


# DUEPROLOGIC

# FPGA DEVELOPMENT SYSTEM

Data Sheet



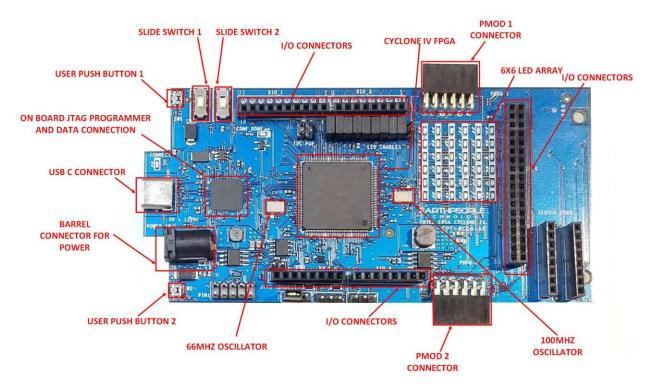
The DueProLogic (EPT-4CE6-AF-D2) is a part of the EPT USB/FPGA development system. It provides an innovative method of developing and debugging the users FPGA code. It can also

Page 1



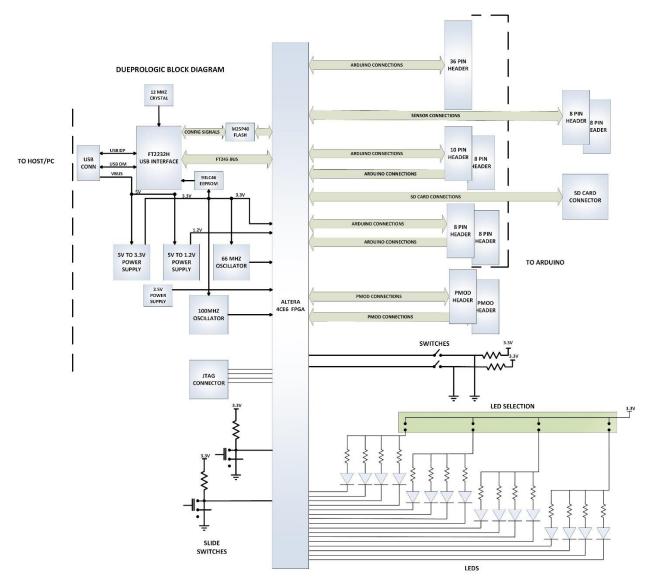
provide a high speed data transfer mechanism between microcontroller plug in board and Host PC.

The DueProLogic board is equipped with an Altera EP4CE6E22 FPGA; which is programmed using the Altera Quartus Prime software. The FPGA has 6,272 Logic Elements along with 276Kbits of RAM. An on board 66 MHz oscillator is used by the EPT-Active-Transfer-Library to provide data transfer rates of 8 Mega Bytes per second. The EPT-Active-Transfer-Library provides control communication between the objective device and the FPGA. Data transfer during the objective device checkout between the PC and the FPGA program is available via the ActiveHost. The board also includes the following parts.




- Altera EP4CE6 FPGA with 6272 Logic Cells
- Dual Channel High Speed USB FT2232H
- 66 MHz oscillator for driving USB data transfers and users code
- 100MHz oscillator for scaling up/down for users needs
- Standard SD Card interface for memory expansion
- 54 user Input/Outputs (+3.3V only)
- 36 Green LED Array accessible by the user
- Two PCB switches accessible by the user
- Two Slide switches
- Two PMOD Connectors

## **Block Diagram**


Figure 1 EPT-4CE6-AF Component Location



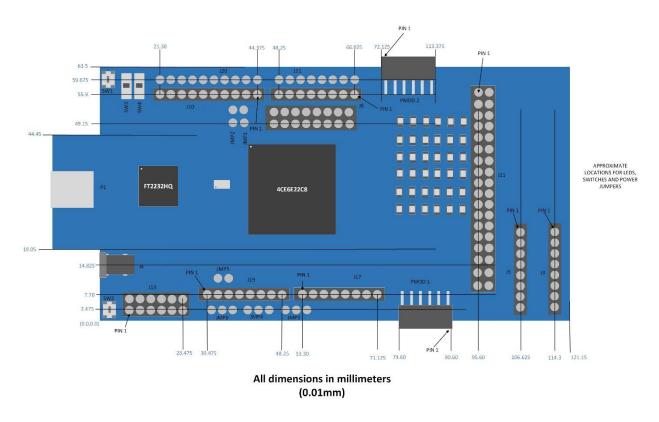




## Figure 2 EPT-4CE6-AF Block Diagram



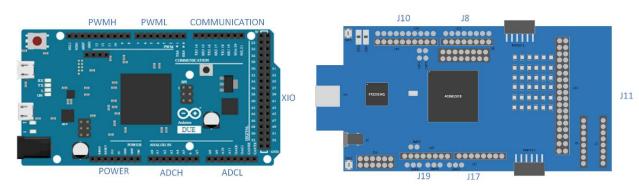



The DueProLogic USB/FPGA Development System consists of an Altera FPGA, USB to Serial chip, Configuration flash, two separate oscillators, SD Card slot, two push buttons and 36 LEDs. The board has 63 User Input/Outputs available at 6 headers that match the Arduino Due board configuration. There are two power options, USB-C connector or Barrel Connector.



