
DSO Development System User Manual

 Page
1

DSO 100M

FPGA DEVELOPMENT SYSTEM
User Manual

The DSO 100M is an Open Source Digital Storage Oscilloscope Development System

created by Earth People Technology. It consists of a board, FPGA design source files

and a C# project with all source code needed to build a complete DSO. The board is a

four channel oscilloscope that accepts analog signals +/- 40Volts up to 5MHz. Each

channel has its own low pass filter, amplification and sampling.

 The C# project is used to build the UnoProLyzer application and runs on a Windows

10/8/7 PC. It displays each analog signal data from the DSO 100M in a window with

color coded signals. This application includes a trigger mechanism, zoom in/out, scroll,

amplitude measurement, vertical and timebase selection.

Circuit designs, software and documentation are copyright © 2019, Earth People

Technology, Inc

Microsoft and Windows are both registered trademarks of Microsoft Corporation.

Altera is a trademark of the Altera Corporation. All other trademarks referenced herein

are the property of their respective owners and no trademark rights to the same are

claimed.

http://www.earthpeopletechnology.com/

http://www.earthpeopletechnology.com/

DSO Development System User Manual

 Page
2

Table of Contents
1 Introduction and General Description ... 5

2 DSO 100M Getting Started ... 6

3 DSO 100M Driver ... 8

4 UnoProLyzer Application ... 8

5 DSO 100M Description .. 29

5.1.1 Power .. 31

5.1.2 Analog Inputs .. 32

5.1.3 Bias Amplifiers ... 32

5.1.4 Programmable Gain Amplifiers .. 34

5.1.5 Analog To Digital Converters ... 36

5.1.6 FPGA Configuration ... 38

5.1.7 FT2232H Dual Channel USB to Serial Chip .. 38

6 FPGA Code Description ... 39

7 EPT Drivers ... 49

7.1 USB Driver ... 49

7.2 JTAG DLL Insert to Quartus Prime ... 56

7.2.1 Installing Quartus .. 56

7.2.2 Downloading Quartus ... 57

7.2.3 Quartus Installer .. 61

7.2.4 Adding the EPT_Blaster to Quartus Prime ... 65

7.3 Active Host Application DLL .. 66

8 FPGA Active Transfer Library ... 70

8.1 EPT Active Transfer System Overview ... 73

8.2 Active Transfer Library .. 74

8.2.1 Active Trigger EndTerm ... 76
8.2.2 Active Transfer EndTerm ... 80

8.2.3 Active Block EndTerm ... 82

8.3 Timing Diagram for Active Transfer EndTerms .. 85

8.3.1 Active Trigger EndTerm Timing .. 85

8.3.2 Active Transfer EndTerm Timing ... 85

8.3.3 Active Block EndTerm Timing ... 86

9 PC Active Host Description .. 86

10 Active Host Application .. 110

10.1 Trigger EndTerm .. 111

10.2 Transfer(Byte) EndTerm... 111

10.3 Block EndTerm ... 112

10.4 Active Host DLL .. 112

10.4.1 Active Host Open Device.. 113

10.4.2 Active Host Read Callback Function .. 116

10.4.3 Active Host Triggers ... 117

10.4.4 Active Host Byte Transfers ... 119

DSO Development System User Manual

 Page
3

10.4.5 Active Host Block Transfers ... 121

11 Assembling, Building, and Executing a .NET Project on the PC 124

11.1 Creating a Project.. 125

11.1.1 Setting up the C# Express Environment x64 bit 126

11.2 Assembling Files into the Project ... 133

11.2.1 Add Files to Project ... 135

11.2.2 Adding Controls to the Project .. 137

11.2.3 Adding the DLL’s to the Project ... 141

11.2.4 Building the Project .. 142

12 FPGA DSO 100M Verilog Description .. 143

12.1 UC Controller Description Error! Bookmark not defined.

12.2 ADC Storage Description ... 153

13 Compiling, Synthesizing, and Programming FPGA ... 159

13.1 Setting up the Project and Compiling ... 159

13.1.1 Selecting Pins and Synthesizing.. 165

13.1.2 Configuring the FPGA .. 173

14 PC UnoProLyzer Code Base Description ... 183

2 DSO 100M Getting Started ... 5

3 DSO 100M Driver ... 7

4 UnoProLyzer Application ... 7

5 DSO 100M Description .. 28

5.1.1 Power .. 30

5.1.2 Analog Inputs .. 30

5.1.3 Bias Amplifiers ... 30

5.1.4 Programmable Gain Amplifiers .. 30

5.1.5 Analog To Digital Converters ... 30

5.1.6 FPGA Configuration ... 30

5.1.7 FT2232H Dual Channel USB to Serial Chip .. 31

6 FPGA Code Description ... 31

6.1 Active Host EndTerms UnoProLyzer Project .. 31

6.2 Active Transfer EndTerms FPGA Code... 34

6.3 FPGA Host Interface .. 35

6.4 UC Controller Description ... 38

6.5 ADC Storage Description ... 40

7 EPT Drivers ... 42

7.1 USB Driver ... 42

7.2 JTAG DLL Insert to Quartus Prime ... 49

7.2.1 Installing Quartus .. 49

7.2.2 Downloading Quartus ... 50

7.2.3 Quartus Installer .. 53

7.2.4 Adding the EPT_Blaster to Quartus Prime ... 57

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

DSO Development System User Manual

 Page
4

8 FPGA Active Transfer Library ... 62

8.1 EPT Active Transfer System Overview ... 62

8.2 Active Transfer Library .. 63

8.2.1 Active Trigger EndTerm ... 65

8.2.2 Active Transfer EndTerm ... 69

8.2.3 Active Block EndTerm ... 71

8.3 Timing Diagram for Active Transfer EndTerms .. 74

8.3.1 Active Trigger EndTerm Timing .. 74

8.3.2 Active Transfer EndTerm Timing ... 74

8.3.3 Active Block EndTerm Timing ... 75

9 Compiling, Synthesizing, and Programming FPGA ... 75

9.1 Setting up the Project and Compiling ... 76

9.1.1 Selecting Pins and Synthesizing.. 82

9.1.2 Configuring the FPGA .. 90

10 Active Host Application .. 97

10.1 Trigger EndTerm .. 97

10.2 Transfer(Byte) EndTerm... 98

10.3 Block EndTerm ... 98

10.4 Active Host DLL .. 98

10.4.1 Active Host Open Device.. 100

10.4.2 Active Host Read Callback Function .. 102

10.4.3 Active Host Triggers ... 103

10.4.4 Active Host Byte Transfers ... 105

10.4.5 Active Host Block Transfers ... 107

11 Assembling, Building, and Executing a .NET Project on the PC 110

11.1 Creating a Project.. 111

11.1.1 Setting up the C# Express Environment x64 bit 112

11.2 Assembling Files into the Project ... 119

