC-V Debug Specification. github.com/riscv/riscv-debug-spec

Goldberg, R. P. (1974). Survey of virtual machine research. Computer, 7(6), 34–45.

Navarro, J., Iyer, S., Druschel, P., & Cox, A. (2002). Practical, Transparent Operating System Support
for Superpages. SIGOPS Oper. Syst. Rev., 36(SI), 89–104. doi.org/10.1145/844128.844138

Serebryany, K., Stepanov, E., Shlyapnikov, A., Tsyrklevich, V., & Vyukov, D. (2018). Memory Tagging and
how it improves C/C++ memory safety. CoRR, abs/1802.09517. arxiv.org/abs/1802.09517

Bibliography | Page 213

The RISC-V Instruction Set Manual: Volume II | © RISC-V International

https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/844128.844138
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517
http://arxiv.org/abs/1802.09517

	The RISC-V Instruction Set Manual: Volume II: Privileged Architecture
	Table of Contents
	Preamble
	Preface
	Chapter 1. Introduction
	1.1. RISC-V Privileged Software Stack Terminology
	1.2. Privilege Levels
	1.3. Debug Mode

	Chapter 2. Control and Status Registers (CSRs)
	2.1. CSR Address Mapping Conventions
	2.2. CSR Listing
	2.3. CSR Field Specifications
	2.3.1. Reserved Writes Preserve Values, Reads Ignore Values (WPRI)
	2.3.2. Write/Read Only Legal Values (WLRL)
	2.3.3. Write Any Values, Reads Legal Values (WARL)

	2.4. CSR Field Modulation
	2.5. Implicit Reads of CSRs
	2.6. CSR Width Modulation
	2.7. Explicit Accesses to CSRs Wider than XLEN

	Chapter 3. Machine-Level ISA, Version 1.13
	3.1. Machine-Level CSRs
	3.1.1. Machine ISA (misa) Register
	3.1.2. Machine Vendor ID (mvendorid) Register
	3.1.3. Machine Architecture ID (marchid) Register
	3.1.4. Machine Implementation ID (mimpid) Register
	3.1.5. Hart ID (mhartid) Register
	3.1.6. Machine Status (mstatus and mstatush) Registers
	3.1.6.1. Privilege and Global Interrupt-Enable Stack in mstatus register
	3.1.6.2. Double Trap Control in mstatus Register
	3.1.6.3. Base ISA Control in mstatus Register
	3.1.6.4. Memory Privilege in mstatus Register
	3.1.6.5. Endianness Control in mstatus and mstatush Registers
	3.1.6.6. Virtualization Support in mstatus Register
	3.1.6.7. Extension Context Status in mstatus Register
	3.1.6.8. Previous Expected Landing Pad (ELP) State in mstatus Register

	3.1.7. Machine Trap-Vector Base-Address (mtvec) Register
	3.1.8. Machine Trap Delegation (medeleg and mideleg) Registers
	3.1.9. Machine Interrupt (mip and mie) Registers
	3.1.10. Hardware Performance Monitor
	3.1.11. Machine Counter-Enable (mcounteren) Register
	3.1.12. Machine Counter-Inhibit (mcountinhibit) Register
	3.1.13. Machine Scratch (mscratch) Register
	3.1.14. Machine Exception Program Counter (mepc) Register
	3.1.15. Machine Cause (mcause) Register
	3.1.16. Machine Trap Value (mtval) Register
	3.1.17. Machine Configuration Pointer (mconfigptr) Register
	3.1.18. Machine Environment Configuration (menvcfg) Register
	3.1.19. Machine Security Configuration (mseccfg) Register

	3.2. Machine-Level Memory-Mapped Registers
	3.2.1. Machine Timer (mtime and mtimecmp) Registers

	3.3. Machine-Mode Privileged Instructions
	3.3.1. Environment Call and Breakpoint
	3.3.2. Trap-Return Instructions
	3.3.3. Wait for Interrupt
	3.3.4. Custom SYSTEM Instructions

	3.4. Reset
	3.5. Non-Maskable Interrupts
	3.6. Physical Memory Attributes
	3.6.1. Main Memory versus I/O Regions
	3.6.2. Supported Access Type PMAs
	3.6.3. Atomicity PMAs
	3.6.3.1. AMO PMA
	3.6.3.2. Reservability PMA

	3.6.4. Misaligned Atomicity Granule PMA
	3.6.5. Memory-Ordering PMAs
	3.6.6. Coherence and Cacheability PMAs
	3.6.7. Idempotency PMAs

	3.7. Physical Memory Protection
	3.7.1. Physical Memory Protection CSRs
	3.7.1.1. Address Matching
	3.7.1.2. Locking and Privilege Mode
	3.7.1.3. Priority and Matching Logic

	3.7.2. Physical Memory Protection and Paging

	Chapter 4. "Smstateen/Ssstateen" Extensions, Version 1.0
	4.1. State Enable Extensions
	4.2. State Enable 0 Registers
	4.3. Usage