## **Mechanical Dimensions**

Figure 3 EPT-4CE6-AF Mechanical Dimensions


#### EPT-4CE6-AF-D2 PCB DIMENSIONS



# **Pin Mapping**

Figure 4. Pin Mapping between Arduino Due, DueProLogic and FPGA User code





| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| D21                          | J10-1                          | UB0                     | 136                               | XIO1[0]                                      |
| D20                          | J10-2                          | UB1                     | 137                               | XIO1[1]                                      |
| AREF                         | J10-3                          | UB2                     | 138                               | XIO1[2]                                      |
| GND                          | J10-4                          | UB3                     | 141                               | XIO1[3]                                      |
| D13                          | J10-5                          | UB4                     | 142                               | XIO1[4]                                      |
| D12                          | J10-6                          | UB5                     | 143                               | XIO1[5]                                      |
| D11                          | J10-7                          | GND                     | NC                                | NC                                           |
| D10                          | J10-8                          | 3V3                     | NC                                | NC                                           |
| D9                           | J10-9                          | UB6                     | 144                               | XIO1 [6]                                     |
| D8                           | J10-10                         | UB7                     | 7                                 | XIO1[7]                                      |



| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| NC                           | PMOD_2-1                       | UB12                    | 67                                | PMOD2[0]                                     |
| NC                           | PMOD_2-2                       | UB11                    | 66                                | PMOD2[1]                                     |
| NC                           | PMOD_2-3                       | UB10                    | 53                                | PMOD2[2]                                     |
| NC                           | PMOD_2-4                       | UB9                     | 52                                | PMOD2[3]                                     |
| NC                           | PMOD_2-7                       | UB14                    | 55                                | PMOD2[4]                                     |
| NC                           | PMOD_2-8                       | UB13                    | 54                                | PMOD2[5]                                     |
| NC                           | PMOD_2-9                       | UB53                    | 69                                | PMOD2[6]                                     |
| NC                           | PMOD_2-10                      | UB52                    | 70                                | PMOD2[7]                                     |

| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| NC                           | PMOD_1-1                       | UB12                    | 67                                | PMOD1[0]                                     |
| NC                           | PMOD_1-2                       | UB11                    | 66                                | PMOD1[1]                                     |

Page 9



| NC                           | PMOD_1-3                       | UB10                    | 53                                | PMOD1[2]                                     |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| NC                           | PMOD_1-4                       | UB9                     | 52                                | PMOD1[3]                                     |
| NC                           | PMOD_1-7                       | UB14                    | 55                                | PMOD1[4]                                     |
| NC                           | PMOD_1-8                       | UB13                    | 54                                | PMOD1[5]                                     |
| NC                           | PMOD_1-9                       | UB53                    | 69                                | PMOD1[6]                                     |
| NC                           | PMOD_1-10                      | UB52                    | 70                                | PMOD1[7]                                     |
| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
| D7                           | J8-1                           | 3V3                     | NC                                | NC                                           |
| D6                           | J8-2                           | UB16                    | 127                               | XIO3[0]                                      |
| D5                           | J8-3                           | UB17                    | 128                               | XIO3[1]                                      |
| D4                           | J8-4                           | UB18                    | 129                               | XIO3[2]                                      |
| D3                           | J8-5                           | UB19                    | 132                               | XIO3[3]                                      |
| D2                           | J8-6                           | UB20                    | 133                               | XIO3[4]                                      |
| D1                           | J8-7                           | UB21                    | 135                               | XIO3[5]                                      |
| D0                           | J8-8                           | GND                     | NC                                | NC                                           |



| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| D54                          | J17-1                          | VIN                     | NC                                | NC                                           |
| D55                          | J17-2                          | UB65                    | 31                                | XIO4[0]                                      |
| D56                          | J17-3                          | UB64                    | 46                                | XIO4[1]                                      |
| D57                          | J17-4                          | UB63                    | 44                                | XIO4[2]                                      |
| D58                          | J17-5                          | UB62                    | 42                                | XIO4[3]                                      |
| D59                          | J17-6                          | UB61                    | 49                                | XIO4[4]                                      |
| D60                          | J17-7                          | UB60                    | 50                                | XIO4[5]                                      |
| D61                          | J17-8                          | GND                     | NC                                | NC                                           |

| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| NC                           | J3-1                           | 3V3                     | NC                                | NC                                           |
| NC                           | J3-2                           | UB54                    | 119                               | XIO5[0]                                      |
| NC                           | J3-3                           | UB55                    | 120                               | XIO5[1]                                      |
| NC                           | J3-4                           | UB56                    | 121                               | XIO5[2]                                      |
| NC                           | J3-5                           | UB57                    | 124                               | XIO5[3]                                      |



| NC | J3-6 | UB58 | 125 | XIO5[4] |
|----|------|------|-----|---------|
| NC | J3-7 | UB59 | 126 | XIO5[5] |
| NC | J3-8 | GND  | NC  | NC      |

| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User<br>Code Signal<br>Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|-------------------------------------------------|
|                              | J11-1                          | 3V3                     | NC                                | NC                                              |
|                              | J11-2                          | VIN                     | NC                                | NC                                              |
|                              | J11-3                          | UB22                    | 115                               | XIO6[0]                                         |
|                              | J11-4                          | UB23                    | 114                               | XIO6[1]                                         |
|                              | J11-5                          | UB24                    | 113                               | XIO6[2]                                         |



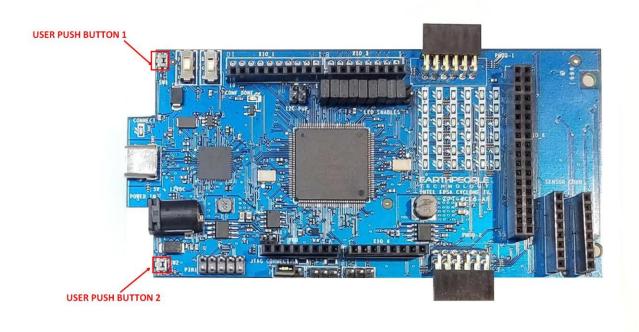
| <br>      |      |     |          |
|-----------|------|-----|----------|
| J11-6     | UB25 | 112 | XIO6[3]  |
| J11-7     | UB26 | 111 | XIO6[4]  |
| J11-8     | UB27 | 110 | XIO6[5]  |
| <br>J11-9 | UB28 | 106 | XIO6[6]  |
| J11-10    | UB29 | 105 | XIO6[7]  |
| J11-11    | UB23 | 104 | XIO6[8]  |
| J11-12    | UB31 | 103 | XIO6[9]  |
| J11-13    | UB32 | 101 | XIO6[10] |
| J11-14    | UB33 | 100 | XIO6[11] |
| J11-15    | UB34 | 99  | XIO6[12] |
| J11-16    | UB35 | 98  | XIO6[13] |
| J11-17    | UB36 | 58  | XIO6[14] |
| J11-18    | UB37 | 51  | XIO6[15] |
| J11-19    | UB38 | 65  | XIO6[16] |
| J11-20    | UB39 | 87  | XIO6[17] |
| J11-21    | UB40 | 86  | XIO6[18] |
| J11-22    | UB41 | 85  | XIO6[19] |
| J11-23    | UB42 | 84  | XIO6[20] |
| J11-24    | UB43 | 83  | XIO6[21] |
|           |      |     |          |



| J11-25 | UB44 | 80 | XIO6[22] |
|--------|------|----|----------|
| J11-26 | UB45 | 77 | XIO6[23] |
| J11-27 | UB46 | 76 | XIO6[24] |
| J11-28 | UB47 | 73 | XIO6[25] |
| J11-29 | UB48 | 74 | XIO6[26] |
| J11-30 | UB49 | 75 | XIO6[27] |
| J11-31 | UB50 | 72 | XIO6[28] |
| J11-32 | UB51 | 71 | XIO6[29] |
| J11-33 | UB52 | 70 | XIO6[30] |
| J11-34 | UB53 | 69 | XIO6[31] |

| Arduino Due<br>Connector Pin | DuePrologic<br>Connector-Pin # | DuePrologic<br>Net Name | DuePrologic<br>FPGA Pin<br>Number | DuePrologic<br>FPGA User Code<br>Signal Name |
|------------------------------|--------------------------------|-------------------------|-----------------------------------|----------------------------------------------|
| NC                           | J5-1                           | 3V3                     | NC                                | NC                                           |
| NC                           | J5-2                           | UB52                    | 70                                | NC                                           |
| NC                           | J5-3                           | UB50                    | 72                                | NC                                           |
| NC                           | J5-4                           | UB48                    | 74                                | NC                                           |
| NC                           | J5-5                           | UB71                    | 59                                | XIO7[3]                                      |
| NC                           | J5-6                           | UB70                    | 60                                | XIO7[2]                                      |

