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Documentation

= The online documentation of the project (a.k.a. the data sheet) is available on
O GitHub-pages: The online documentation of the
software framework is also available on GitHub-pages:
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Let’s Get It Started!

This user guide uses the NEORV32 project as is from the official neorv32 repository. To make your
first NEORV32 project run, follow the guides from the upcoming sections. It is recommended to
follow these guides step by step and eventually in the presented order.

This guide uses the minimalistic and platform/toolchain agnostic SoC test setups
from rtl/test_setups for illustration. You can use one of the provided test setups
(r) for your first FPGA tests.
w
For more sophisticated example setups have a look at the
repository, which provides SoC setups for various FPGAs, boards and toolchains.

Quick Links
. , and setup
. an application and it or making it in internal memory

* setup a new

. the core for your application
* add and
. an external SPI flash for persistent application storage

* generate an AMD Vivado

. the processor and

* RTOS support for and
* build SoCs using

* in-system of the whole processor
. - an all-Verilog "version" of the processor
* use the to develop and debug code for the NEORV32
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Chapter 1. Software Toolchain Setup

To compile (and debug) executables for the NEORV32 a RISC-V-compatible toolchain is required. By
default, the project’s software framework uses the GNU C Compiler RISC-V port "RISC-V GCC".
Basically, there are two options to obtain such a toolchain:

1. Download and build the RISC-V GNU toolchain by yourself.

2. Download and install a prebuilt version of the toolchain.

Default GCC Prefix

o The default toolchain prefix for this project is riscv-none-elf- (RISCV_PREFIX
variable).

Toolchain Requirements

Library/ISA Considerations

Note that a toolchain build with --with-arch=rv32imc provides library code (like the
o C standard library) compiled entirely using compressed (() and mul/div
instructions (M). Hence, this pre-compiled library code CANNOT be executed
(without emulation) on an architecture that does not support these ISA extensions.

Building the Toolchain from Scratch

The official RISC-V GCC GitHub repository ( )
provides instructions for building the toolchain from scratch:

Listing 1. Preparing GCC build for rv32i (minimal ISA only in this example)

$ git clone https://github.com/riscv/riscv-gnu-toolchain

$ cd riscv-gnu-toolchain

$ riscv-gnu-toolchain$ ./configure --prefix=/opt/riscv --with-arch=rv32i --with
-abi=11p32

$ riscv-gnu-toolchain$ make

Downloading and Installing a Prebuilt Toolchain

Alternatively, a prebuilt toolchain can be used. Some OS package managers provide embedded
RISC-V GCC toolchain. However, I can highly recommend the toolchain provided by the X-Pack
project (MIT license):

Toolchain Installation

To integrate the toolchain of choice into the NEORV32 software framework, the toolchain’s binaries
need to be added to the system path (e.g. PATH environment variable) so they can be used by a shell.
Therefore, the absolute path to the toolchain’s bin folder has to be appended to the PATH variable:
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$ export PATH=$PATH:/opt/riscv/bin

bashrc

-
Q This command can be added to .bashrc (or similar) to automatically add the RISC-V
toolchain at every console start.

To make sure everything works fine, navigate to an example project in the NEORV32 sw/example
folder and execute the following command:

neorv32/sw/example/demo_blink_led$ make check

This will test all the tools required for generating NEORV32 executables. Everything is working fine
if "Toolchain check OK" appears at the end of the log output.
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Chapter 2. General Hardware Setup

This guide shows the basics of setting up a NEORV32 project for simulation or synthesis from
scratch. It uses a simple, exemplary test "SoC" setup of the processor to keep things simple at the
beginning. This simple setup is intended for a first test / evaluation of the NEORV32.

The NEORV32 project features three minimalistic pre-configured test setups in rtl/test_setups.

These test setups only implement very basic processor and CPU features and mainly differ in the
actual boot configuration.

(n
(\) rstn_ihr/_ A 1‘III([D |
ITIT "”@ a 2
O
clk 1 = = E.’ =
NEORV32 u||@ g
. . I ¥]
uart[]_rxd_lh :" RISC-VV .;”@ rE:". %
;l < Processor & 0
] i () o g
X ) "

neorv32 test setup.vhd

Figure 1. NEORV32 "hello world" test setup (rtl/test_setups/neorv32_test_setup_bootloader.vhd)

1. Create a new project with your FPGA/ASIC/simulator EDA tool of choice.

2. Add all VHDL files from the project’s rt1/core folder to your project. Make sure to add all these
rtl files to a new library called neorv32. If your toolchain does not provide a field to enter the
library name, check out the "properties" menu of the added rtl files.

Compile Order and File-List Files

Some tools (like Lattice Radiant) might require a manual compile order of the
O VHDL source files to identify the dependencies. The rt1 folder features file-list files
that list all required HDL files in their recommended compilation order (see

).

3. The rtl/core/neorv32_top.vhd VHDL file is the top entity of the NEORV32 processor, which can
be instantiated within the actual project. However, in this tutorial we will use one of the pre-
defined test setups from rtl/test_setups (see above).

Make sure to include the neorv32 package into your design when instantiating the

o processor: add library neorv32; and use neorv32.neorv32_package.all; to your
design unit.
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4. Add the pre-defined test setup of choice to the project, too, and select it as top entity.

5. The entity of the test setups provides a minimal set of configuration generics, that might have to
be adapted to match your FPGA and board:

Listing 2. Test setup entity - configuration generics

generic (

-- adapt these for your setup --
CLOCK_FREQUENCY : natural := 100000000;
MEM_INT_IMEM_SIZE : natural := 16*1024; @
MEM_INT_DMEM_SIZE : natural := 8*1024 ®

)I

@ Clock frequency of clk_i signal in Hertz

@ Default size of internal instruction memory: 16kB

® Default size of internal data memory: 8kB

6. If you want to or if your FPGA does not provide sufficient resources you can modify the memory
sizes (MEM_INT_IMEM_SIZE and MEM_INT_DMEM_SIZE).

7. There is one generic that has to be set according to your FPGA board setup: the actual clock
frequency of the top’s clock input signal (clk_i). Use the CLOCK_FREQUENCY generic to specify your
clock source’s frequency in Hertz (Hz).

Memory Layout

If you have changed the default memory configuration (MEM_INT_IMEM_SIZE and
o MEM_INT_DMEM_SIZE generics) keep those new sizes in mind - these values are
required for setting up the software framework in the next section

8. Assign the signals of the test setup top entity to the according pins of your FPGA board. All the
signals can be found in the entity declaration of the corresponding test setup, e.g.:

Listing 3. Ports of neorv32_test_setup_bootloader.vhd

port (
-- Global control --
clk_i : in std_ulogic; -- global clock, rising edge
rstn_i : in std_ulogic; -- global reset, low-active, async
-- GPIO --
gpio_o : out std_ulogic_vector(7 downto @); -- parallel output
-- UARTO --

uart@_txd_o : out std_ulogic; -- UARTO send data
vuart@_rxd_i : in std_ulogic -- UARTO receive data
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10.

11.

12.

13.

14.

15.

Signal Polarity

o If your FPGA board has inverse polarity for certain input/output you need to add
inverters. Example: The reset signal rstn_i is low-active by default; the LEDs
connected to gpio_o are high-active by default.

Attach the clock input clk_i to your clock source and connect the reset line rstn_i to a button of
your FPGA board. Check whether it is low-active or high-active - the reset signal of the processor
is low-active, so maybe you need to invert the input signal.

If possible, connected at least bit @ of the GPIO output port gpio_o to a LED (see "Signal Polarity"
note above).

If your are using a UART-based test setup connect the UART communication signals vart@_txd_o
and uart@_rxd_i to the host interface (e.g. a USB-UART converter).

If you are using the on-chip debugger setup connect the processor’s JTAG signal jtag_* to a
suitable JTAG adapter.

Perform the project HDL compilation (synthesis, mapping, placement, routing, bitstream
generation).

Program the generated bitstream into your FPGA and press the button connected to the reset
signal.

Done! The LED(s) connected to gpio_o should be flashing now.
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Chapter 3. General Software Framework
Setup

To allow executables to be actually executed on the NEORV32 Processor the configuration of the

software framework has to be aware to the hardware configuration. This guide focuses on the

memory configuration. To enable certain CPU ISA features refer to the
section.

This guide shows how to configure the linker script for a given hardware memory configuration.
More information regarding the linker script itself can be found in the according section of the data
sheet:

(r) If you have not changed the default memory configuration in section
- you are already done and you can skip the rest of this section.
o Always keep the processor’s layout in mind when modifying the
linker script

There are two options to modify the default memory configuration of the linker script:

1.

2. (recommended!)

3.1. Modifying the Linker Script

This will modify the linker script itself.

1. Open the NEORV32 linker script sw/common/neorv32.1d with a text editor. Right at the beginning
of this script you will find the NEORV32 memory configuration configuration section:

Listing 4. Cut-out of the linker script neorv32.1d

/* Default rom/ram (IMEM/DMEM) sizes */
__neorv32_rom_size = DEFINED(__neorv32_rom_size) ? __neorv32 rom_size : 2048M; @
__neorv32 ram_size = DEFINED(_ _neorv32 ram _size) ? _ neorv32 ram_ size : 8K; @

/* Default HEAP size (= @; no heap at all) */
__neorv32_heap_size = DEFINED(__neorv32_heap_size) ? __neorv32_heap_size : 0; ®

/* Default section base addresses - do not change this unless the hardware-defined
address space layout is changed! */

__neorv32 rom_base = DEFINED(__neorv32 _rom_base) ? __neorv32_rom_base : 0x00000000; /*
= VHDL package's "ispace_base_c" */ @

__neorv32_ram_base = DEFINED(__neorv32_ram_base) ? __neorv32_ram_base : 0x80000000; /*
= VHDL package's "dspace_base_c" */ ®
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@ Default (max) size of the instruction memory address space (right-most value) (internal/external
IMEM): 2048MB

@ Default size of the data memory address space (right-most value) (internal/external DMEM): 8kB

® Default size of the HEAP (right-most value): OkB

@ Default base address of the instruction memory address space (right-most value): 0x00000000

® Default base address of the data memory address space (right-most value): 0x80000000

2. Only the the neorv32_ram_size variable needs to modified! If you have changed the default
DMEM (MEM_INT DMEM_SIZE generic) size then change the right-most parameter (here: 8kB)

so it is equal to your DMEM hardware configuration. The neorv32_rom_size does not need to be
modified even if you have changed the default IMEM size. For more information see

3. Done! Save your changes and close the linker script.

3.2. Overriding the Default Configuration

This will not change the default linker script at all. Hence, this approach is recommended as it
allows a per-project memory configuration without changing the code base.