11.2.1 Changing Project Name .. 119

11.2.2 Add Files to Project ... 121

11.2.3 Adding Controls to the Project .. 123

11.2.4 Adding the DLL’s to the Project ... 127

11.2.5 Building the Project .. 128

11.2.6 Testing the Project... 129

11.3 UnoProLyzer Code Base Description ... 132

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

DSO Development System User Manual

 Page
5

1 Introduction and General Description
The Earth People Technology DSO 100M development system hardware consists of a

High Speed USB to parallel (8 bit) bus chip, FPGA, analog signal conditioning and

Analog to Digital Converters. The USB interface provides both Configuration of the

FPGA and a High Speed transfer path. The Verilog firmware includes the Active

Transfer Library which is used in the FPGA to provide functions for control and data

transfer to/from the PC. The UnoProLyzer software consists of the Active Host SDK for

the PC. This SDK provides virtual “pipes” over the USB to provide address selectable

paths to send/receive data from the FPGA.

DSO Development System User Manual

 Page
6

These virtual pipes are called “EndTerms”. There are three types of EndTerms.

• Trigger EndTerm

• Transfer EndTerm (Single Byte)

• Block EndTerm (256 Byte Block)

The EndTerms are designed for ease of use and are commensurate between the C# SDK

and the Verilog Transfer Library. For example, send a byte from the C# project to the

FPGA using the Transfer EndTerm function. The byte be available in the FPGA via the

USB to Serial chip within 1 millisecond. The same goes for sending data from FPGA to

the PC.

All of the drivers, libraries, and project source code are available at

www.earthpeopletechnology.com .

2 DSO 100M Getting Started

Formatted: Font: (Default) Times New Roman

http://www.earthpeopletechnology.com/

DSO Development System User Manual

 Page
7

The DSO 100M board comes pre-loaded with the DSO_100M HDL project in the

FPGA. This project allows the user to test out the functions of the Active Host API and

the board hardware.

To test drive the application, connect the DSO 100M to the Windows PC using a Micro

B USB cable. Load the driver for the board. See the section “EPT Drivers” for

instructions on loading the DPL driver. If the USB driver fails to load, the Windows OS

will indicate that no driver was loaded for the device. In the case of the failed USB

driver, try rebooting the PC and following the steps in the EPT Drivers section of this

User Manual.

Below is a list of the steps to take to get started using the UnoProLyzer.

1. Install the DSO 100M Driver

2. Install the UnoProLyzer Application

3. Connect the DSO 100M board to the USB Port on the PC

4. Click on the UnoProLyzer Icon under “All Programs”

5. When the application opens up, click on the drop down box in the upper right

corner.

6. Select the “EPT USB<->Serial&JTAG Cable B”.

7. Click on the “Open” button

8. Click on one of the “Select Channels” buttons.

9. Then click on the “Start” button.

10. All selected analog channels should appear on the display.

DSO Development System User Manual

 Page
8

3 DSO 100M Driver
Connect the DSO 100M board to a USB port on the PC. Load the driver located on the

UNOPROLYZER_OSCILLOSCOPE_1.1_DVD at /DSO_100M/Drivers/EPT_2.08.24

Double click on the CDM v2.08.30 Setup.exe to install the USB drivers. The DSO

100M uses the ftdibus.sys driver. This driver is loaded upon connection of the USB to

Serial Cable to the PC by the ftdibus.inf file. To install these two files onto your PC,

follow the instructions from the “Update Driver Software” utility. This utility will

automatically load when the board is connected to the PC.

4 UnoProLyzer Application
When the application loads, click on the drop down box at the upper right of the

window. Select the EPT USB<->Serial&JTAG Cable B in the list. Next, Click “Open”,

select number of channels and click “Start”. The analog data will display on the graph.

DSO Development System User Manual

 Page
9

Go to the upper right of the window and click on the drop down box.

Select the “EPT USB<-> Serial&JTAG Cable B. Then click on the Open button

DSO Development System User Manual

 Page
10

Next, select the number of channels to display. The channels have to be selected in

sequential order, you cannot pick out single channel (except for channel 1). So for two

channels, click on the “1 to 2” button. This will display the data from both channel 1

and 2.

DSO Development System User Manual

 Page
11

Next, click on the Start button.

DSO Development System User Manual

 Page
12

The data from the two channels will appear at the same latitude on the graph.

DSO Development System User Manual

 Page
13

Next, locate the Channel Select drop down box and click on channel 1.

DSO Development System User Manual

 Page
14

Locate the Vertical Position slider and pull it down. The channel 1 data will change

position in the graph depending on where you move the slider. The voltage magnitude

data also adjusts to indicate the magnitude of the data relative to the position of channel

1 data.

DSO Development System User Manual

 Page
15

The selected channel will show up as a large icon. Its position indicates the zero

position of the data. The magnitude information along the y-axis is only for the selected

channel.

DSO Development System User Manual

 Page
16

Then connect a signal to the channel 1 input on the UnoProLogic2.

If you don’t have a 0-5 Volt signal to connect to the UnoProLogic2, you can use your

finger and touch it to the bottom of the Analog Input Connector. The ambient electricity

from your body has just enough current to give the Analog inputs a deflection from

zero.