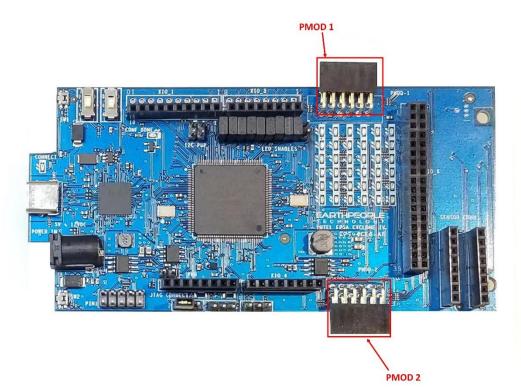



| NC | J5-7 | UB55 | 120 |  |
|----|------|------|-----|--|
| NC | J5-8 | GND  | NC  |  |

## Pushbutton switches

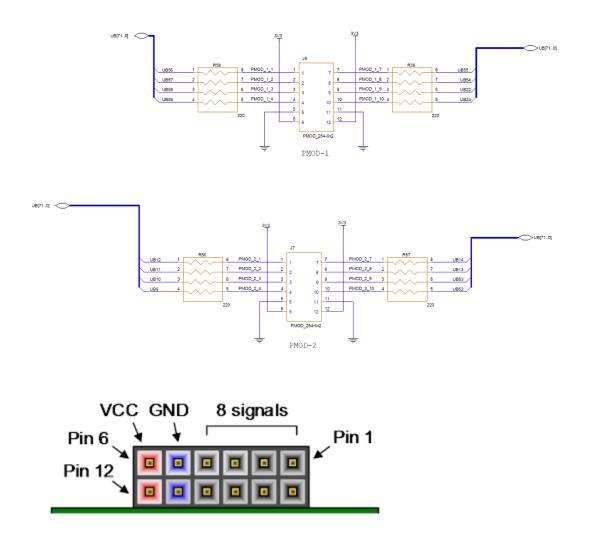
There are two pushbutton switches on the DueProLogic. Both are momentary contact switches. They include a 1uF cap to ground to debounce both switches.

| Component | Net Name | Pin on FPGA | Signal in EPT<br>Project Pinout |  |
|-----------|----------|-------------|---------------------------------|--|
| SW1       | UB66     | 25          | UBA                             |  |
| SW2       | UB67     | 24          | UBB                             |  |






#### **PMOD** Connectors


The DueProLogic includes two PMOD Connectors. These two connectors are located towards the rear of the board.





The PMOD pinouts follows the standard pinout. Pin 1 is located in the upper right when facing the connector.

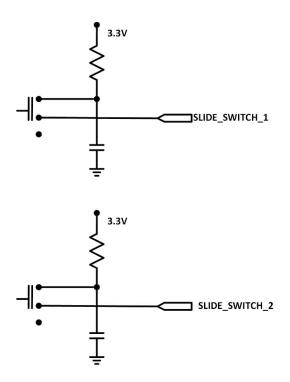




VCC is +3.3V and the Inputs and Outputs of the 8 signals are +3.3V only. The eight I/O's are connected directly to FPGA pins and can be designated as any communications standard.

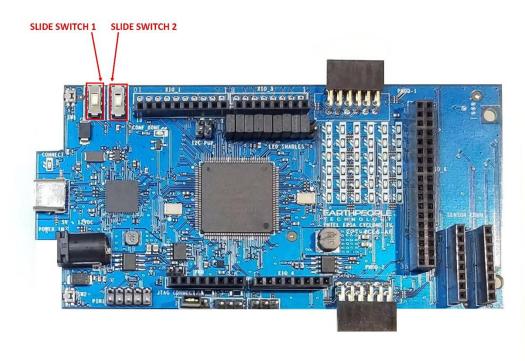


## The PMOD have the following connections to the Cyclone IV chip:


| PMOD Pin Number | Signal Name | Cyclone IV Pin Number |
|-----------------|-------------|-----------------------|
| 1-1             | UB56        | 121                   |
| 1-2             | UB57        | 124                   |
| 1-3             | UB58        | 125                   |
| 1-4             | UB59        | 126                   |
| 1-7             | UB55        | 120                   |
| 1-8             | UB54        | 119                   |
| 1-9             | UB22        | 115                   |
| 1-10            | UB23        | 114                   |
| 2-1             | UB12        | 67                    |
| 2-2             | UB11        | 66                    |
| 2-3             | UB10        | 53                    |
| 2-4             | UB9         | 52                    |
| 2-7             | UB14        | 55                    |
| 2-8             | UB13        | 54                    |
| 2-9             | UB53        | 69                    |



| 2-10 | UB52 | 70 |
|------|------|----|
|      |      |    |

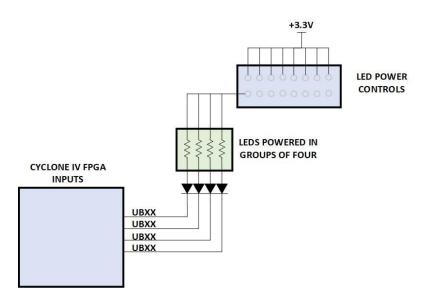

#### Slide Switches

The DueProLogic includes two slide switches. Both are full contact switches. They include a 1uF cap to ground to debounce both switches.