The RAM and ROM sizes from (as well as the according base addresses)
can also be modified by overriding the default values when invoking make. Therefore, the command
needs to pass the according values to the linker using the makefile’s USER_FLAGS variable.

See section "Application Makefile" of the data sheet for more information
O regarding the default makefile variables:
w

Listing 5. Example: override default RAM (DMEM) and ROM (IMEM) size while invoking make

$ make USER_FLAGS+="-W1,--defsym,__neorv32_ram_size=16k -W1,
--defsym, __neorv32_rom_size=32k" clean_all exe

The -W1 passes the following command/flag to the linker while --defsym defines a symbol for the
linker. Hence, the default linker script section sizes are overridden. In this example the RAM size
(=DMEM) is set to 16kB and the ROM size (=IMEM) is set to 32kB.

When using this approach the customized attributes have to be specified every
time the makefile is invoked! You can put the RAM/ROM override commands into

O the project’s local makefile or define a simple shell script that defines all the setup-
related parameters (memory sizes, RISC-V ISA extensions, optimization goal,
further tuning flags, etc.).
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Chapter 4. Application Program Compilation

This guide shows how to compile an example C-code application into a NEORV32 executable that
can be uploaded via the bootloader or the on-chip debugger.

1. Open a terminal console and navigate to one of the project’s example programs. For instance,
navigate to the simple sw/example_demo_blink_led example program. This program uses the
NEORV32 GPIO module to display an 8-bit counter on the lowest eight bit of the gpio_o output
port.

2. To compile the project and generate an executable simply execute:
neorv32/sw/example/demo_blink_led$ make clean_all exe

3. The clean_all target is used (instead of just clean) to ensure everything is re-build.

4. The exe target will compile and link the application sources together with all the included
libraries. At the end an ELF file (main.elf) is generated. The NEORV32 image generator (in
sw/image_gen) takes this file and creates the final executable (neorv32_exe.bin). The makefile will
show the resulting memory utilization and the executable size:

neorv32/sw/example/demo_blink_led$ make clean_all exe
Memory utilization:

text data bss dec hex filename

1004 0 0 1004 3ec main.elf
Compiling ../../../sw/image_gen/image_gen
Executable (neorv32_exe.bin) size in bytes:
1016

Build Artifacts

(new) project-local folder named build. The resulting build artifacts (like
executable, the main ELF and all memory initialization/image files) will be placed
in the root project folder.

E All intermediate build artifacts (like object files and binaries) will be places into a

5. That’s it. The exe target has created the actual executable neorv32_exe.bin in the current folder
that is ready to be uploaded to the processor using the build-in bootloader. Alternatively, the
ELF file can be uploaded using the on-chip debugger.
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Chapter 5. Uploading and Starting of a
Binary Executable Image via UART

Follow this guide to use the bootloader to upload an executable via UART.

0 This concept uses the default "Indirect Boot" scenario that uses the bootloader to
upload new executables. See datasheet section for more information.

If your FPGA board does not provide such an interface - don’t worry! Section
o shows how to run custom programs
on your FPGA setup without having a UART.

1. Connect the primary UART (UARTO) interface of your FPGA board to a serial port of your host

computer.

2. Start a terminal program. In this tutorial, I am using TeraTerm for Windows. You can download
it for free from . On Linux you could use cutecom
(recommended) or GTKTerm, which you can get here (or

install via your package manager).

Any terminal program that can connect to a serial port should work. However,
make sure the program can transfer data in raw byte mode without any protocol

o overhead around it. Some terminal programs struggle with transmitting files
larger than 4KkB (see ). Try a different
program if uploading a binary does not work (terminal stall).

3. Open a connection to the the serial port your UART is connected to. Configure the terminal

setting according to the following parameters:
> 19200 Baud
o 8 data bits
o 1 stop bit
> no parity bits
> no transmission/flow control protocol

- newline on \r\n (carriage return and line feed)

4. Also make sure that single chars are send from your computer without any consecutive "new
line" or "carriage return" commands. This is highly dependent on your terminal application of
choice, TeraTerm only sends the raw chars by default. In cutecom, change LF to None in the drop-

down menu next to the input text box.

5. Press the NEORV32 reset button to restart the bootloader. The status LED starts blinking and the
bootloader intro screen appears in your console. Hurry up and press any key (hit space!) to

abort the automatic boot sequence and to start the actual bootloader user interface console.
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Listing 6. Bootloader console; aborted auto-boot sequence
<< NEORV32 Bootloader >>

BLDV: Mar 7 2023
HWV: ©0x01080107
CID: 0x00000000
CLK: ©@x05f5e100
MISA: 0x40901106
XISA: 0xc0000fab
SOC: Ooxffffd02f
IMEM: 0x00008000
DMEM: 0x00002000

Autoboot in 10s. Press any key to abort.
Aborted.

Available CMDs:

h: Help
r: Restart
u: Upload
s: Store to flash
1: Load from flash
e: Execute
CMD:>

6. Execute the "Upload" command by typing u. Now the bootloader is waiting for a binary
executable to be send.

CMD:> u
Awaiting neorv32_exe.bin...

7. Use the "send file" option of your terminal program to send a NEORV32 executable
(neorv32_exe.bin).

8. Again, make sure to transmit the executable in raw binary mode (no transfer protocol). When
using TeraTerm, select the "binary" option in the send file dialog.

9. If everything went fine, OK will appear in your terminal:

Make sure to upload the NEORV32 executable neorv32_exe.bin. Uploading any
o other file (like main.bin) will cause an ERR_EXE bootloader error (see
).

CMD:> u
Awaiting neorv32_exe.bin... OK
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10. The executable is now in the instruction memory of the processor. To execute the program right
now run the "Execute" command by typing e:

CMD:> u

Awaiting neorv32_exe.bin... OK
CMD:> e

Booting...

Blinking LED demo program

11. If everything went fine, you should see the LEDs blinking.

o The bootloader will print error codes if something went wrong. See section
of the NEORV32 datasheet for more information.

O See section to learn how to
- use an external SPI flash for nonvolatile program storage.

The bootloader also supports booting from external TWI memory. Enable it in the

O bootloader makefile, but be careful, enabling all features may result in a too-big
et binary.

(r) Executables can also be uploaded via the on-chip debugger. See section
- for more information.
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Chapter 6. Installing an Executable Directly
Into Memory

If you do not want to use the bootloader (or the on-chip debugger) for executable upload or if your
setup does not provide a serial interface for that, you can also directly install an application into
embedded memory.

This concept uses the "Direct Boot" scenario that implements the processor-internal IMEM as ROM,
which is pre-initialized with the application’s executable during synthesis. Hence, it provides non-
volatile storage of the executable inside the processor. This storage cannot be altered during
runtime and any source code modification of the application requires to re-program the FPGA via
the bitstream.

(a8 . . .
O See datasheet section for more information.
L _J

Using the IMEM as ROM:

« for this boot concept the bootloader is no longer required

* this concept only works for the internal IMEM (but can be extended to work with external
memories coupled via the processor’s bus interface)

* make sure that the memory components (like block RAM) the IMEM is mapped to support an
initialization via the bitstream

1. At first, make sure your processor setup actually implements the internal IMEM: the
MEM_INT_IMEM_EN generics has to be set to true:

Listing 7. Processor top entity configuration - enable internal IMEM

-- Internal Instruction memory --
MEM_INT_IMEM_EN => true, -- implement processor-internal instruction memory

2. For this setup we do not want the bootloader to be implemented at all. Disable implementation
of the bootloader by setting the INT_BOOTLOADER_EN generic to false. This will also modify the
processor-internal IMEM so it is initialized with the executable during synthesis.

Listing 8. Processor top entity configuration - disable internal bootloader

-- General --
INT_BOOTLOADER_EN => false, -- boot configuration: false = boot from int/ext (I)MEM

3. To generate an "initialization image" for the IMEM that contains the actual application, run the
install target when compiling your application:

neorv32/sw/example/demo_blink_led$ make clean_all install
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Memory utilization:
text data bss dec hex filename
1004 0 0 1004 3ec main.elf
Compiling ../../../sw/image_gen/image_gen
Executable (neorv32_exe.bin) size in bytes:
1016
Installing application image to ../../../rtl/core/neorv32_application_image.vhd

4. The install target has compiled all the application sources but instead of creating an executable
(neorv32_exe.bit) that can be uploaded via the bootloader, it has created a VHDL memory
initialization image core/neorv32_application_image.vhd.

5. This VHDL file is automatically copied to the core’s rtl folder (rt1/core) so it will be included for
the next synthesis.

6. Perform a new synthesis. The IMEM will be build as pre-initialized ROM (inferring embedded
memories if possible).

7. Upload your bitstream. Your application code now resides unchangeable in the processor’s
IMEM and is directly executed after reset.

The synthesis tool / simulator will print asserts to inform about the (IMEM) memory / boot
configuration:

NEORV32 PROCESSOR CONFIG NOTE: Boot configuration: Direct boot from memory (processor-
internal IMEM).

NEORV32 PROCESSOR CONFIG NOTE: Implementing processor-internal IMEM as ROM (1016
bytes), pre-initialized with application.
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Chapter 7. Setup of a New Application
Program Project

1. The easiest way of creating a new software application project is to copy an existing one. This
will keep all file dependencies. For example you can copy sw/example/demo_blink_led to
sw/example/flux_capacitor.