	Chapter 5. "Smcsrind/Sscsrind" Indirect CSR Access, Version 1.0
	5.1. Introduction
	5.2. Machine-level CSRs
	5.3. Supervisor-level CSRs
	5.4. Virtual Supervisor-level CSRs
	5.5. Access control by the state-enable CSRs

	Chapter 6. "Smepmp" Extension for PMP Enhancements for memory access and execution prevention in Machine mode, Version 1.0
	6.1. Introduction
	6.1.1. Threat model

	6.2. Proposal
	6.2.1. Truth table when mseccfg.MML is set
	6.2.2. Visual representation of the proposal

	6.3. Smepmp software discovery
	6.4. Rationale

	Chapter 7. "Smcntrpmf" Cycle and Instret Privilege Mode Filtering, Version 1.0
	7.1. Introduction
	7.2. CSRs
	7.2.1. Machine Counter Configuration (mcyclecfg, minstretcfg) Registers

	7.3. Counter Behavior

	Chapter 8. "Smrnmi" Extension for Resumable Non-Maskable Interrupts, Version 1.0
	8.1. RNMI Interrupt Signals
	8.2. RNMI Handler Addresses
	8.3. RNMI CSRs
	8.4. MNRET Instruction
	8.5. RNMI Operation

	Chapter 9. "Smcdeleg" Counter Delegation Extension, Version 1.0
	9.1. Counter Delegation
	9.2. Supervisor Counter Inhibit (scountinhibit) Register
	9.3. Virtualizing scountovf
	9.4. Virtualizing Local Counter Overflow Interrupts

	Chapter 10. "Smdbltrp" Double Trap Extension, Version 1.0
	Chapter 11. "Smctr" Control Transfer Records Extension, Version 1.0
	11.1. CSRs
	11.1.1. Machine Control Transfer Records Control Register (mctrctl)
	11.1.2. Supervisor Control Transfer Records Control Register (sctrctl)
	11.1.3. Virtual Supervisor Control Transfer Records Control Register (vsctrctl)
	11.1.4. Supervisor Control Transfer Records Depth Register (sctrdepth)
	11.1.5. Supervisor Control Transfer Records Status Register (sctrstatus)

	11.2. Entry Registers
	11.2.1. Control Transfer Record Source Register (ctrsource)
	11.2.2. Control Transfer Record Target Register (ctrtarget)
	11.2.3. Control Transfer Record Metadata Register (ctrdata)

	11.3. Instructions
	11.3.1. Supervisor CTR Clear Instruction

	11.4. State Enable Access Control
	11.5. Behavior
	11.5.1. Privilege Mode Transitions
	11.5.1.1. Virtualization Mode Transitions
	11.5.1.2. External Traps

	11.5.2. Transfer Type Filtering
	11.5.3. Cycle Counting
	11.5.4. RAS (Return Address Stack) Emulation Mode
	11.5.5. Freeze

	11.6. Custom Extensions

	Chapter 12. Supervisor-Level ISA, Version 1.13
	12.1. Supervisor CSRs
	12.1.1. Supervisor Status (sstatus) Register
	12.1.1.1. Base ISA Control in sstatus Register
	12.1.1.2. Memory Privilege in sstatus Register
	12.1.1.3. Endianness Control in sstatus Register
	12.1.1.4. Previous Expected Landing Pad (ELP) State in sstatus Register
	12.1.1.5. Double Trap Control in sstatus Register

	12.1.2. Supervisor Trap Vector Base Address (stvec) Register
	12.1.3. Supervisor Interrupt (sip and sie) Registers
	12.1.4. Supervisor Timers and Performance Counters
	12.1.5. Counter-Enable (scounteren) Register
	12.1.6. Supervisor Scratch (sscratch) Register
	12.1.7. Supervisor Exception Program Counter (sepc) Register
	12.1.8. Supervisor Cause (scause) Register
	12.1.9. Supervisor Trap Value (stval) Register
	12.1.10. Supervisor Environment Configuration (senvcfg) Register
	12.1.11. Supervisor Address Translation and Protection (satp) Register

	12.2. Supervisor Instructions
	12.2.1. Supervisor Memory-Management Fence Instruction

	12.3. Sv32: Page-Based 32-bit Virtual-Memory Systems
	12.3.1. Addressing and Memory Protection
	12.3.2. Virtual Address Translation Process

	12.4. Sv39: Page-Based 39-bit Virtual-Memory System
	12.4.1. Addressing and Memory Protection

	12.5. Sv48: Page-Based 48-bit Virtual-Memory System
	12.5.1. Addressing and Memory Protection

	12.6. Sv57: Page-Based 57-bit Virtual-Memory System
	12.6.1. Addressing and Memory Protection

	Chapter 13. "Svnapot" Extension for NAPOT Translation Contiguity, Version 1.0
	Chapter 14. "Svpbmt" Extension for Page-Based Memory Types, Version 1.0
	Chapter 15. "Svinval" Extension for Fine-Grained Address-Translation Cache Invalidation, Version 1.0
	Chapter 16. "Svadu" Extension for Hardware Updating of A/D Bits, Version 1.0
	Chapter 17. "Svvptc" Extension for Obviating Memory-Management Instructions after Marking PTEs Valid, Version 1.0
	Chapter 18. "Ssqosid" Extension for Quality-of-Service (QoS) Identifiers, Version 1.0
	18.1. Supervisor Resource Management Configuration (srmcfg) register