The slide switches provide a connection to either +3.3V in position 1or Ground in position 2.






| Component | Net Name       | Pin on Cyclone IV |
|-----------|----------------|-------------------|
| SW3       | SLIDE_SWITCH_1 | 91                |
| SW4       | SLIDE_SWITCH_2 | 90                |

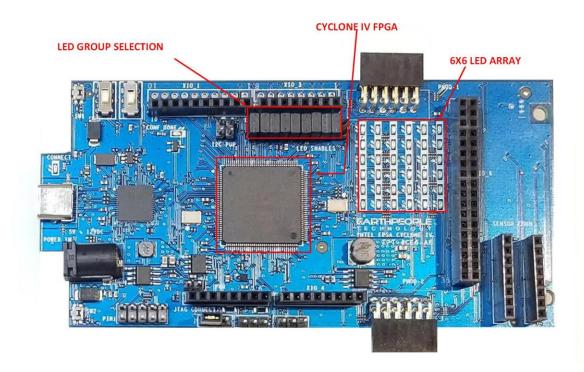


## LEDs

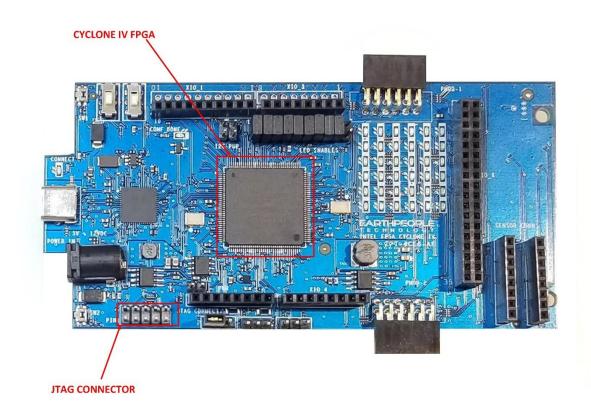
There are 38 total LEDs on the DueProLogic. One Green LED to denote when the Windows PC has discovered and enumerated the DueProLogic. One Green LED to denote when the Cyclone IV FPGA has been configured properly. And 36 Green LEDs for user programming. The 36 Green User LEDs are sinked directly from the Cyclone IV FPGA. Each LED uses a 220 Ohm resistor connected to +3.3V. The LED is driven with 5.4 mA's of current. There is also a jumper selectable power enable for each four block group of LEDs. This allows the user to turn off the LEDs and use the FPGA pin as Input/Output on the 36 pin connector.



| Component | Net Name | Pin on FPGA | Signal in EPT Project<br>Pinout |
|-----------|----------|-------------|---------------------------------|
| LED0      | UB22     | 115         | XIO_6 [0]                       |
| LED1      | UB23     | 114         | XIO_6 [1]                       |
| LED2      | UB24     | 113         | XIO_6 [2]                       |




| LED3                                  | UB25 | 112 | XIO_6 [3]  |
|---------------------------------------|------|-----|------------|
| LED4                                  | UB26 | 111 | XIO_6[4]   |
| LED5                                  | UB27 | 110 | XIO_6[5]   |
| LED6                                  | UB28 | 106 | XIO_6[6]   |
| LED7                                  | UB29 | 105 | XIO_6[7]   |
| LED8                                  | UB30 | 104 | XIO_6 [8]  |
| LED9                                  | UB31 | 103 | XIO_6 [9]  |
| LED10                                 | UB32 | 101 | XIO_6 [10] |
| LED11                                 | UB33 | 100 | XIO_6 [11] |
| LED12                                 | UB34 | 99  | XIO_6[12]  |
| LED13                                 | UB35 | 98  | XIO_6[13]  |
| LED14                                 | UB36 | 58  | XIO_6[14]  |
| LED15                                 | UB37 | 51  | XIO_6[15]  |
| LED16                                 | UB38 | 65  | XIO_6 [16] |
| LED17                                 | UB39 | 87  | XIO_6 [17] |
| LED18                                 | UB40 | 86  | XIO_6 [18] |
| LED19                                 | UB41 | 85  | XIO_6 [19] |
| LED20                                 | UB42 | 84  | XIO_6[20]  |
| LED21                                 | UB43 | 83  | XIO_6[21]  |
| · · · · · · · · · · · · · · · · · · · |      |     |            |




| LED22 | UB44 | TBD | XIO_6[22]  |
|-------|------|-----|------------|
| LED23 | UB45 | 77  | XIO_6[23]  |
| LED24 | UB46 | 76  | XIO_6 [24] |
| LED25 | UB47 | 73  | XIO_6 [25] |
| LED26 | UB48 | 74  | XIO_6 [26] |
| LED27 | UB49 | 75  | XIO_6 [27] |
| LED28 | UB50 | 72  | XIO_6[28]  |
| LED29 | UB51 | 71  | XIO_6[29]  |
| LED30 | UB52 | 70  | XIO_6[30]  |
| LED31 | UB53 | 69  | XIO_6[31]  |
| LED32 | UB68 | 68  | XIO_7[0]   |
| LED33 | UB69 | 64  | XIO_7[1]   |
| LED34 | UB70 | 60  | XIO_7[2]   |
| LED35 | UB71 | 59  | XIO_7[3]   |