2. If you want to place you application somewhere outside sw/example you need to adapt the
application’s makefile. In the makefile you will find a variable that keeps the relative or
absolute path to the NEORV32 repository home folder. Just modify this variable according to
your new project’s home location:

# Relative or absolute path to the NEORV32 home folder (use default if not set by
user)
NEORV32_HOME 7= ../../..

3. If your project contains additional source files outside of the project folder, you can add them to
the APP_SRC variable:

# User's application sources (add additional files here)
APP_SRC = $(wildcard *.c) ../somewhere/some_file.c

4. You also can add a folder containing your application’s include files to the APP_INC variable (do
not forget the -I prefix):

# User's application include folders (don't forget the '-I' before each entry)
APP_INC = -I . -I ../somewhere/include_stuff_folder
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Chapter 8. Application-Specific Processor
Configuration

The processor’s configuration options, which are mainly defined via the top entity VHDL generics,
allow to tailor the entire SoC according to the application-specific requirements. Note that this
chapter does not focus on optional SoC features like 10/peripheral modules - it rather gives ideas on
how to optimize for overall goals like performance and area.

o Please keep in mind that optimizing the design in one direction (like performance)
will also effect other potential optimization goals (like area and energy).

8.1. Optimize for Performance

The following points show some concepts to optimize the processor for performance regardless of
the costs (i.e. increasing area and energy requirements):

* Enable all performance-related RISC-V CPU extensions that implement dedicated hardware
accelerators instead of emulating operations entirely in software: M, C, Zfinx

* Enable mapping of compleX CPU operations to dedicated hardware: FAST_MUL_EN = true to use
DSP slices for multiplications, FAST_SHIFT_EN = true use a fast barrel shifter for shift operations.

* Implement the instruction cache: ICACHE_EN = true

* Use as many internal memory as possible to reduce memory access latency: MEM_INT_IMEM_EN =
true and MEM_INT_DMEM_EN = true, maximize MEM_INT_IMEM_SIZE and MEM_INT_DMEM_SIZE

* To be continued...

8.2. Optimize for Size

The NEORV32 is a size-optimized processor system that is intended to fit into tiny niches within
large SoC designs or to be used a customized microcontroller in really tiny / low-power FPGAs (like
Lattice iCE40). Here are some ideas how to make the processor even smaller while maintaining it’s
general purpose system concept and maximum RISC-V compatibility.

SoC
 This is obvious, but exclude all unused optional I0/peripheral modules from synthesis via the

processor configuration generics.

* If an I0 module provides an option to configure the number of "channels", constrain this
number to the actually required value (e.g. the PWM module’s I0_PWM_NUM_CH generic).

* Disable the instruction cache (ICACHE_EN = false) if the design only uses processor-internal
IMEM and DMEM memories.

* To be continued...
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CPU

e Use the embedded RISC-V CPU architecture extension (CPU_EXTENSION RISCV_E) to reduce block
RAM utilization.

* The compressed instructions extension (CPU_EXTENSION_RISCV_C) requires additional logic for the
decoder but also reduces program code size by approximately 30%.

 If not explicitly used/required, exclude the CPU standard counters [m]instret[h] (number of
instruction) and [m]cycle[h] (number of cycles) from synthesis by disabling the Zicntr ISA
extension (note, this is not RISC-V compliant).

* Map CPU shift operations to a small and iterative shifter unit (FAST_SHIFT_EN = false).

* If you have unused DSP block available, you can map multiplication operations to those slices
instead of using LUTSs to implement the multiplier (FAST_MUL_EN = true).

o If there is no need to execute division in hardware, use the Zmmul extension instead of the full-
scale M extension.

* Disable CPU extension that are not explicitly used.

e To be continued...

8.3. Optimize for Clock Speed

The NEORV32 Processor and CPU are designed to provide minimal logic between register stages to
keep the critical path as short as possible. When enabling additional extension or modules the
impact on the existing logic is also kept at a minimum to prevent timing degrading. If there is a
major impact on existing logic (example: many physical memory protection address configuration
registers) the VHDL code automatically adds additional register stages to maintain critical path
length. Obviously, this increases operation latency.

@ Enable the "ASIC style" / full-reset register file option (REGFILE_HW_RST) to obtain
- maximum clock speed for the CPU (at the cost of an increased hardware footprint).

In order to optimize for a minimal critical path (= maximum clock speed) the following points
should be considered:

* Complex CPU extensions (in terms of hardware requirements) should be avoided (examples:
floating-point unit, physical memory protection).

* Large carry chains (>32-bit) should be avoided (i.e. constrain the HPM counter sizes via
HPM_CNT_WIDTH).

 If the target FPGA provides sufficient DSP resources, CPU multiplication operations can be
mapped to DSP slices (FAST_MUL_EN = true) reducing LUT usage and critical path impact while
also increasing overall performance.

* Use the synchronous (registered) RX path configuration of the external bus interface
(XBUS_ASYNC_RX = false).

* To be continued...
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The short and fixed-length critical path allows to integrate the core into existing
o clock domains. So no clock domain-crossing and no sub-clock generation is

required. However, for very high clock frequencies (this is technology / platform

dependent) clock domain crossing becomes crucial for chip-internal connections.

8.4. Optimize for Energy

There are no dedicated configuration options to optimize the processor for energy (minimal
consumption; energy/instruction ratio) yet. However, a reduced processor area ( )
will also reduce static energy consumption.

To optimize your setup for low-power applications, you can make use of the CPU sleep mode (wfi
instruction). Put the CPU to sleep mode whenever possible. If the clock gating feature is enabled
(CLOCK_GATING_EN) the entire CPU complex will be disconnected from the clock tree while in sleep
mode.

Disable all processor modules that are not actually used (exclude them from synthesis if they will
be never used; disable a module via it’s control register if the module is not currently used).

Processor-internal clock generator shutdown

(r) If no 10/peripheral module is currently enabled, the processor’s internal clock
- generator circuit will be shut down reducing switching activity and thus, dynamic
energy consumption.
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Chapter 9. Adding Custom Hardware
Modules

In resemblance to the RISC-V ISA, the NEORV32 processor was designed to ease customization and
extensibility. The processor provides several predefined options to add application-specific custom
hardware modules and accelerators. A is given at the end of this section.

Debugging/Testing Custom Hardware Modules

Custom hardware IP modules connected via the external bus interface or
(r') integrated as CFU can be debugged "in-system" using the "bus explorer" example
- program (sw/example_bus_explorer). This program provides an interactive console
(via UARTO) that allows to perform arbitrary read and write access from/to any
memory-mapped register.

9.1. Standard (External) Interfaces

The processor already provides a set of standard interfaces that are intended to connect chip-
external devices. However, these interfaces can also be used chip-internally. The most suitable
interfaces are , , and

The SPI and especially the GPIO interfaces might be the most straightforward approaches since
they have a minimal protocol overhead. Beyond simplicity, these interface only provide a very
limited bandwidth and require more sophisticated software handling ("bit-banging" for the GPIO).
Hence, it is not recommend to use them for chip-internal communication.

9.2. External Bus Interface

The provides the classic approach for attaching custom IP. By default, the
bus interface implements the widely adopted Wishbone interface standard. This project also
includes wrappers to convert to other protocol standards like ARM’s AXI4-Lite or Intel’s Avalon
protocols. By using a full-featured bus protocol, complex SoC designs can be implemented including
several modules and even multi-core architectures. Many FPGA EDA tools provide graphical editors
to build and customize whole SoC architectures and even include pre-defined IP libraries.

Custom hardware modules attached to the processor’s bus interface have no limitations regarding
their functionality. User-defined interfaces (like DDR memory access) can be implemented and the
hardware module can operate completely independent of the CPU.

The bus interface uses a memory-mapped approach. All data transfers are handled by simple
load/store operations since the external bus interface is mapped into the processor’s .
This allows a very simple still high-bandwidth communications. However, high bus traffic may
increase access latencies.
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9.3. Custom Functions Subsystem

The is an "empty" template for a memory-mapped, processor-
internal module.

The basic idea of this subsystem is to provide a convenient, simple and flexible platform, where the
user can concentrate on implementing the actual design logic rather than taking care of the
communication between the CPU/software and the design logic. Note that the CFS does not have
direct access to memory. All data (and control instruction) have to be send by the CPU.

The use-cases for the CFS include medium-scale hardware accelerators that need to be tightly-
coupled to the CPU. Potential use cases could be DSP modules like CORDIC, cryptographic
accelerators or custom interfaces (like IIS).

9.4. Custom Functions Unit

The is a functional unit that is integrated right into the CPU’s pipeline.
It allows to implement custom RISC-V instructions. This extension option is intended for rather
small logic that implements operations, which cannot be emulated in pure software in an efficient
way. Since the CFU has direct access to the core’s register file it can operate with minimal data
latency.

9.5. Comparative Summary

The following table gives a comparative summary of the most important factors when choosing one
of the chip-internal extension options:

. for CPU-internal custom RISC-V instructions
. for tightly-coupled processor-internal co-processors
. for processor-external memory-mapped modules

Table 1. Comparison of On-Chip Extension Options

Custom Functions Custom Functions External Bus

Unit (CFU) Subsystem (CFS) Interface
RTL location CPU-internal processor-internal processor-external
HW complexity/size small medium large
CPU-independent no yes yes
operation
CPU interface register file access memory-mapped memory-mapped
Low-level access custom instructions load/store load/store
mechanism
Access latency minimal low medium to high
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Custom Functions

Unit (CFU)
External IO interfaces not supported
Exception capability yes
Interrupt capability no

Custom Functions
Subsystem (CFS)

yes, but limited
no

yes

External Bus
Interface

yes, user-defined
no

user-defined
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Chapter 10. Customizing the Internal
Bootloader

The NEORV32 bootloader provides several options to configure and customize it for a certain
application setup. This configuration is done by passing defines when compiling the bootloader. Of
course you can also modify to bootloader source code to provide a setup that perfectly fits your
needs.