DSO Development System User Manual

 Page
17

Now the UnoProLogic2 and UnoProLyzer are ready to measure an 0-5VDC signals.

DSO Development System User Manual

 Page
18

To set up triggering, locate the “Trigger Menu”. In this menu, locate the “Trigger

Channel” drop down box.

DSO Development System User Manual

 Page
19

Click on the drop down box and select the channel in which to scan for the trigger

value.

DSO Development System User Manual

 Page
20

Next, adjust the “Trigger Voltage” level to the appropriate trigger threshold point.

DSO Development System User Manual

 Page
21

Click on the “Trigg On” button to turn on triggering.

DSO Development System User Manual

 Page
22

When the UnoProLyzer connects with the EPT-5M57-AP-U2 and all four channels are

setup and start button has been pressed, the display will show all four analog inputs on

the screen.

DSO Development System User Manual

 Page
23

All of the channels will be grouped at the same spot on the graph by default. To

separate these channels, click on the drop down box underneath the “Channel Select”

lable.

DSO Development System User Manual

 Page
24

Select a channel and us the “Vertical Position” slider to adjust the position of the

channel graph in the display. Notice that the channel indicator highlights in bold when

the channel is selected.

DSO Development System User Manual

 Page
25

Grab the “Vertical Scale” slider and push up on it until the scale is 1/3. This divides

each data element in channel 1 by 1/3.

DSO Development System User Manual

 Page
26

Repeat this process for all six signals. Leaving one division between each channel.

DSO Development System User Manual

 Page
27

Each channel can also be scaled in the Horizontal Scale. Provide Channel 1 with a

signal. A simple way to do this is to touch your finger to the analog input. Then click

the “Stop” button. The “Stop” button will cause the ProLyzer to stop filling the circular

buffers with new data. All of the previously stored data is preserved in the circular

buffers. This allows to you to scroll through the data to view events that occurred in the

past.

DSO Development System User Manual

 Page
28

Turn off each channel (except for Channel 1) by first selecting the channel, then

clicking on the “On/Off” button directly below the “Channel Select” drop down box.

DSO Development System User Manual

 Page
29

Select Channel 1 and grab the “Time (Scale) “ slider and slide it to the left. Notice the

signal is zooming out.

5 DSO 100M Description
 The DSO 100M board is equipped with an Altera EP4CE6E22C8 FPGA; which

is programmed using the Altera Quartus Prime software. The FPGA has 6672 Logic

Elements and 276480 Total RAM Bits. An on board 66 MHz oscillator is used by the

EPT Active Transfer Library to provide data transfer rates of up to 8 Mega Bytes per

second. The board contains four separate analog signal paths. Each analog channel has a

dedicated 100MHz ADC. Each channel has a high accuracy bias and signal amplifiers

DSO Development System User Manual

 Page
30

capable of providing a 10MHz analog signal for conversion at each ADC. The hardware

features are as follows.

• Altera EP4CE6 FPGA with 6272 Logic Cells

• Dual Channel High Speed USB FT2232H

• 66 MHz oscillator for driving USB data transfers and users code

• 100MHz oscillator for scaling up/down for users needs

• Four 100MSPS ADCs

• High accuracy Op-Amps capable of providing 10MHz analog signals at the

ADCs

DSO Development System User Manual

 Page
31

5.1.1 Power

The DSO 100M runs from USB power only. The USB port provides +5VDC. This

power is split into three power rails; +3.3V, +2.5V, +1.2V and ±5V. The DSO 100M

consumes approximately 300mA from the USB port. This is a total 1.5W from the

+5VDC of the USB port. The standard USB port can safely supply a maximum of

500mA from each port. So, the DSO 100M consumes a safe margin with respect to the

maximum.

DSO Development System User Manual

 Page
32

The +3.3V, +2.5V and +1.2V supplies the power for FPGA. The +3.3V is used to

power the FT2232H chip, Configuration Flash, Oscillators, ADC’s, Digital

Potentiometers, EEPROM, and bus Transceivers. The ±5V supply is used by the analog

Op-Amps.

5.1.2 Analog Inputs

There are four analog inputs and each input uses a BNC connector on the PCB. Each

analog input path has been tuned to 50 Ohm impedance on the top layer of the PCB.

This matches the impedance of the BNC connector and minimizes reflections and noise.

The analog input circuit’s responsibility is to protect the input amplifiers and divide the

input analog signal for compatibility with the ADC. The input protection is provided by

a diode clamp to the +5VDC power supply and a diode clamp to the -5VDC power

supply.

5.1.3 Bias Amplifiers

Each analog channel after the conditioning is applied to a bias amplifier. The bias

amplifier is used to bias the input analog signal at zero voltage. The conditioned analog

signal is allowed to fluctuate between ±5VDC. The DSO 100M provides an adjustable

gain on the bias amp. This gain is used to provide an offset to correct for any distortion

to the signal because of the signal conditioning. This gain is adjusted using a digital

potentiometer (Analog Devices AD5263). This Digi-pot is controlled via the FPGA.

Formatted: Centered

Formatted: Centered

DSO Development System User Manual

 Page
33

The Digi-Pot is a 256 position 50K Ohm selectable resistance. The Digi-Pot is

controlled via I2C from the FPGA. The Host PC selects and initiates the I2C bus to

command the Digi-Pot to a selected position, and thusly a resistance. Each position is a

195 Ohm step (50,000 Ohm/256 Steps) from 0 Ohm to 50,000 Ohm. The Digi-Pot uses

a ±5VDC to allow the resistance to select the bias from the full analog input voltage

swing.

Digi-pots and the Op-Amps allow an undistorted analog signal to be applied to the

ADC’s. The gain amplifier can add a gain of up to 50 with no offset. Below is a video

showing a 2MHz signal on channel 1. It is perfectly centered around the zero point. The

function generator output is set to +/- 600mV. The video starts at 2MHz and then the

function generator is dialed down to 1MHz and finally 100KHz. The reason for the

incorrect calibration on the software display, is the gain and bias tables need to be

completed to scale the input value to the full range of the ADC.