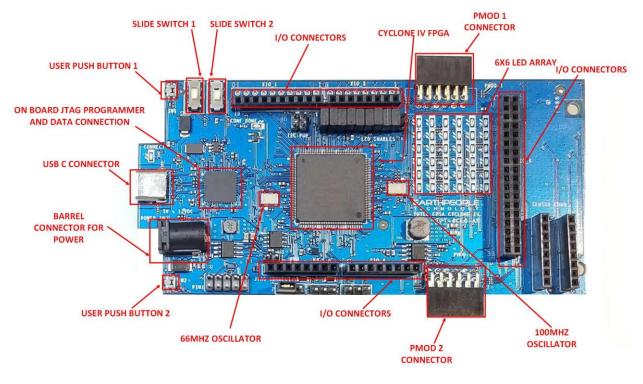


## JTAG Header

A 10 pin, 5x2 connector is included on the DPL to provide JTAG programming of the Cyclone IV. The default programming method is via the Configuration Flash. JTAG programming the FPGA directly is provided as a secondary option. An external programmer must be used access this JTAG header. The header follows the standard Intel FPGA pinout. So, any USB Blaster compatible programmer can be used to connect directly to this header and program the FPGA. No other jumpers or configuration is needed, just connect the programmer and the Quartus software will recognize the FPGA.

JTAG connector pinout:




| TCK | - | 1 | 2  | F            | GND       |
|-----|---|---|----|--------------|-----------|
| TDO | _ | 3 | 4  | ⊢            | VCC(TRGT) |
| TMS | - | 5 | 6  | $\vdash$     | NC        |
| NC  | - | 7 | 8  | $\mathbf{F}$ | NC        |
| TDI | - | 9 | 10 | F            | GND       |
|     |   |   |    |              |           |

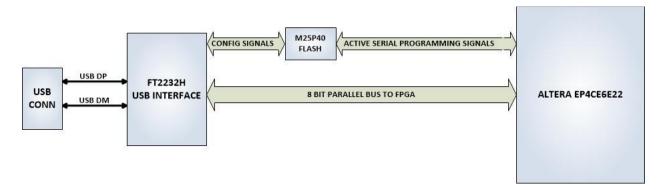
## Cyclone IV FPGA

The DueProLogic includes the Intel FPGA EP4CE6E22C8N, operating internally with 1.2V and 2.5V, and externally at 3.3V being 3.3V tolerant. Operates corner to corner logic in 9ns. 392 configurable logical/logic array blocks, 6272 logical elements/cells, 270Kbit internal RAM, 15 multipliers to support DSP processing-intensive applications, 2 PLLs.



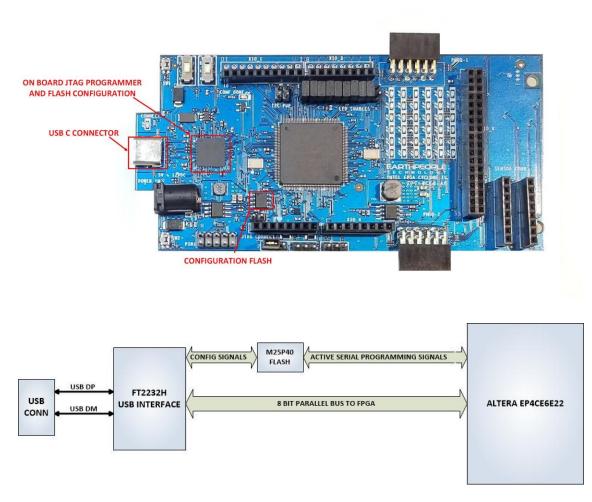
# Inputs/Outputs




All I/O's are +3.3V only. Do not apply any voltage greater than +3.3V to the FPGA I/O's. All of the FPGA I/O's have been brought out to 0.1 inch socket/headers. These headers easily allow jumper wire to connect from connector to the FPGA pins. Selected headers also have a power pin and a ground pin. This allows the user to assemble a small connector with both power and signals to connect to external sensor boards.

Page 28




## **FPGA** Configuration

The EPT Blaster Driver will allow the Quartus Prime Software to program the Configuration Flash chip on the DueProLogic. The software will only access the M25P40 Flash chip. This chip is accessed from the FT2232H USB chip. Quartus will store the compiled and synthesized user code. After programming is complete, the FPGA automatically resets and reads the code from the Flash chip and programs itself using the Active Serial method.