Each time the bootloader sources are modified, the bootloader has to be re-
o compiled (and re-installed to the bootloader ROM) and the processor has to be re-
synthesized.

Keep in mind that the maximum size for the bootloader is limited to 8kB and it
o should be compiled using the minimal base & privileged ISA rv32e_zicsr_zifencei
only to ensure it can work with any actual CPU configuration.

Table 2. Bootloader configuration parameters

Parameter Default Legal values Description
Memory layout
EXE_BASE_ADDR 0x00000 any Base address / boot address for the executable (see
000

section "Address Space" in the NEORV32 data sheet)

Serial console interface

UART_EN 1 0,1 Set to 0 to disable UARTO (no serial console at all)
UART_BAUD 19200 any Baud rate of UARTO
lEJAFE{L_HW_HANDSHAK 0 0,1 Set to 1 to enable UARTO hardware flow control
Status LED
STATUS_LED_EN 1 0,1 Enable bootloader status led ("heart beat") at GPI0
output port pin #STATUS_LED_PIN when 1
STATUS_LED_PIN 0 0..31 GPIO0 output pin used for the high-active status LED
Auto-boot configuration
?UTO_BOOT_TIMEOU 10 any Time in seconds after the auto-boot sequence starts

(if there is no UART input by the user); set to 0 to
disabled auto-boot sequence

SPI configuration

SPI_EN 1 0,1 Set 1 to enable the usage of the SPI module (including
load/store executables from/to SPI flash options)

SPI_FLASH_CS 0 0..7 SPI chip select output (spi_csn_o) for selecting flash
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Parameter Default Legal values Description

SPI_FLASH_ADDR_B 3 2,3,4 SPI flash address size in number of bytes (2=16-bit,
YTES 3=24-bit, 4=32-bit)

SPI_FLASH_SECTOR ~ 65536 any SPI flash sector size in bytes

_SIZE

SPI_FLASH_CLK_PR CLK_PRS ~ (LK_PRSC_2  SPI clock pre-scaler (dividing main processor clock)
5C €8 CLK_PRSC_4
CLK_PRSC_8
CLK_PRSC_64
CLK_PRSC_128
CLK_PRSC_1024

CLK_PRSC_2024
CLK_PRSC_4096

SPI_BOOT_BASE_AD 0x0@0400 gny 32-bit value Defines the base address of the executable in
DR 000 external flash

TWI configuration

TWI_EN 0 0,1 Set 1 to enable the usage of the TWI module
(including load executables from TWI device option)

TWI_CLK_PRSC CLK_PRS ~ CLK_PRSC_2  TWI clock pre-scaler (dividing main processor clock)
€64 CLK_PRSC_4
CLK_PRSC_8
CLK_PRSC_64
CLK_PRSC_128
CLK_PRSC_1024

CLK_PRSC_2024
CLK_PRSC_4096

TWI_CLK_DIV 3 0..15 TWI clock divider (dividing twi clock)

TWI_DEVICE_ID 0x50 0x00 ... 0x7F  First TWI device ID to start. Is incremented until the
end of the program is reached, when TWI_ADDR_BYTES
is 1.

TWI_ADDR_BYTES 1 1,2 TWI memory address size in number of bytes. When

TWI_ADDR_BYTES is 1, TWI_DEVICE_ID the gets
incremented as well.

o Enabling all features while sticking to the minimal RISC-V ISA will result in a too-
large binary!

Each configuration parameter is implemented as C-language define that can be manually
overridden (redefined) when invoking the bootloader’s makefile. The according parameter and its
new value has to be appended (using +=) to the makefile USER_FLAGS variable. Make sure to use the -D
prefix here. The configuration is also listed in the makefile of the bootloader.

For example, to configure a UART Baud rate of 57600 and redirecting the status LED to GPIO output
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pin 20 use the following command:

Listing 9. Example: customizing, re-compiling and re-installing the bootloader

sw/bootloader$ make USER_FLAGS+=-DUART_BAUD=57600 USER_FLAGS+=-DSTATUS_LED PIN=20
clean_all bootloader

The clean_all target ensure that all libraries are re-compiled. The bootloader target
will automatically compile and install the bootloader to the HDL boot ROM
(updating rt1/core/neorv32_bootloader_image.vhd).

10.1. Auto-Boot Configuration

The default bootloader provides a UART-based user interface that allows to upload new executables
at any time. Optionally, the executable can also be programmed to an external SPI flash by the
bootloader (see section ).

The bootloader also provides an automatic boot sequence (auto-boot) which will start copying an
executable from external SPI flash to IMEM using the default SPI configuration. By this, the default
bootloader provides a "non-volatile program storage" mechanism that automatically boots from
external SPI flash (after AUTO_BOOT_TIMEOUT) while still providing the option to re-program the SPI
flash at any time via the UART console.
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Chapter 11. Programming an External SPI
Flash via the Bootloader

The default processor-internal NEORV32 bootloader supports automatic booting from an external
SPI flash. This guide shows how to write an executable to the SPI flash via the bootloader so it can
be automatically fetched and executed after processor reset. For example, you can use a section of
the FPGA bitstream configuration memory to store an application executable.

Customization
This section assumes the default configuration of the NEORV32 bootloader. See
o section on how to customize the bootloader

and its setting (for example the SPI chip-select port, the SPI clock speed or the
flash base address for storing the executable).

11.1. Programming an Executable

1. At first, reset the NEORV32 processor and wait until the bootloader start screen appears in your
terminal program.

2. Abort the auto boot sequence and start the user console by pressing any key.

3. Press u to upload the executable that you want to store to the external flash:

CMD:> u
Awaiting neorv32_exe.bin...

4. Send the binary in raw binary via your terminal program. When the upload is completed and
"OK" appears, press s to trigger the programming of the flash (do not execute the image via the e
command as this might corrupt the image):

CMD:> u

Awaiting neorv32_exe.bin... OK

CMD:> s

Write 0x000013FC bytes to SPI flash @ 0x020000007 (y/n)

5. The bootloader shows the size of the executable and the base address inside the SPI flash where
the executable is going to be stored. A prompt appears: Type y to start the programming or type
n to abort.

Section show the according C-language define
(;) that can be modified to specify the base address of the executable inside the SPI
w

flash.
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CMD:> u

Awaiting neorv32_exe.bin... OK

CMD:> s

Write 0x000013FC bytes to SPI flash @ 0x020000007 (y/n) y
Flashing... 0K

CMD:>

o The bootloader stores the executable in little-endian byte-order to the flash.

6. If "OK" appears in the terminal line, the programming process was successful. Now you can use
the auto boot sequence to automatically boot your application from the flash at system start-up
without any user interaction.
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Chapter 12. Packaging the Processor as
Vivado IP Block

Packaging the entire processor as IP module allows easy integration of the core (or even several
cores) into a block-design-based Vivado project. The NEORV32 repository provides a full-scale TCL
script that automatically packages the processor as Vivado IP block. For this, a specialized wrapper
for the processor’s top entity is provided (rtl/system_integration/neorv32_vivado_ip.vhd) that
features AXI4-Lite (via XBUS) and AXI4-Stream (via SLINK) compatible interfaces.

General AXI Wrapper

o The provided AXI wrapper can also be used for custom (AXI) setups outside of
Vivado and/or IP block designs.

neorv32_vivado_ip_0

> led_o[3:0]
O uatd_txd 0 0

Figure 2. Example Vivado SoC using the NEORV3Z2 IP Block

Besides packaging the HDL modules, the TCL script also generates a simplified customization GUI
that allows an easy and intuitive configuration of the processor. The rather complex VHDL
configuration generics are renamed and provided with tool tips to make it easier to understand the
different configuration options.
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#  Re-customize IP X
neorv32_vivado_ip_v1_0 (1.0) /
@ Documentation IP Location
Show disabled ports Component Name neonva2_vivado_ip_0
~
:+ o1 axis General
- clk Clock frequency (Hz) 120000000
=g resetn s0_axis 4 E Hart Id 0x00000000
m_ad + - Jedecld “00000000000"
() on-Chip Debugger
AXl4-Lite (BUS) timeout 64 8 - 65536]
() AXi4-Lite cache (XBUS)
== gpin_i{fi3:0] gpin_n[f3 0] AXI4-Lite cache (XEUS) number of blocks |8 11-256]
= uartd_ra i vartd_td o — AXI4-Lite cache (XBUS) block size 258 [1 - 65538]
= uartl_cts_i uartl_rts o = o
[w] AXl4-Stream source and sink
AX|4-Stream input FIFQ depth 4 [1-32768]
AX|4-Stream output FIFO depth 4 [1- 68
CPU Configuration
[[] RISC-V AISA extension
Reservation set minimal granularity 4
() RISC-V B ISA extension
¥ RISC-V C ISA extension
() RISC-V E ISA extension
[v) RISC-V M 1S4 extension
mtime_time_o[G3:0] .
) ¥ RISC-V U IS4 extension
— msw_irg_i
= rnext irg i [ RISC-V Zfinx I3A extension In
() RISC-V Zihpm IS4 extension
v

Figure 3. NEORV32 IP Customization GUI

The following steps show how to package the processor using the provided TCL script and how to
import the generated IP block into the Vivado IP repository.

1.
2.

10.
11.

Open the Vivado GUIL

In GUI mode select either "Tools — Run TCL Script” to directly execute the script or open the TCL
shell ("Window - Tcl Console") to manually invoke the script.

Use cd in the TCL console to navigate to the project’s neorv32/rt1l/system_integration folder.
Execute source neorv32_vivado_ip.tcl in the TCL console.

A second Vivado instance will open automatically packaging the IP module. After this process is
completed, the second Vivado instance will automatically close again.

A new folder neorv32_vivado_ip_work is created in neorv32/rtl/system_integration which
contains the IP-packaging Vivado project.

Inside, the packaged_ip folder provides the actual IP module.

Open your design project in Vivado.

Click on "Settings" in the "Project Manager" on the left side.