Formatted: Centered

Formatted: Font: (Default) Times New Roman, Font color:
Auto

DSO Development System User Manual

 Page
34

5.1.3 Programmable Gain Amplifiers

5.1.4 Programmable Gain Amplifiers

After the analog input signal is applied to the bias amplifier, it passes through a gain

amplifier. This gain amplifier is used to amplify the analog input signal to match the

signal dynamic range of the ADC input. This amplifier circuit uses a Digi-Pot (Analog

Devices AD5263) with 50K Ohm of total resistance. So, the amplifier can provide a

gain of up to 50. This gain is used to boost the incoming conditioned analog signal to

meet the ±1V input of the ADC. This gain is used in conjunction with the Vertical

setting from the UnoProLyzer software.

https://www.earthpeopletechnology.com/wp-content/uploads/2015/04/EPT_DSO_100M_KickStarter_Aug_17_Update.mp4

DSO Development System User Manual

 Page
35

The Vertical selection has discrete positions such as -20V, -10V, -5V, -1V, 0V etc...

that correspond to specific gain selections of the gain amplifier. The gain is selected by

selecting resistance values from the Digi-Pot. The Digi-Pot is a 256 position 50K Ohm

selectable resistance. The Digi-Pot is controlled via I2C from the FPGA. The Host PC

selects and initiates the I2C bus to command the Digi-Pot to a selected position, and

thusly a resistance. Each position is a 195 Ohm step (50,000 Ohm/256 Steps) from 0

Ohm to 50,000 Ohm.

OPA2209 Selected Parameters

Parameter Min Typ Max Unit
VOS Input offset

voltage

 ±35 ±150 µV

dVOS/dT Input offset

voltage drift

 1 3 µV/°C

PSRR vs power supply 0.05 0.5 µV/V

IB Input bias current ±1 ±4.5 nA

IOS Input offset current ±0.7 ±4.5 nA

en Input voltage noise 0.13 µVPP

Noise density @ f =

10 Hz

 3.3 nV/√Hz

Noise density @ f =

100 Hz

 2.25 nV/√Hz

Noise density @ f =

1kHz

 2.2 nV/√Hz

In Input current noise

density

 500 fA/√Hz

VCM Common-mode
voltage range

(V–) + 1.5 (V+) – 1.5 V

CMRR Common-

mode rejection ratio

120 130 dB

GBW Gain bandwidth

product

 18 MHz

SR Slew rate 6.4 V/µs

5.1.4 The Gain and Bias Amplifiers are powered from a +/- 5V supply fed from a DC-

DC brick to voltage errors to a minimum.

Formatted: Centered

Formatted: Font: Bold

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Centered

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt, Subscript

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Normal

DSO Development System User Manual

 Page
36

5.1.5 Analog To Digital Converters

The DSO 100M contains four Analog Devices AD9283BRSZ-80 chips. The AD9283 is

an 8-bit monolithic sampling analog-to-digital converter with an on-chip track-and-hold

circuit. The chip operates at a 100 MSPS conversion rate, with outstanding dynamic

performance over its full operating range.

The analog signal is applied differentially to the inputs of the AD9283. The signal is

buffered and fed forward to an on-chip sample-and-hold circuit. The ADC core

architecture is a bit-per-stage pipeline type converter utilizing switch capacitor

techniques. The bit-per-stage blocks determine the 5 MSBs and drive a FLASH

converter to encode the 3 LSBs. Each of the 5 MSB stages provides sufficient overlap

and error correction to allow optimization of performance with respect to comparator

accuracy. The output staging block aligns the data, carries out the error correction and

feeds the data to the eight output buffers. The AD9283 includes an on-chip reference

(nominally 1.25 V) and generates all clocking signals from one externally applied

encode command. This makes the ADC easy to interface with and requires very few

external components for operation.

AD9283 Selected Parameters

Parameter Min Typ Max Unit
Resolution 8 Bits

Differential Nonlinearity ±0.5 +1.25 LSB

Integral Nonlinearity -1.25 ±0.75 +1.25 LSB

Gain Error -6 ±2.5 +6 % FS

Input Voltage Range ±512 mV p-p

Common-Mode Voltage ±200 mV

Input Offset Voltage –35 ±10

+35 mV

Reference Voltage 1.2 1.25 1.3 V

Input Resistance 7 10 13 kΩ

Input Capacitance 2 pF

Formatted: Font: Bold

Formatted Table

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

Formatted: Font: 8 pt

DSO Development System User Manual

 Page
37

Analog Bandwidth, Full

Power

 475 MHz

Maximum Conversion Rate 80 MSPS

Minimum Conversion Rate 1 MSPS

Encode Pulsewidth High

(tEH)

5.0 1000 ns

Encode Pulsewidth Low

(tEL)

5.0 1000 ns

Aperture Delay (tA) 0 ns

Aperture Uncertainty

(Jitter)

 5 ps rms

Output Valid Time (tV) 2.0 3.0 ns

Output Propagation Delay

(tPD)

 4.5 7.0 ns

Effective Number of Bits

fIN = 10.3 MHz 7.5 Bits

fIN = 27 MHz 7.5 Bits

fIN = 41 MHz 7.5 Bits

Output Coding (VREF = 1.25V)

Step AIN–/AIN Digital Output
255 0.512 1111 1111

. . .

. . .
128 0.002 1000 0000

127 -0.002 0111 1111

. . .

. . .
0 -0.512 0000 0000

AD9283 ADC Encoding

The ENCODE input is fully TTL/CMOS compatible with a nominal threshold of 1.5 V.

Care was taken on the chip to match clock line delays and maintain sharp clock logic

transitions. Any high speed A/D converter is extremely sensitive to the quality of the

sampling clock provided by the user. This ADC uses an on-chip sample-and-hold

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

DSO Development System User Manual

 Page
38

circuit which is essentially a mixer. Any timing jitter on the ENCODE will be combined

with the desired signal and degrade the high frequency performance of the ADC. The

user is advised to give commensurate thought to the clock source.

AD9283 Analog Input

The analog input to the ADC is fully differential and both inputs are internally biased.