	Chapter 19. "Sstc" Extension for Supervisor-mode Timer Interrupts, Version 1.0
	19.1. Machine and Supervisor Level Additions
	19.1.1. Supervisor Timer (stimecmp) Register
	19.1.2. Machine Interrupt (mip and mie) Registers
	19.1.3. Supervisor Interrupt (sip and sie) Registers
	19.1.4. Machine Counter-Enable (mcounteren) Register

	19.2. Hypervisor Extension Additions
	19.2.1. Virtual Supervisor Timer (vstimecmp) Register
	19.2.2. Hypervisor Interrupt (hvip, hip, and hie) Registers
	19.2.3. Hypervisor Counter-Enable (hcounteren) Register

	19.3. Environment Config (menvcfg and henvcfg) Support

	Chapter 20. "Sscofpmf" Extension for Count Overflow and Mode-Based Filtering, Version 1.0
	20.1. Count Overflow Control
	20.2. Supervisor Count Overflow (scountovf) Register

	Chapter 21. "H" Extension for Hypervisor Support, Version 1.0
	21.1. Privilege Modes
	21.2. Hypervisor and Virtual Supervisor CSRs
	21.2.1. Hypervisor Status (hstatus) Register
	21.2.2. Hypervisor Trap Delegation (hedeleg and hideleg) Registers
	21.2.3. Hypervisor Interrupt (hvip, hip, and hie) Registers
	21.2.4. Hypervisor Guest External Interrupt Registers (hgeip and hgeie)
	21.2.5. Hypervisor Environment Configuration Register (henvcfg)
	21.2.6. Hypervisor Counter-Enable (hcounteren) Register
	21.2.7. Hypervisor Time Delta (htimedelta) Register
	21.2.8. Hypervisor Trap Value (htval) Register
	21.2.9. Hypervisor Trap Instruction (htinst) Register
	21.2.10. Hypervisor Guest Address Translation and Protection (hgatp) Register
	21.2.11. Virtual Supervisor Status (vsstatus) Register
	21.2.12. Virtual Supervisor Interrupt (vsip and vsie) Registers
	21.2.13. Virtual Supervisor Trap Vector Base Address (vstvec) Register
	21.2.14. Virtual Supervisor Scratch (vsscratch) Register
	21.2.15. Virtual Supervisor Exception Program Counter (vsepc) Register
	21.2.16. Virtual Supervisor Cause (vscause) Register
	21.2.17. Virtual Supervisor Trap Value (vstval) Register
	21.2.18. Virtual Supervisor Address Translation and Protection (vsatp) Register

	21.3. Hypervisor Instructions
	21.3.1. Hypervisor Virtual-Machine Load and Store Instructions
	21.3.2. Hypervisor Memory-Management Fence Instructions

	21.4. Machine-Level CSRs
	21.4.1. Machine Status (mstatus and mstatush) Registers
	21.4.2. Machine Interrupt Delegation (mideleg) Register
	21.4.3. Machine Interrupt (mip and mie) Registers
	21.4.4. Machine Second Trap Value (mtval2) Register
	21.4.5. Machine Trap Instruction (mtinst) Register

	21.5. Two-Stage Address Translation
	21.5.1. Guest Physical Address Translation
	21.5.2. Guest-Page Faults
	21.5.3. Memory-Management Fences

	21.6. Traps
	21.6.1. Trap Cause Codes
	21.6.2. Trap Entry
	21.6.3. Transformed Instruction or Pseudoinstruction for mtinst or htinst
	21.6.4. Trap Return

	Chapter 22. Control-flow Integrity (CFI)
	22.1. Landing Pad (Zicfilp)
	22.1.1. Landing-Pad-Enabled (LPE) State
	22.1.2. Preserving Expected Landing Pad State on Traps

	22.2. Shadow Stack (Zicfiss)
	22.2.1. Shadow Stack Pointer (ssp) CSR access control
	22.2.2. Shadow-Stack-Enabled (SSE) State
	22.2.3. Shadow Stack Memory Protection

	Chapter 23. "Ssdbltrp" Double Trap Extension, Version 1.0
	Chapter 24. Pointer Masking Extensions, Version 1.0.0
	24.1. Introduction
	24.2. Background
	24.2.1. Definitions
	24.2.2. The “Ignore” Transformation
	24.2.3. Example
	24.2.4. Determining the Value of PMLEN
	24.2.5. Pointer Masking and Privilege Modes
	24.2.6. Memory Accesses Subject to Pointer Masking
	24.2.7. Pointer Masking Extensions

	24.3. ISA Extensions
	24.3.1. Ssnpm
	24.3.2. Smnpm
	24.3.3. Smmpm
	24.3.4. Interaction with SFENCE.VMA
	24.3.5. Interaction with Two-Stage Address Translation
	24.3.6. Number of Masked Bits

	Chapter 25. RISC-V Privileged Instruction Set Listings
	Chapter 26. History
	26.1. Research Funding at UC Berkeley

	Bibliography