Under "Project Settings" expand the "IP" section and click on "Repository".

Click the large plus button and select the previously generated IP folder
(path/to/neorv32/rtl/system_integration/neorv32_vivado_ip_work/packaged_ip).
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12. Click "Select" and close the Settings menu with "Apply" and "OK".
13. You will find the NEORV32 in the "User Repository" section of the Vivado IP catalog.

Combinatorial Loops DRC Errors

A If the TRNG is enabled it is recommended to add the following commands to the
project’s constraints file in order to prevent DRC errors during bitstream
generation.

Listing 10. Allow Combinatorial Loops

set_property SEVERITY {warning} [get_drc_checks LUTLP-1]
set_property IS_ENABLED FALSE [get_drc_checks LUTLP-1]
set_property ALLOW_COMBINATORIAL_LOOPS TRUE

Re-Packaging the IP Core

For every change that is made right to the hardware (excluding configuration
made via the customization GUI!) the NEORV32 IP module needs to be re-packaged
by re-executing the packing script (neorv32_vivado_ip.tcl).

o This also applies if an executable installed right into the IMEM (see section
) shall be updated. It is not not
possible to replace the IMEM image (neorv32_application_image.vhd) file in the
packaged_ip folder. For the Vivado design suite, the new program to be executed
must be compiled and installed using the install makefile target. Next, the
neorv32_vivado_ip.tcl script has to be executed again. Finally, Vivado will prompt

to upgrade the NEORV32 IP.

AMD Vivado / ISIM - Incremental Compilation of Simulation Sources

When using AMD Vivado (ISIM for simulation) make sure to TURN OFF

o "Incremental compilation” (Project Setting — Simulation — Advanced — _Enable
incremental compilation). This will slow down simulation relaunch but will ensure
that all application images (*_image.vhd) are reanalyzed when recompiling the
NEORV32 application or bootloader.
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Chapter 13. Simulating the Processor

Due to the complexity of the NEORV32 processor and all the different configuration options, there is
a wide range of possible testing and verification strategies.

On the one hand, a simple smoke testbench allows ensuring that functionality is correct from a
software point of view. That is used for running the RISC-V architecture tests, in order to guarantee
compliance with the ISA specification(s). All required simulation sources are located in sim.

On the other hand, and are used for verifying the functionality of
the various peripherals from a hardware point of view.

AMD Vivado / ISIM - Incremental Compilation

When using AMD Vivado (ISIM for simulation) make sure to TURN OFF

o "Incremental compilation”" (Project Setting — Simulation — Advanced — _Enable
incremental compilation). This will slow down simulation relaunch but will ensure
that all application images (*_image.vhd) are reanalyzed when recompiling the
NEORV32 application or bootloader.

13.1. Testhench

VUnit Testbench

a
Q A more sophisticated testbench using VUnit is available in a separate repository:

A plain-VHDL testbench without any third-party libraries / dependencies (sim/neorv32_tb.vhd) can
be used for simulating and testing the processor and all its configurations. This testbench features
clock and reset generators and enables all optional peripheral and CPU extensions. The processor
check program (sw/example/processor_check) is develop in close relation to the default testbench in
order to test all primary processor functions.

The simulation setup is configured via the "User Configuration" section located right at the
beginning of the testbench architecture. Each configuration generic provides a default value and a
comments to explain the functionality. Basically, these configuration generics represent most of the
processor’s top generics.

UART output during simulation

Data written to the NEORV32 UARTO / UART1 transmitter is send to a virtual UART
receiver implemented as part of the default testbench. The received chars are send

o to the simulator console and are also stored to a log file (neorv32_tb.uart@_rx.out
for UARTO, neorv32_tb.uart1_rx.out for UART1) inside the simulator’s home folder.
Please note that printing via the native UART receiver takes a lot of time. For
faster simulation console output see section
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13.2. Faster Simulation Console Output

When printing data via the physical UART the communication speed will always be based on the
configured BAUD rate. For a simulation this might take some time. To have faster output you can
enable the simulation mode for UARTO/UART1 (see section

).

ASCII data sent to UARTO / UART1 will be immediately printed to the simulator console and logged
to files in the simulator’s home directory.

* neorv32.uart@_sim_mode.out: ASCII data send via UARTO

e neorv32.uart1_sim_mode.out: ASCII data send via UART1

Automatic Simulation Mode

You can "automatically" enable the simulation mode of UARTO/UART1 when
compiling an application. In this case, the "real" UARTO/UART1 transmitter unit is

(;) permanently disabled by setting the UART’S "sim-mode" bit. To enable the
simulation mode just compile and install the application and add -DUART@_SIM_MODE
-DUART@_SIM_MODE / -DUART1_SIM_MODE to the compiler’s USER_FLAGS variable (do not
forget the -D suffix flag):

Listing 11. Auto-Enable UARTO Simulation-Mode while Compiling

sw/example/demo_blink_led$ make USER_FLAGS+=-DUART@_SIM_MODE clean_all all

13.3. GHDL Simulation

The default simulation setup that is also used by the project’s CI pipeline is based on the free and
open-source VHDL simulator GHDL. The sim folder also contains a simple script that evaluates and
simulates all core files. This script can be called right from the command. Optionally, additional
GHDL flags can be passes.

Listing 12. Invoking the default GHDL simulation script

neorv32/sim$ sh ghdl.sh --stop-time=20ms

13.4. Simulation using Application Makefiles

The can also be started by the main application makefile (i.e. from each SW
project folder).

Listing 13. Starting the GHDL simulation from the application makefile

sw/example/demo_blink_led$ make USER_FLAGS+=-DUART@_SIM_MODE clean_all install sim
[...]
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Blinking LED demo program

Makefile targets:

» clean_all: delete all artifacts and rebuild everything
* install: install executable

e sim: run GHDL simulation

Adjusting the Testbench Configuration

(’) The testbench provides several generics for customization. These can be adjusted

- in-console using the makefile’s GHDL_RUN_FLAGS variable. E.g.: make
GHDL_RUN_FLAGS+="-gBOOT_MODE_SELECT=1" sim

13.4.1. Hello World!

To do a quick test of the NEORV32 make and the required tools navigate to the project’s
sw/example/hello_world folder and run make USER_FLAGS+=-DUART@_SIM_MODE clean_all install sim:

neorv32/sw/example/hello_wor1d$ make USER_FLAGS+=-DUART@_SIM_MODE clean_all install
sim

../../../sw/1lib/source/neorv32_uart.c: In function 'neorv32_uart_setup':
../../../sw/1lib/source/neorv32_uart.c:109:2: warning: #warning UART@_SIM_MODE (primary
UART) enabled! Sending all UARTO.TX data to text.io simulation output instead of real
UARTO transmitter. Use this for simulation only! [-Wcpp]

109 | #warning UART@_SIM_MODE (primary UART) enabled! Sending all UART@.TX data to
text.io simulation output instead of real UART@ transmitter. Use this for simulation
only! @

| A

Memory utilization:

text data bss dec hex filename

5540 0 116 5656 1618 main.elf @
Compiling image generator...
Generating neorv32_application_image.vhd
Installing application image to ../../../rtl/core/neorv32_application_image.vhd @
Simulating processor using default testbench...
GHDL simulation run parameters: --stop-time=10ms @
../rtl/core/neorv32_top.vhd:351:5:@0ms: (assertion note): [NEORV32] The NEORV32 RISC-V
Processor (v1.10.7.6), github.com/stnolting/neorv32
../rtl/core/neorv32_top.vhd:357:5:@0ms: (assertion note): [NEORV32] Processor
Configuration: CPU IMEM-ROM DMEM I-CACHE D-CACHE XBUS XBUS-CACHE CLINT GPIO UART®
UART1 SPI SDI TWI TWD PWM WDT TRNG CFS NEOLED XIRQ GPTMR ONEWIRE DMA SLINK CRC SYSINFO
0CD-AUTH
../rtl/core/neorv32_top.vhd:411:5:@0ms: (assertion note): [NEORV32] BOOT_MODE_SELECT =
2: booting IMEM image
../rtl/core/neorv32_clockgate.vhd:38:3:@0ms: (assertion warning): [NEORV32] Clock
gating enabled (using default/generic clock switch).
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../rtl/core/neorv32_cpu.vhd:135:3:@0ms: (assertion note): [NEORV32] CPU ISA:
rv32ibmux_zalrsc_zba_zbb_zbkb_zbkc_zbkx_zbs_zicntr_zicond_zicsr_zifencei_zihpm_zfinx_z
kn_zknd_zkne_zknh_zks_zksed_zksh_zkt_zmmul_zxcfu_sdext_sdtrig_smpmp
../rtl/core/neorv32_cpu.vhd:171:3:@0ms: (assertion note): [NEORV32] CPU tuning options:
fast _mul fast _shift rf_hw_rst

../rtl/core/neorv32_cpu.vhd:178:3:@0ms: (assertion warning): [NEORV32] Assuming this is
a simulation.

../rtl/core/neorv32_imem.vhd:59:3:@@0ms: (assertion note): [NEORV32] Implementing
processor-internal IMEM as pre-initialized ROM.
../rtl/core/neorv32_trng.vhd:277:3:@@ms: (assertion note): [neoTRNG] The neoTRNG (v3.2)
- A Tiny and Platform-Independent True Random Number Generator,
https://qgithub.com/stnolting/neoTRNG
../rtl/core/neorv32_trng.vhd:284:3:@@ms: (assertion warning): [neoTRNG] Simulation-mode
enabled (NO TRUE/PHYSICAL RANDOM)!
../rtl/core/neorv32_debug_auth.vhd:48:3:@0ms: (assertion warning): [NEORV32] using
DEFAULT on-chip debugger authenticator. Replace by custom module.

®

i# R 1

i i g 151513188515 13 N 1131818181312 HunHnny  #4 i3 g 615131318818 HinH s
#H R R R R

g3 Ht Hi i Ht Hi Ht Hi Ht Hi Ht Hi i
# ididi didid

it #4 H#H H#4 i it # it # ith ith it
i g 151513135 .