This allows the most flexible use of ac or dc and differential or single-ended input

modes. For peak performance the inputs are biased at 0.3 × VD. See the specification

table for allowable common-mode range when dc coupling the input. The inputs are

also buffered to reduce the load the user needs to drive. For best dynamic performance,

the impedances at AIN and AIN should be matched. The importance of this increases

with sampling rate and analog input frequency. The nominal input range is 1.024 V p-p.

AD9283 Voltage Reference

A stable and accurate 1.25 V voltage reference is built into the AD9283 (VREF OUT).

In normal operation, the internal reference is used by strapping Pins 2 and 3 of the

AD9283 together. The input range can be adjusted by varying the reference voltage

applied to the AD9283. No degradation in performance occurs when the reference is

adjusted ±5%. The full-scale range of the ADC tracks reference voltage changes

linearly. Whether used or not, the internal reference (Pin 2) should be bypassed with a

0.1 µF capacitor to ground.

5.1.6 FPGA Configuration

The EP4CE6 FPGA is configured for operation when the power is applied to the board.

A dedicated Configuration Flash chip is included on the DSO 100M for the purpose of

configuring the FPGA as power up. The DSO uses the second channel of the

FT2232H chip as a dedicated Flash programming port. The Configuration Flash can be

programmed directly from Quartus Prime by using the EPT-Blaster driver. Follow the

instructions in the “EPT Drivers” section of this manual.

5.1.7 FT2232H Dual Channel USB to Serial Chip

The DSO 100M contains an FTDI 2232H dual channel high speed (480 Mb/s) USB to

FIFO (first in-first out) integrated circuit to interface between the Host PC and the

Formatted: Font: Bold

Formatted: Font: Bold

DSO Development System User Manual

 Page
39

FPGA. The FT2232H provides a means of data conversion from USB to serial/ parallel

data and serial/parallel to USB for data being sent from the FPGA to the PC. Channel A

is configured as a Flash Configuration bus and Channel B is configured as an 8 bit

parallel bus. FPGA Programming commands are transmitted via the channel A

interface. Channel B has one dual port 4Kbyte FIFO for transmission from Host PC to

the FPGA, it also has one dual port 4Kbyte FIFO for receiving data from the FPGA to

the Host PC. The module uses the +5Vbus from the Host USB for self power.

6 FPGA Code Description
The DSO 100M comes complete with step by step instructions on building an entire

communications system from FPGA to Windows Host. The development of this

communications system is made considerably easier because of the use of a custom

software item called “EndTerms”.

provides an easy to use programming interfaceThese will be explained in later sections.

First, the software tools and how to install them will be reviewed. The tools required are

the free Visual Studio IDE and the free Quartus Prime.

7.0 EPT Drivers
The communication path between DSO 100M and the PC is made possible by the use of

EndTerms. These EndTerms provide a virtual “pipe” of data capable of sending and

receiving bytes between the Windows PC and the FPGA. In order to fully explain the

FPGA Code used in the DSO 100M, a quick explanation is needed of the transfer

mechanism in the UnoProLyzer C# project.

DSO Development System User Manual

 Page
40

EPT Drivers

EPT Drivers

from PC application code through the USB driver to the user FPGA code. The user code

connects to the Endterms in the Active Host dll. These Host Endterms have

complementary HDL Endterms in the Active Transfer Library. Users have seamless bi-

directional communications at their disposal in the form of:

• Trigger Endterm

• Transfer Endterm

• Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the FPGA.

DSO Development System User Manual

 Page
41

7.0 EPT Drivers
The above is a code sample from a C# Windows Form. You can see functions that write

a byte to the FPGA (EPT_AH_SendByte(0x01, (char)LEDStatus)) and write a trigger

bit to the FPGA (EPT_AH_SendTrigger((byte)0x02).

The above code is the interface Verilog which resides in the FPGA. When the C#

Windows form sends a byte or trigger, the signals in the FPGA code react and allow the

user code to receive the byte and trigger and perform some function with the

information. In the case of this example, the LEDs will change state.

Receiving data from the FPGA is made simple by Active Host. Active Host transfers

data from the FPGA as soon as it is available. It stores the transferred data into circular

buffer. When the transfer is complete, Active Host invokes a callback function which is

registered in the users application. This callback function provides a mechanism to

DSO Development System User Manual

 Page
42

transparently receive data from the FPGA. The user application does not need to schedule a read from the USB or call any blocking threads.

23.0 Active Transfer EndTerms FPGA Code
The Active Transfer Library is a portfolio of HDL modules that provides an easy to use

yet powerful USB transfer mechanism. The user HDL code communicates with

EndTerms in the form of modules. These EndTerm modules are commensurate with the

Active Host EndTerms. There are three types of EndTerms in the Active Transfer

Library:

• Trigger Endterm

• Transfer Endterm

• Block Endterm

They each have a simple interface that the user HDL code can use to send or receive

data across the USB. Writing to an EndTerm will cause the data to immediately arrive

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

at the commensurate EndTerm in the Active Host/user application. The transfer through

the USB is transparent. User HDL code doesn’t need to set up Endpoints or respond to

Host initiated data requests. The whole process is easy yet powerful.

32.0 FPGA Host Interface
The FPGA code base for the DSO 100M is quite large and comprises several sections.

The following sections of this document will attempt to explain the details of the code.

However, a thorough examination of the code will be necessary to come to a complete

understanding of the code. Also, there are several testbenches with fully simulated code

to help the user. The following components make up the DSO 100M Code Base:

• Host Interface Component

• ADC Sample Storage Component

• Data Transmit Component

DSO Development System User Manual

 Page
43

7.0 EPT Drivers

From the above block diagram, all components require the Active Transfer Library to

perform their respective functions. All components communicate with the PC

transparently.

The above block diagram shows the Host Interface Component only.