The Cyclone IV FPGA is configured for operation when the power is applied to the board. A dedicated Configuration Flash chip is included on the DueProLogic for the purpose of configuring the FPGA on power up. The DPL uses the second channel of the FT2232H chip as a dedicated Flash programming port. The Configuration Flash can be



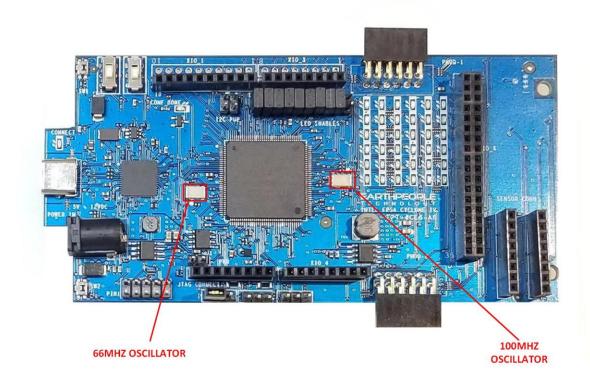


programmed directly from Quartus Prime by using the EPT-Blaster driver. Follow the instructions in the "EPT Drivers" section of this manual. Follow the instructions in the section "Setting up the Project and Compiling" to program the flash on the DPL.

Page 30



## Oscillators


There are two oscillators on the DueProLogic, 66MHz and 100MHz. These oscillators have the following Vendor and P/N

- 1. 66MHz, Renesas Electronics America Inc; P/N: XLH536066.000000I
- 2. 100MHz, Renesas Electronics America Inc; P/N: XLH536100.0000001

These oscillators are connected to the Global Clock inputs on the FPGA. Both devices provide stable clock for the FPGA's internal DLL's. The user can access these clock sources by calling the net connected to the FPGA pin.

| Component  | Net Name | Pin on FPGA | Signal in EPT<br>Project Pinout |  |
|------------|----------|-------------|---------------------------------|--|
| 66MHz Osc  | GCLK1    | 23          | aa[1]                           |  |
| 100MHz Osc | GCLK7    | 88          | CLK_100                         |  |





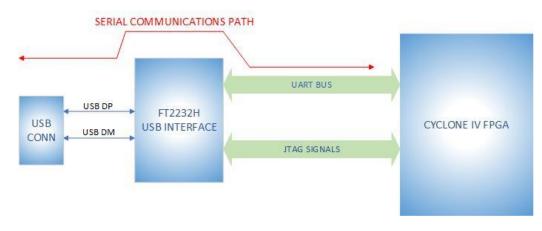
XLH536066.000000I



| PARAMETERS                                  | MAX (unless otherwise noted) |
|---------------------------------------------|------------------------------|
| Frequency                                   | 66MHz                        |
| Supply Voltage (VDD)                        | 3.3V                         |
| Input Current (IDD)                         |                              |
| >50.000 ~ 67.000MHz                         | 25 mA                        |
| Standby Current                             | 10 μΑ                        |
| Output Symmetry (50% VDD)                   |                              |
| >50.000 ~ 170.000MHz                        | 40% ~ 60%                    |
| Rise/Fall Time (10%/90% VDD Levels) (TR/TF) |                              |
| 1.000 ~ 80.000MHz                           | 6 nS                         |
| Output Voltage (VOL)                        | 10% VDD                      |
| (VOH)                                       | 90% VDD Min                  |
| Output Load (HCMOS)                         | 15 pF                        |
| Start-up Time (TS)                          | 10 mS                        |
| Frequency Stability                         | ±25ppm                       |
| Operating Temperature                       | -40°C ~ 85°C                 |