Ht #E HE RHHERHHE 84 Bt ##HHRRRE #H it ididigi it

i 151312 R 1315815 S 141314

t HH HE 4 # it # i # i i i

it Bt RHEE #4

it it # it it Hi it it Ht it it

i ididi didid

i i HunHtntss  HHHHRaE B4 i it HUnHtHtE  HUSHHRR SR
#H R R R R

# ot H#

Hello world! :)

® Notifier that "simulation mode" of UARTO is enabled (by the USER_FLAGS+=-DUART@_SIM_MODE
makefile flag). All UARTO output is send to the simulator console.

@ Final executable size (text) and static data memory requirements (data, bss).

® The application code is installed as pre-initialized IMEM. This is the default approach for
simulation.

@ List of (default) arguments that were send to the simulator. Here: maximum simulation time
(10ms).

® Execution of the actual program starts. UARTO TX data is printed right to the console.
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Chapter 14. Building the Documentation

The documentation (datasheet + user guide) is written using asciidoc. The according source files
can be found in docs/-:. The documentation of the software framework is written in-code using
doxygen.

A makefiles in the project’s docs directory is provided to build all of the documentation as HTML
pages or as PDF documents.

Pre-rendered PDFs are available online as nightly pre-releases:
(r) . The HTML-based documentation is also available

- . .
online at the project’s

The makefile provides a help target to show all available build options and their according outputs.
neorv32/docs$ make help

Listing 14. Example: Generate HTML documentation (data sheet) using asciidoctor

neorv32/docs$ make html

(r') If you don’t have asciidoctor / asciidoctor-pdf installed, you can still generate all
- the documentation using a docker container via make container.
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Chapter 15. Zephyr RTOS Support

The NEORV32 processor is supported by upstream Zephyr RTOS:

The absolute path to the NEORV32 executable image generator binary (-
o /neorv32/sw/image_gen) has to be added to the PATH variable so the Zephyr build
system can generate executables and memory-initialization images.

o Zephyr OS port provided by GitHub wuser (see
). 00
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Chapter 16. FreeRTOS Support

A NEORV32-specific port and a simple demo for FreeRTOS (
are available in a separate repository on GitHub:
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Chapter 17. LiteX SoC Builder Support

is a SoC builder framework by that allows easy creation of complete system-on-
chip designs - including sophisticated interfaces like Ethernet, serial ATA and DDR memory
controller. The NEORV32 has been ported to the LiteX framework to be used as central processing
unit.

The default microcontroller-like NEORV32 processor is not directly supported as all the peripherals
would provide some redundancy. Instead, the LiteX port uses a core complex wrapper that only
includes the actual NEORV32 CPU, the instruction cache (optional), the RISC-V machine system
timer (optional), the on-chip debugger (optional) and the internal bus infrastructure. The specific
implementation of optional modules as well as RISC-V ISA configuration and performance
optimization options are controlled by a single CONFIGURATION option wrapped in the LiteX build
flow. The external bus interface is used to connect to other LiteX SoC parts.

Core Complex Wrapper
a
Q The NEORV32 core complex wrapper used by LiteX for integration can be found in
rt1/system_integration/neorv32_litex_core_complex.vhd.
LiteX NEORV32 Documentation
7
Q More information can be found in the "NEORV32" section of the LiteX project wiki:

Work-In-Progress [
UG: synthesis - how to create a whole NEORV32 + LiteX SoC for a FPGA
o LiteX: debugger - the NEORV32 on-chip-debugger is not supported by the LiteX port

yet
LiteX: external interrupt - the "RISC-V machine external interrupt" is not
supported by the LiteX port yet

17.1. LiteX Setup

1. Install LiteX and the RISC-V compiler following the excellent quick start guide:

2. The NEORV32 port for LiteX uses GHDL and yosys for converting the VHDL files via the
. You can download prebuilt packages for example from
, which is _no longer maintained. It is superdesed by

3. EXPERIMENTAL: GHDL provides a , which converts a VHDL setup into a plain-
Verilog module (not tested on LiteX yet). Check out for more information.

g GHDL-yosys Plugin
If you would like to use the experimental GHDL Yosys plugin for VHDL on Linux or
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MacOS, you will need to set the GHDL_PREFIX environment variable. e.g. export
GHDL_PREFIX=<install_dir>/fpga-toolchain/lib/ghdl. On Windows this is not
necessary.

If you are using an existing Makefile set up for ghdl-yosys-plugin and see ERROR:
This version of yosys is built without plugin support you probably need to remove
-m ghdl from your yosys parameters. This is because the plugin is typically loaded
from a separate file but it is provided built into yosys in this package.

- from

This means you might have to edit the call to yosys in
litex/soc/cores/cpu/neorv32/core.py.

3. Add the bin folder of the ghdl-yosys-plugin to your PATH environment variable. You can test your
yosys installation and check for the GHDL plugin:

$ yosys -H

yosys -- Yosys Open SYnthesis Suite
Copyright (C) 2012 - 2020 C(laire Xenia Wolf <claire@yosyshq.com>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Yosys 0.10+12 (open-tool-forge build) (git shal 356ec7bb, gcc 9.3.0-17ubuntul1~20.04
-0s)

-- Running command ‘help' --

. @
ghdl load VHDL designs using GHDL @
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@ A long list of plugins...
@ This is the plugin we need.

17.2. LiteX Simulation

Start a simulation right in your console using the NEORV32 as target CPU:
$ litex_sim --cpu-type=neorv32

LiteX will start running its BIOS:

YR,
/] - )> <
/ / /\__/\__/ /|_|

Build your hardware, easily!

(c) Copyright 2012-2022 Enjoy-Digital
(c) Copyright 2007-2015 M-Labs

BIOS built on Jul 19 2022 12:21:36
BIOS CRC passed (6f76f1e8)

LiteX git shal: 06542793

e e el (e e e e =R
CPU: NEORV32-standard @ 1MHz
BUS: WISHBONE 32-bit @ 4GiB
CSR: 32-bit data

ROM: 128KiB

SRAM: 8KiB

SR============ SMR0IMESSSSSS =SS

Booting from serial...

Press Q or ESC to abort boot completely.
sL5DdSMmkekro

Timeout

No boot medium found

litex> help

LiteX BIOS, available commands:
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flush_cpu_dcache - Flush CPU data cache

cre - Compute CRC32 of a part of the address space
ident - Identifier of the system

help - Print this help

serialboot - Boot from Serial (SFL)

reboot - Reboot

boot - Boot from Memory

mem_cmp - Compare memory content
mem_speed - Test memory speed

mem_test - Test memory access

mem_copy - Copy address space

mem_write - Write address space

mem_read - Read address space

mem_list - List available memory regions
litex>

You can use the provided console to execute LiteX commands.
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Chapter 18. Debugging using the On-Chip
Debugger

The NEORV32 on-chip debugger ("OCD") allows online in-system debugging via an external JTAG
access port from a host machine. The general flow is independent of the host machine’s operating
system. However, this tutorial uses Windows and Linux (Ubuntu on Windows / WSL) in parallel
running the upstream version of OpenOCD and the RISC-V GNU debugger gdb.

TLDR
(r') You can start a pre-configured debug session (using default main.elf as executable
- and target extended-remote localhost:3333 as GDB connection configuration) by

using the GDB makefile target (i.e. make gdb).

OCD Hardware Implementation

o See datasheet section for more information regarding the
actual hardware.

OCD CPU Requirements

o The on-chip debugger is only implemented if the ON_CHIP_DEBUGGER_EN generic
is set true. Furthermore, it requires the Zicsr and Zifencei CPU extension, which
are always enabled by the CPU.

18.1. Hardware Requirements

Make sure the on-chip debugger of your NEORV32 setup is implemented (ON_CHIP_DEBUGGER_EN
generic = true). This tutorial uses gdb to directly upload an executable to the processor. If you are
using the default processor setup with internal instruction memory (IMEM) make sure it is
implemented as RAM (INT_BOOTLOADER_EN generic = true).

Connect a JTAG adapter to the NEORV32 jtag_* interface signals. If you do not have a full-scale JTAG
adapter, you can also use a FTDI-based adapter like the "FT2232H-56Q Mini Module", which is a
simple and inexpensive FTDI breakout board.

Table 3. JTAG pin mapping

NEORV32 top signal JTAG signal Default FTDI port
jtag_tek_i TCK DO
jtag_tdi_i TDI D1
jtag_tdo_o TDO D2
jtag_tms_i TMS D3

o JTAG TAP Reset
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The NEORV32 JTAG TAP does not provide a dedicated reset signal ("TRST").
However, the missing TRST is not a problem, since JTAG-level resets can be
triggered using with TMS signaling.

18.2. OpenOCD

The NEORV32 on-chip debugger can be accessed using the upstream version of OpenOCD. A pre-
configured OpenOCD configuration file is provided (sw/openocd/openocd_neorv32.cfg) that allows an
easy access to the NEORV32 CPU.

You might need to adapt ftdi vid_pid, ftdi channel and ftdi layout_init in
o sw/openocd/openocd_neorv32.cfg according to your interface chip and your
operating system.

If you want to modify the JTAG clock speed (via adapter speed in
O sw/openocd/openocd_neorv32.cfg) make sure to meet the clock requirements noted
- .

in

To access the processor using OpenOCD, open a terminal and start OpenOCD with the pre-
configured configuration file.