DSO Development System User Manual

 Page
44

7.0 EPT Drivers
The above diagram shows the Host Interface Component State Machine

51.0 UC Controller Description

DSO Development System User Manual

 Page
45

7.0 EPT Drivers

DSO Development System User Manual

 Page
46

7.0 EPT Drivers

DSO Development System User Manual

 Page
47

7.0 EPT Drivers

687 EPT Drivers
The DSO 100M requires drivers for any interaction between PC. Once the driver is

installed, this will allow Windows to recognize the USB Chip and setup a pathway for

Windows to communicate with the USB hardware. The UnoProLyzer application can

control and receive data from the DSO 100M and the user can program the Config

flash.

68.17.1 USB Driver
To install the driver onto your PC, use the EPT_2.08.24 Folder. The installation of the

EPT_2.08.24 driver is easily accomplished using the “Update Driver Software” utility

in Device Manager.

Locate the EPT_2.08.24 folder in the Drivers folder of the DSO 100M DVD using

Windows Explorer.

Plug in the DSO 100M device into an available USB port.

DSO Development System User Manual

 Page
48

Windows will attempt to locate a driver for the USB device. When it does not find one,

it will report a error, “Device driver software was not successfully installed”. Ignore this

error.

Go to Start and right click on the Start icon

DSO Development System User Manual

 Page
49

Locate Device Manager and click on it.

Locate the entry under “Other devices”. Right click “EPT USB <->Serial&JTAG

Cable” and select “Update Driver Software…”.

DSO Development System User Manual

 Page
50

At the Update Driver Software Window, select “Browse my computer for driver

software”.

Click the Browse button and browse to the \Drivers\EPT_2.08.24 folder of the EPT

FPGA Development System DVD. Click the Ok button.

DSO Development System User Manual

 Page
51

Click the Next button

On Windows 10 PCs, the following message will appear.

DSO Development System User Manual

 Page
52

The next window is the Windows Security notice. The EPT driver is not signed by

Windows. How to Disable Driver Signature Verification on 64-Bit Windows 10

Windows 10 implements extra protection against malicious driver files that intend to do

harm to the users PC. This implementation unfortunately locks out any third party

driver file if it is unsigned. Currently all EPT boards have unsigned drivers. Follow the

instructions below to allow Windows 10 to allow third party unsigned drivers to be

installed on your PC.

• Under Windows 10, You must restart the computer in the “options menu” mode.

This will allow you to go through the process of allowing all unsigned drivers to

self install on your Windows 10.

• First, the computer must be restarted into the so-called “options menu”. The

easiest way to get there is via the “Run”-dialog, which is opened by means of

the key combination Win+R. The command you have to enter, to boot into the

Options menu is as follows:

DSO Development System User Manual

 Page
53

• shutdown.exe /r /o /f /t 00 Caution: This command starts the reboot process

immediately!

• You’ll find the explanation of the individual parameters below:

o shutdown.exe – It’s a Command-Line application which is inclusive

with Windows. It does various kinds of restarts and shutdowns.

o /r – means “restart”

o /o – means “the PC should start in the Option menu”

o /f – means “restart directly and close all opened programs immediately”

o /t 00 – shows the time until the restart happens (in seconds). In this case

0 seconds, which equals an immediate restart Then click on the Recovery

option on the left hand side.

• After you have successfully rebooted into the “Options menu”, click

“Troubleshoot” and then “Advanced options”.

• Now click on the “startup settings”-button and the press “reboot”.

• After another reboot, you’re at the startup settings page. Here you can choose

between various options, which can be entered by pressing the respective

number key. For our needs, you have to click option 7 – “Disable driver

signature enforcement”. This deactivates the driver check and enables you to

install unsigned drivers in Windows 10.

• In the last step and after another restart, you are able to install unsigned drivers

by using Windows “Device Manager”. Don’t get confused. There still will be a

question in the beginning, as you can see in the screenshot above, but

nevertheless the installation of the driver will be possible without problems.

 After these tasks are successfully completed, you can proceed with the following

sections.

Windows will add the EPT_2.08.24 driver to the System Registry.

When Windows has completed the update driver the following screen will be displayed.

DSO Development System User Manual

 Page
54

Channel A of the DSO 100M is ready for use.

Next, repeat the process for Channel B.

The driver files will automatically install in the System Registry.

DSO Development System User Manual

 Page
55

When this is complete, the drivers are installed and the DSO 100M can be used with for

programming and USB data transfers.

68.27.2 JTAG DLL Insert to Quartus Prime
The JTAG DLL Insert to Quartus Prime allows the Programmer Tool under Quartus to

recognize the DSO 100M. The DSO 100M can then be selected and perform

programming of the FPGA. The file, jtag_hw_mbftdi_blaster.dll must be placed into the

folder that hosts the jtag_server for Quartus. This dll is available for Windows 7, 8, and

10 64-bit.

68.2.17.2.1 Installing Quartus

Locate the Quartus_Prime folder on the EPT FPGA Development System DVD. The

Quartus software is updated twice per year. EPT will periodically upgrade the Quartus

version on the DVD. So, the version of Quartus may differ between the user manual and

the DVD. But, EPT tests the compatibility of DSO 100M with each version of Quartus.

DSO Development System User Manual

 Page
56

If you don’t have the EPT FPGA Development System DVD, you can download the

Quartus Prime by following the directions in the Section Downloading Quartus.

If you don’t need to download Quartus, double click on the

Prime_xxx_quartus_free_widows.exe (the xxx is the build number of the file, it is

subject to change). The Quartus Prime Lite Edition will start the installation process.

When the install shield window pops up click “Yes” or if needed, enter the

administrator password for the users PC. Click “Ok”

Next, skip down to the Quartus Installer section to complete the Quartus installation.

68.2.27.2.2 Downloading Quartus

The first thing to do in order build a project in Quartus is to download and install the

application. You can find the latest version of Quartus at:

https://www.altera.com/download/dnl-

index.jsphttps://fpgasoftware.intel.com/?edition=pro

Field Code Changed

https://fpgasoftware.intel.com/?edition=pro
https://fpgasoftware.intel.com/?edition=pro

DSO Development System User Manual

 Page
57

Click on the Download Windows Version.