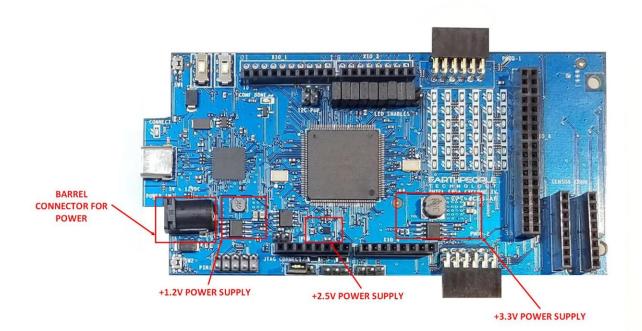
## XLH536100.000000I


| PARAMETERS                                  | MAX (unless otherwise noted) |
|---------------------------------------------|------------------------------|
| Frequency                                   | 100MHz                       |
| Supply Voltage (VDD)                        | 3.3V                         |
| Input Current (IDD)                         |                              |
| >50.000 ~ 67.000MHz                         | 47 mA                        |
| Standby Current                             | 10 μΑ                        |
| Output Symmetry (50% VDD)                   |                              |
| >50.000 ~ 170.000MHz                        | 40% ~ 60%                    |
| Rise/Fall Time (10%/90% VDD Levels) (TR/TF) |                              |
| 1.000 ~ 80.000MHz                           | 6 nS                         |
| Output Voltage (VOL)                        | 10% VDD                      |
| (VOH)                                       | 90% VDD Min                  |
| Output Load (HCMOS)                         | 15 pF                        |
| Start-up Time (TS)                          | 10 mS                        |
| Frequency Stability                         | ±25ppm                       |
| Operating Temperature                       | -40°C ~ 85°C                 |

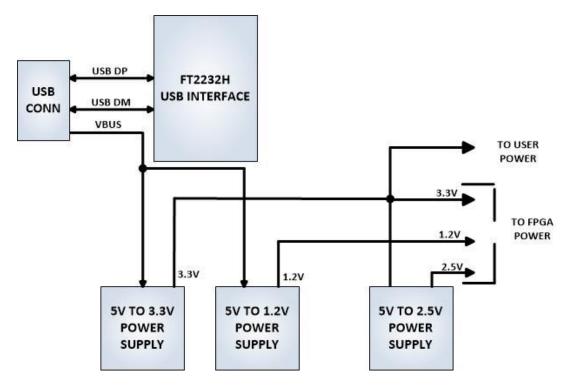


## USB to Serial

The FT2232HQ is a USB 2.0 High Speed (480Mb/s) to UART/MPSSE IC. The device features two interfaces that can be configured for asynchronous or synchronous serial or parallel FIFO interfaces. The two channels can also be independently configured to use an MPSSE engine. This allows the two ports of the FT2232HQ to operate independently as UART/Bit-Bang ports or MPSSE engines used to emulate JTAG, SPI, I2C, Bit-bang or other synchronous serial modes.


The chip is powered by +3.3V and includes an internal +1.8V regulator to power the chip core. It uses +3.3V I/O interfacing and is+5V Tolerant. Operational configuration mode and USB Description strings configurable in external EEPROM over the USB interface. USB to parallel FIFO transfer data rate up to 8 Mbyte/Sec. FT245B-style FIFO interface option with bidirectional data bus and simple 4 wire handshake interface. Asynchronous serial UART interface option with full hardware handshaking and modem interface signals. Fully assisted hardware or X-On / X-Off software handshaking. UART Interface supports 7/8 bit data, 1/2 stop bits, and Odd/Even/Mark/Space/No Parity.




## DueProLogic Power

The DueProLogic can be powered from the USB bus of a Host/PC or the optional barrel connector. The USB supplies a maximum of +5V @ 500 mA's. The components of the DueProLogic must share this power with the user code that will run inside the FPGA along with any external power use.









## Core Board Power Budget

| Device | Part<br>Number | +1.2V Power                                                   | +2.5V Power | +3.3V Power                                                                                      |
|--------|----------------|---------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|
| FPGA   | EP4CE6E22      | ??? Defined by user<br>code. EPT-Transfer-<br>Demo code: 50mA | 10mA        | <ul><li>??? Defined by<br/>user code</li><li>EPT-Transfer-<br/>Demo code:</li><li>50mA</li></ul> |
| Flash  | M25P40         |                                                               |             | 15mA (During<br>the Write                                                                        |



| Green LED            |                        |  |                                                       |
|----------------------|------------------------|--|-------------------------------------------------------|
| CONNECT              |                        |  | 5mA                                                   |
| Green LED            |                        |  |                                                       |
| CONF_DONE            |                        |  | 5 mA                                                  |
| User LEDs            |                        |  | 216 mA                                                |
| 100MHz<br>Oscillator | FXO-<br>HC536R-<br>100 |  | 47 mA                                                 |
| 66MHz<br>Oscillator  | FXO-<br>HC536R-66      |  | 47 mA                                                 |
| USB EEPROM           | 93LC56                 |  | 2 mA (write<br>current)<br>1 mA (read<br>current)     |
| USB Chip             | FT2232H                |  | 60 mA (no<br>sink current<br>supplied to<br>I/O's)    |
|                      |                        |  | Status, Sector<br>Erase, and<br>Bulk Erase<br>cycles) |

\*Theoritical Values only. This data needs to be validated



## Core Board VUSB Power Budget

| Device                | Part<br>Number | VUSB  |  |
|-----------------------|----------------|-------|--|
| +1.2V Power<br>Supply | TPS54229       | 70mA  |  |
| +2.5V Power<br>Supply | AP7331         | 12mA  |  |
| +3.3V Power<br>Supply | TPS54229       | 275mA |  |
| Total                 |                | 357mA |  |

\* Theoritical Values only. This data needs to be validated