Listing 15. Connecting via OpenOCD (on Windows) using the default openocd_neorv32.cfg script

N:\Projects\neorv32\sw\openocd>openocd -f openocd_neorv32.cfg
Open On-Chip Debugger 0.11.0 (2021-11-18) [https://github.com/sysprogs/openocd]
Licensed under GNU GPL v?2
Libusb1 09e75e98b4d9ea7909e8837b7a3f00dda4589dc3
For bug reports, read
http://openocd.org/doc/doxygen/bugs.html
Info : clock speed 1000 kHz
Info : JTAG tap: neorv32.cpu tap/device found: 0x00000000 (mfg: 0x000 (<invalid>),
part: 0x0000, ver: 0x0)
Info : datacount=1 progbufsize=2
Info : Disabling abstract command reads from CSRs.
Info : Examined RISC-V core; found 1 harts
Info : hart 0: XLEN=32, misa=0x40901107
Info : starting gdb server for neorv32.cpu.® on 3333
Info : Listening on port 3333 for gdb connections
Target HALTED.
Ready for remote connections.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections

OpenOCD has successfully connected to the NEORV32 on-chip debugger and has examined the CPU
(showing the content of the misa CSRs). The processor is halted and OpenOCD waits fot gdb to
connect via port 3333.
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18.3. Debugging with GDB

GDB + SVD
(r) Together with a third-party plugin the processor’s SVD file can be imported right
- into GDB to allow comfortable debugging of peripheral/IO devices (see

).

This guide uses the simple "blink example" from sw/example/demo_blink_led as simplified test
application to show the basics of in-system debugging.

At first, the application needs to be compiled. We will use the minimal machine architecture
configuration (rv32i) here to be independent of the actual processor/CPU configuration. Navigate to
sw/example/demo_blink_led and compile the application:

Listing 16. Compile the test application

.../neorv32/sw/example/demo_blink_led$ make MARCH=rv32i USER_FLAGS+=-g clean_all all

Adding debug symbols to the executable

o USER_FLAGS+=-g passes the -g flag to the compiler so it adds debug
information/symbols to the generated ELF file. This is optional but will provide
more sophisticated debugging information (like source file line numbers).

This will generate an ELF file main.elf that contains all the symbols required for debugging.
Furthermore, an assembly listing file main.asm is generated that we will use to define breakpoints.

Open another terminal in sw/example/demo_blink_led and start gdb.

Listing 17. Starting GDB (on Linux (Ubuntu on Windows))

.../neorv32/sw/example/demo_blink_led$ riscv32-unknown-elf-gdb

GNU gdb (GDB) 10.1

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "--host=x86_64-pc-linux-gnu --target=riscv32-unknown-elf".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<https://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
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(gdb)

Now connect to OpenOCD using the default port 3333 on your machine. We will use the previously
generated ELF file main.elf from the demo_blink_led example. Finally, upload the program to the
processor and start debugging.

The executable that is uploaded to the processor is not the default NEORV32

o executable (neorv32_exe.bin) that is used for uploading via the bootloader. Instead,
all the required sections (like .text) are extracted from mail.elf by GDB and
uploaded via the debugger’s indirect memory access.

Listing 18. Running GDB

(gdb) target extended-remote localhost:3333 @

Remote debugging using localhost:3333

warning: No executable has been specified and target does not support
determining executable automatically. Try using the "file" command.
Oxffff0c94 in 2?7 () @

(gdb) file main.elf @

A program is being debugged already.

Are you sure you want to change the file? (y or n) y

Reading symbols from main.elf...

(gdb) load @

Loading section .text, size @xd0c 1ma 0x@

Loading section .rodata, size 0x39c lma @xd@c

Start address 0x00000000, load size 4264

Transfer rate: 43 KB/sec, 2132 bytes/write.

(gdb)

@ Connect to OpenOCD

@ The CPU was still executing code from the bootloader ROM - but that does not matter here
® Select mail.elf from the demo_blink_led example

@ Upload the executable

After the upload, GDB will make the processor jump to the beginning of the uploaded executable
(by default, this is the beginning of the instruction memory at 0x00000000) skipping the bootloader
and halting the CPU right before executing the demo_blink_led application.

After gdb has connected to the CPU, it is recommended to disable the CPU’s global
interrupt flag (mstatus.mie, = bit #3) to prevent unintended calls of potentially

o outdated trap handlers. The global interrupt flag can be cleared using the
following gdb command: set $mstatus = ($mstatus & ~(1<<3)). Interrupts can be
enabled globally again by the following command: set $mstatus = ($mstatus |
(1<<3)).
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18.3.1. Software Breakpoints

The following steps are just a small showcase that illustrate a simple debugging scheme.

While compiling demo_blink_led, an assembly listing file main.asm was generated. Open this file with
a text editor to check out what the CPU is going to do when resumed.

The demo_blink_led example implements a simple counter on the 8 lowest GPIO output ports. The
program uses "busy wait" to have a visible delay between increments. This waiting is done by
calling the neorv32_cpu_delay_ms function. We will add a breakpoint right at the end of this wait
function so we can step through the iterations of the counter.

Listing 19. Cut-out from main.asm generated from the demo_blink_led example

00000688 <__neorv32_cpu_delay_ms_end>:

688: 01c12083 lw ra,28(sp)
68c: 02010113 addi sp,sp,32
690: 00008067 ret

The very last instruction of the neorv32_cpu_delay_ms function is ret (= return) at hexadecimal 690 in
this example. Add this address as breakpoint to GDB.

o The address might be different if you use a different version of the software
framework or if different ISA options are configured.

Listing 20. Adding a GDB software breakpoint

(gdb) b * 0x690 ®
Breakpoint 1 at 0x690

@ b is an alias for break, which adds a software breakpoint.

How do software breakpoints work?

Software breakpoints are used for debugging programs that are accessed from
read/write memory (RAM) like IMEM. The debugger temporarily replaces the
instruction word of the instruction, where the breakpoint shall be inserted, by a
ebreak / c.ebreak instruction. Whenever execution reaches this instruction, debug

O mode is entered and the debugger restores the original instruction at this address
to maintain original program behavior.

When debugging programs executed from ROM hardware-assisted breakpoints
using the core’s trigger module have to be used. See section
for more information.

Now execute c (= continue). The CPU will resume operation until it hits the break-point. By this we
can move from one counter increment to another.
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Listing 21. Iterating from breakpoint to breakpoint

Breakpoint 1 at 0x690

(gdb) c
Continuing.

Breakpoint 1, 0x00000690 in neorv32_cpu_delay_ms ()

(gdb) c
Continuing.

Breakpoint 1, 0x00000690 in neorv32_cpu_delay_ms ()
(gdb) c
Continuing.

Hardcoded EBREAK Instructions In The Program Code

If your original application code uses the BREAK instruction (for example for some
OS calls/signaling) this instruction will cause an enter to debug mode when
(r) executed. These situation cannot be continued using gdb’s ¢ nor can they be
"stepped-over" using the single-step command s. You need to declare the ebreak
instruction as breakpoint to be able to resume operation after executing it. See

18.3.2. Hardware Breakpoints

Hardware-assisted breakpoints using the CPU’s trigger module are required when debugging code
that is executed from read-only memory (ROM) as GDB cannot temporarily replace instructions by
BREAK instructions.

From a user point of view hardware breakpoints behave like software breakpoints. GDB provides a
command to setup a hardware-assisted breakpoint:

Listing 22. Adding a GDB hardware breakpoint

(gdb) hb * 0x690 ®
Breakpoint 1 at 0x690

@ hb is an alias for hbreak, which adds a hardware breakpoint.

o The CPU’s trigger module only provides a single instruction address match type
trigger. Hence, only a single hb hardware-assisted breakpoint can be used.

18.4. Segger Embedded Studio

Software for the NEORV32 processor can also be developed and debugged in-system using Segger
Embedded Studio and a Segger J-Link probe. The following links provide further information as
well as an excellent tutorial.
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* Segger Embedded Studio:

» Segger notes regarding NEORV32:

¢ Excellent tutorial:
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Chapter 19. NEORV32 in Verilog

If you are more of a Verilog fan or if your EDA toolchain does not support VHDL or mixed-language
designs you can use an all-Verilog version of the processor provided by the neorv32-verilog
repository.

o Note that this is not a manual re-implementation of the core in Verilog but
rather an automated conversion.

GHDL’s synthesis feature is used to convert a pre-configured NEORV32 setup - including all
peripherals, memories and memory images - into a single, unoptimized plain-Verilog module file
without any (technology-specific) primitives.

GHDL Synthesis

a
Q More information regarding GHDL's synthesis option can be found at

An intermediate VHDL wrapper is provided that can be used to configure the processor (using
VHDL generics) and to customize the interface ports. After conversion, a single Verilog file is
generated that contains the whole NEORV32 processor. The original processor module hierarchy is
preserved as well as most (all?) signal names, which allows easy inspection and debugging of
simulation waveforms and synthesis results.

Listing 23. Example: interface of the resulting NEORV32 Verilog module (for a minimal SoC configuration)

module neorv32_verilog_wrapper
(input clk_1i,
input rstn_i,
input wvart@_rxd_i,
output uart@_txd_o);

The generated Verilog code has been simulated and verified with (simulation) and
AMD Vivado (simulation and synthesis).

(r') For detailed information check out the neorv32-verilog repository at
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Chapter 20. Eclipse IDE

Eclipse ( ) is an interactive development environment that can be used to
develop, debug and profile application code for the NEORV32 RISC-V Processor. This chapter shows
how to import the provided example setup from the NEORV32 project repository. Additionally, all
the required steps to create a compatible project from scratch are illustrated in this chapter.

This is a Makefile-Based Project!

Note that the provided Eclipse example project (as well as the setup tutorial in this
o section) implements a makefile-based project. Hence, the makefile in the
example folder is used for building the application instead of the Eclipse-managed
build system. Therefore, all compiler options, include folder, source files, etc.

have to be defined within this makefile.

=0
2 imER N B ES

OX%RENEB ES ge g -0

Figure 4. Developing and debugging code for the NEORV32 using the Eclipse IDE

20.1. Eclipse Prerequisites

The following tools are required:

Eclipse IDE (Eclipse IDE for Embedded C/C++ Developers):
* Precompiled RISC-V GCC toolchain: e.g.

* Precompiled OpenOCD binaries: e.g.

* Build tools like make and busybox: e.g.
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XPack Windows Build Tools

(r) The NEORV32 makefile relies on the basename command which might not be part of
- the default XPack Windows Build Tools. However, you can just open the according
bin folder, copy busybox.exe and rename that copy to basename. exe.