The next page will require you to sign into your “Intel FPGA” account. If you do not

have one, follow the directions under the box, “Don’t have an account?”

DSO Development System User Manual

 Page
58

Once you have created your Intel FPGA account, enter the User Name and

Password. The next window will ask you to allow pop ups so that the file download can

proceed.

DSO Development System User Manual

 Page
59

Click on the “Allow Once” button. The next window will appear. It is the Download

Manager.

Click on the ”Allow” button. This will bring up the Save As dialog box. Save the

altera_installer.external.exe to a download file.

DSO Development System User Manual

 Page
60

Click the Save button. This will start the Download Manager.

When it finishes, click the “Launch” button.

Click “Ok” and “Yes” to the following screen.

68.2.37.2.3 Quartus Installer

Click “Next” on the Introduction Window.

Click the checkbox to agree to the license terms. Then click “Next”.

DSO Development System User Manual

 Page
61

Click “Next” and accept the defaults.

Click “Next” to accept the defaults

DSO Development System User Manual

 Page
62

At the Select Products Window, de-select the Quartus Prime Supbscription Edition by

clicking on its check box so that the box is not checked. Then click on the check box by

the Quartus Prime Web Edition (Free).

Click “Next” to accept the defaults

DSO Development System User Manual

 Page
63

Click “Next” to accept the defaults

Wait for the download to complete. The file is 3.5 GB, so this could take a couple of

hours depending on your internet connection. When installation is complete, the

following window appears.

DSO Development System User Manual

 Page
64

Click “Ok”, then click “Finish”. The Quartus Prime is now installed and ready to be

used.

68.2.47.2.4 Adding the EPT_Blaster to Quartus Prime

Close out the Quartus Prime application. Locate the \Drivers\EPT_Blaster folder on the

DSO 100M DVD.

Follow these directions:

1. Open the C:\EPT FPGA Development System DVD\Drivers\EPT_Blaster\x64

folder.

2. Select the file “jtag_hw_mbftdi_blaster.dll” and copy it.

3. Browse over to C:\intelFPGA_lite\xx.x\quartus\bin64.

DSO Development System User Manual

 Page
65

4. Right click in the folder and select Paste

5. Click Ok.

6. Open the Quartus Prime application.

The DLL is installed and the JTAG server should recognize it. Go to the section

“Programming the FPGA” of this manual for testing of the programming. If the driver

is not found in the Programmer Tool->Hardware Setup box, see the JTAG DLL Insert

to Quartus Prime Troubleshooting Guide.

68.37.3 Active Host Application DLL
Download the latest version of Microsoft Visual C# Express environment from

Microsoft. It’s a free download.

https://visualstudio.microsoft.com/vs/express/

Go to the website and click on the “+” icon next to the Visual C# Express. Please note

that Microsoft updates the Visual Studio each year. So, the version number in the user

manual will not reflect the same version number as the latest Visual Studio version

number. Also, the Visual C# Express and Visual Studio Express are used

interchangeably. The Visual Studio Express includes the Visual C# Express. The user

can download either Visual C# Express or Visual Studio Express. Each version of

Visual Studio Express is tested shortly after its release with the DSO 100M.

https://visualstudio.microsoft.com/vs/express/

DSO Development System User Manual

 Page
66

Click on the “Install now” hypertext.

Click the “Run” button.

DSO Development System User Manual

 Page
67

Click “Next”, accept the license agreement. Click “Next”.

Visual C# 2010 Express will install. This may take up to twenty minutes depending on

your internet connection.

The installed successfully window will be displayed when Visual C# Express is ready

to use.

FPGA Active Transfer Library
To use the Active Host Application Software, the Active Host DLL and the ftd2xx DLL

must be included in the Microsoft Visual project. The Active Host Application Software

will allow the user to create a custom applications on the PC using the EndTerms to

perform Triggers and Data Transfer to/from the DSO 100M. The methods and

parameters of the Active Host DLL are explained in the Active Host Application

section. Locate the \Projects_ActiveHost_64Bit and \Projects_ActiveHost_32Bit folders

on the EPT FPGA Development System DVD.

DSO Development System User Manual

 Page
68

FPGA Active Transfer Library

Locate the Projects_ActiveHost_64Bit folders in the EPT FPGA Development System

using Windows Explorer.

Locate the Projects_ActiveHost_64Bit \ActiveHost_1.0.0.11\Bin folder and copy the

ActiveHost64.dll and the ftd2xx64.dll.

Save the DLL’s in the bin\x64\Release folder of the user project under the Microsoft C#

Express project. See the Active Host Application section of the EPT FPGA

Development System User Manuals for instructions on how to add the dll to the

Microsoft C# Express project.

DSO Development System User Manual

 Page
69

FPGA Active Transfer Library

At this point, all the software and drivers should be loaded on the users PC. Before, we

get into the description of how the software and FPGA code works,

A description of the how the EndTerms functions between PC and FPGA is given.

The Active Transfer Library is an HDL library designed to transfer data to and from the

DSO 100M via High Speed (480 MB/s) USB. It is a set of pre-compiled HDL files that

the user will add to their project before building it. The description of what the library

does and how to use its components are described in this manual.

DSO Development System User Manual

 Page
70

from PC application code through the USB driver to the user FPGA code. The user code

connects to the Endterms in the Active Host dll. These Host Endterms have

complementary HDL Endterms in the Active Transfer Library. Users have seamless bi-

directional communications at their disposal in the form of:

• Trigger Endterm

• Transfer Endterm

• Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the FPGA.

The EndTerm channels allow unique data sharing to be dedicated on a single channel.

DSO Development System User Manual

 Page
71

By allowing communications on multiple channels that can be a single eight bit word

(Transfer) up to 256 eight bit words (Block), the system can be flexible enough to

handle any number of different size packets. And the parser becomes a simple switch

statement. This flexible system also allows a simplified User API. To initiate a Trigger,

the user calls EPT_AH_SendTrigger(). Then, two bytes are sent:

• Command Byte

• Payload Byte

DSO Development System User Manual

 Page
72

The Trigger EndTerm is meant to provide 255 single point events. The Transfer and

Block EndTerms are meant to transfer data.