20.2. Import The Provided Eclipse Example Project
A preconfigured Eclipse project is available in neorv32/sw/example/eclipse. To import it:

1. Open Eclipse.

2. Click on File > Import, expand General and select Projects from Folder or Archive.

3. Click Next.

4. Click on Directory and select the provided example project folder (see directory above).

5. Click Finish.

NEORV32 Folder and File Paths

o The provided example project uses relative paths for including all the NEORV32-
specific files and folders (in the Eclipse configuration files). Note that these paths
need to be adjusted when moving the example setup to a different location.

Tool Configuration

o Make sure to adjust the binaries / installation folders of the RISC-V GCC toolchain,
openOCD and Windows build tools according to your installation. See the section
for more information.

Makefile Adjustment
o Make sure to adjust the variables inside the project’s makefile to match your
processor configuration (memory sizes, CPU ISA configuration, etc.):

20.3. Setup a new Eclipse Project from Scratch

This chapter shows all the steps required to create an Eclipse project for the NEORV32 entirely from
scratch.

20.3.1. Create a new Project

1. Select File > New > Project.
2. Expand C/C** and select **C project.
3. In the C++ Project wizard:

- Enter a Project name.
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o

Uncheck the box next to Use default location and specify a location using Browse where
you want to create the project.

o From the Project type list expand Makefile project and select Empty Project.
o Select RISC-V Cross GCC from the Toolchain list on the right side.

o Click Next.

o Skip the next page using the default configuration by clicking Next.

4. In the GNU RISC-V Cross Toolchain wizard configure the Toolchain name and Toolchain path
according to your RISC-V GCC installation.

o Example: Toolchain name: xPack GNU RISC-V Embedded GCC (riscv-none-elf-gcc)
o Example: Toolchain path: C:\Program Files (x86)\xpack-riscv-none-elf-gcc-13.2.0-2\bin
5. Click Finish.

If you need to reconfigure the RISC-V GCC binaries and/or paths:

1. right-click on the project in the left view, select Properties
2. expand MCU and select RISC-V Toolchain Paths
3. adjust the Toolchain folder and the Toolchain name if required

4. Click Apply.

20.3.2. Add Initial Files

Start a simple project by adding two initial files. Further files can be added later. Only the makefile
is really relevant here.

1. Add a new file by right-clicking on the project and select New > File and enter main.c in the
filename box.

2. Add another new file by right-clicking on the project and select New > File and enter makefile in
the filename

3. Copy the makefile of an existing NEORV32 example program and paste it to the new (empty)
makefile.

20.3.3. Add Build Targets (optional)
This step adds some of the targets of the NEORV32 makefile for easy access. This step is optional.

1. In the project explorer right-click on the project and select Build Target > Create....
2. Add “all” as Target name (keep all the default checked boxes).

3. Repeat these steps for all further targets that you wish to add (e..g clean_all, exe, elf).

(r') Clean-All Target
- Adding the clean_all target is highly recommended. Executing this target once
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after importing the project ensures that there are no (incompatible) artifacts left
from previous builds.

Available Target

a
Q See the NEORV32 data sheet for a list and description of all available makefile
targets:

20.3.4. Configure Build Tools
This step is only required if your system does not provide any build tools (like make) by default.

1. In the project explorer right-click on the project and select Properties.
2. Expand MCU and click on Build Tools Path.
3. Configure the Build tools folder.
o Example: Build tools folder: C:/xpack/xpack-windows-build-tools-4.4.1-2/bin
4. Click Apply and Close.

20.3.5. Adjust Default Build Configuration (optional)

This will simplify the auto-build by replacing the default make all command by make elf. Thus, only
the required main.elf file gets generated instead of all executable files (like HDL and memory image
files).
1. In the project explorer right-click on the project and select Properties.
2. Select C/C++ Build and click on the Behavior Tab.
3. Update the default targets in the Workbench Build Behavior box:
> Build on resource save: elf (only build the ELF file)
o Build (Incremental build): elf (only build the ELF file)
> Clean: clean (only remove project-local build artifacts)

4. Click Apply and Close.

20.3.6. Add NEORV32 Software Framework

1. In the project explorer right-click on the project and select Properties.
2. Expand C/C++ General, click on Paths and Symbols and highlight Assembly under Languages.
3. In the Include tab click Add...

o Check the box in front of Add to all languages and click on File System... and select the
NEORV32 library include folder (path/to/neorv32/sw/1ib/include).

o Click OK.
4, In the Include tab click Add....
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o Check the box in front of Add to all languages and click on File System... and select the
NEORV32 commons folder (path/to/neorv32/sw/common).

o Click OK.
5. Click on the Source Location tab and click Link Folder...*
o Check the box in front of Link to folder in the system and click the Browse button.

o Select the source folder of the NEORV32 software framework (
path/to/neorv32/sw/1ib/source).

o Click OK.
6. Click Apply and Close.

20.3.7. Setup OpenOCD

1. In the project explorer right-click on the project and select Properties.
2. Expand MCU and select OpenOCD Path.
o Configure the Executable and Folder according to your openOCD installation.
o Example: Executable: openocd.exe
o Example: Folder: C:\Open0CD\bin
o Click Apply and Close.

3. In the top bar of Eclipse click on the tiny arrow right next to the Debug bug icon and select
Debug Configurations.

4. Double-click on GDB OpenOCD Debugging; several menu tabs will open on the right.
o In the Main tab add main.elf to the C/C++ Application box.
o In the Debugger tab add the NEORV32 OpenOCD script with a -f in front of it-
o Example: Config options: -f ../../openocd/openocd_neorv32.cfg

o In the Startup tab uncheck he box in front of Initial Reset and add monitor reset halt to
the box below.

o In the "Common" tab mark Shared file to store the run-configuration right in the project
folder instead of the workspace(optional).

o In the SVD Path tab add the NEORV32 SVD file (path/to/neorv32/sw/svd/neorv32.svd).
5. Click Apply and then Close.

Default Debug Configuration

0 When you start debugging the first time you might need to select the provided
debug configuration: GDB OpenOCD Debugging > eclipse_example Default

Debug Symbols

o For debugging the ELF has to compiled to contain according debug symbols. Debug
symbols are enabled by the project’s local makefile: USER_FLAGS += -ggdb -gdwarf-3

56 /60 Version v1.11.1-r20-g2b7d619f 2025-02-08


https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The RISC-V Processor Visit on

(this configuration seems to work best for Eclipse - at least for me).

If you need to reconfigure OpenOCD binaries and/or paths:

right-click on the project in the left view, select Properties
expand MCU and select OpenOCD Path

adjust the Folder and the Executable name if required

L

Click Apply.

20.3.8. Setup Serial Terminal

A serial terminal can be added to Eclipse by installing it as a plugin. I recommend "TM Terminal"
which is already installed in some Eclipse bundles.

Open a TM Terminal serial console:

1. Click on Window > Show View > Terminal to open the terminal.

2. A Terminal tab appears on the bottom. Click the tiny screen button on the right (or press
Ctrl+Alt+Shift) to open the terminal configuration.

3. Select Serial Terminal in Choose Terminal and configure the settings according to the
processor’s UART configuration.

Installing TM Terminal from the Eclipse market place:

1. Click on Help > Eclipse Marketplace....
2. Enter "TM Terminal" to the Find line and hit enter.
3. Select TM Terminal from the list and install it.

4. After installation restart Eclipse.

20.4. Eclipse Setup References

* Eclipse help:

* Importing an existing project into Eclipse:

* Eclipse OpenOCD Plug-In:
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Chapter 21. Legal

About

The NEORV32 RISC-V Processor

Stephan Nolting, M.Sc.
00 European Union

License
BSD 3-Clause License
Copyright (c) NEORV32 contributors. Copyright (c) 2020 - 2025, Stephan Nolting. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

o SPDX Identifier
SPDX-License-Identifier: BSD-3-Clause
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Proprietary Notice

» "GitHub" is a subsidiary of Microsoft Corporation.
* "Vivado" and "Artix" are trademarks of AMD Inc.

« "AXI", "AXI", "AXI4-Lite", "AXI4-Stream", "AHB", "AHB3" and "AHB3-Lite" are trademarks of Arm
Holdings plc.

* "ModelSim" is a trademark of Mentor Graphics — A Siemens Business.

* "Quartus [Prime]" and "Cyclone" are trademarks of Intel Corporation.

* "ICE40", "UltraPlus" and "Radiant" are trademarks of Lattice Semiconductor Corporation.
» "GateMate" is a trademark of Cologne Chip AG.

* "Windows" is a trademark of Microsoft Corporation.

» "Tera Term" copyright by T. Teranishi.

* "NeoPixel" is a trademark of Adafruit Industries.

» "Segger Embedded Studio" and "J-Link" are trademarks of Segger Microcontroller Systems
GmbH.

* Images/figures made with Microsoft Power Point.
* Timing diagrams made with WaveDrom Editor.
* Documentation made with asciidoctor.

All further/unreferenced projects/products/brands belong to their according copyright holders. No
copyright infringement intended.

Disclaimer

This project is released under the BSD 3-Clause license. NO COPYRIGHT INFRINGEMENT
INTENDED. Other implied or used projects/sources might have different licensing - see their
according documentation for more information.

Limitation of Liability for External Links

This document contains links to the websites of third parties ("external links"). As the content of
these websites is not under our control, we cannot assume any liability for such external content.
In all cases, the provider of information of the linked websites is liable for the content and accuracy
of the information provided. At the point in time when the links were placed, no infringements of
the law were recognizable to us. As soon as an infringement of the law becomes known to us, we
will immediately remove the link in question.

Citing

Q This is an open-source project that is free of charge. Use this project in any way
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you like (as long as it complies to the permissive license). Please cite it
appropriately. 0

Contributors & Community O

o Please add as many as possible to the author field.
This project would not be where it is without them.

DoI

o This project provides a digital object identifier provided by
DOl 10.5281/zenodo.5018888
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- instruction sets want to be free!
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