79.18.1 EPT Active Transfer System Overview
The Active Transfer System components consist of the following:

• active_transfer_library.v

• ft_245_state_machine.v

• endpoint_registers.vqm

• active_trigger.vqm

• active_transfer.vqm

• active_block.vqm

The Active_Transfer_Library provides the communication to the USB hardware. While

separate Input and Output buses provide bi-directional communications with the plug in

modules. See Figure 6 for an overview of the EPT Active_Transfer system.

Figure 6 EPT Active Transfer Library Overview

ACTIVE TRANSFER
LIBRARY

TRIGGER IN
TRIGGER OUT

TRANSFER IN
TRANSFER OUT

BLOCK IN
BLOCK OUT

USER CODE

UC_IN[22..0]

UC_OUT[21..0]

INPUT/OUTPUT PINS

TOP LEVEL

Figure 6 shows how the modules of the EPT Active Transfer Library attach to the

overall user project. The EPT Active_Transfer_Library.vqm, Active_Trigger.vqm,

Active_Transfer.vqm and Active_Block.vqm modules are instantiated in the top level

of the user project. The User_Code.v module is also instantiated in the top level. The

Active_Transfer modules communicate with the User_Code through module

parameters. Each module is a bi-directional component that facilitates data transfer from

PC to FPGA. The user code can send a transfer to the Host, and the Host can send a

transfer to the user code. This provides significant control for both data transfers and

signaling from the user code to PC. The Triggers are used to send momentary signals

that can turn on (or off) functions in user code or PC. The Active Transfer is used to

send a single byte. And the Active Block is used to send a block of data. The

DSO Development System User Manual

 Page
73

Active_Transfer and Active_Block modules have addressing built into them. This

means the user can declare up to 8 individual instantiations of Active_Transfer or

Active_Block, and send/receive data to each module separately.

79.28.2 Active Transfer Library
The Active Transfer Library contains the command, control, and data transfer

mechanism that allows users to quickly build powerful communication schemes in the

FPGA. Coupled with the Active Host application on the PC, this tools allows users to

focus on creating programmable logic applications and not have to become distracted

by USB Host drivers and timing issues. The Active Transfer Library is pre-compiled

file that the user will include in the project files.

DSO Development System User Manual

 Page
74

DSO Development System User Manual

 Page
75

The interface from the library to the user code is two uni directional buses,

UC_IN[22:0] and UC_OUT[20:0]. The UC_IN[22:0] bus is an output bus (from the

library, input bus to the Active Modules) that is used channel data, address, length and

control information to the Active Modules. The UC_OUT[21:0] bus is an input bus (to

the library, output bus from the Active Modules) that is used to communicate data,

address, length, and control information to the Active Modules.

The control buses, aa[1:0], bc_in[1:0], bc_out[2:0], and bd_inout[7:0] are used to

channel data, and control signals to the USB interface chip. These signals are connected

directly to input and output pins of the FPGA.

79.2.18.2.1 Active Trigger EndTerm

The Active Trigger has eight individual self resetting, active high, signals. These signals

are used to send a momentary turn on/off command to Host/User code. The Active

Trigger is not addressable so the module will be instantiated only once in the top level.

DSO Development System User Manual

 Page
76

To send a trigger, decide which bit (or multiple bits) of the eight bits you want to send

the trigger on. Then, set that bit (or bits) high. The Active Transfer Library will send a

high on that trigger bit for one clock cycle (66 MHz), then reset itself to zero. The bit

can stay high on the user code and does not need to be reset to zero. However, if the

user sends another trigger using the trigger byte, then any bit that is set high will cause a

trigger to occur on the Host side.

DSO Development System User Manual

 Page
77

So, care should be used if the user code uses byte masks to send triggers. It is best to set

only the trigger bits needed for a given time when sending triggers.

The user code must be setup to receive triggers from the Host. This can be done by

using an asynchronous always block. Whenever a change occurs on a particular trigger

bit (or bits), a conditional branch can detect if the trigger bit is for that block of code.

Then, execute some code based on that trigger.

DSO Development System User Manual

 Page
78

DSO Development System User Manual

 Page
79

79.2.28.2.2 Active Transfer EndTerm

The Active Transfer module is used to send or receive a byte to/from the Host. This is

useful when the user’s microcontroller needs to send a byte from a measurement to the

Host for display or processing. The Active Transfer module is addressable, so up to

eight individual modules can be instantiated and separately addressed.

To send a byte to the Host, select the appropriate address that corresponds to an address

on Host side. Place the byte in the “transfer_to_host” parameter, then strobe the

“start_transfer” bit. Setting the “start_transfer” bit to high will send one byte from the

“transfer_to_host” byte to the Host on the next clock high signal (66 MHz). The

“start_transfer” bit can stay high for the duration of the operation of the device, the

Active Transfer module will not send another byte. In order to send another byte, the

user must cycle the “start_transfer” bit to low for a minimum of one clock cycle (66

MHz). After the “start_transfer” bit has been cycled low, the rising edge of the bit will

cause the byte on the “transfer_to_host” parameter to transfer to the host.

DSO Development System User Manual

 Page
80

To receive a byte, the Active Host will send a byte using it’s dll. The user code must

monitor the transfer_received port. The transfer_received port will assert high for one

clock cycle (66 MHz) when a byte is ready for reading on the transfer_to_device port.

User code should use an asynchronous always block to detect when the

DSO Development System User Manual

 Page
81

transfer_received port is asserted. Upon assertion, the user code should read the byte

from the transfer_to_device port into a local register.

79.2.38.2.3 Active Block EndTerm

The Active Block module is designed to transfer blocks of data between Host and User

Code and vice versa. This allows buffers of data to be transferred with a minimal

amount of code. The Active Block module is addressable, so up to eight individual

modules can be instantiated and separately addressed. The length of the block to be

transferred must also be specified in the uc_length port.

DSO Development System User Manual

 Page
82

To send a block, it’s best to have buffer filled in a previous transaction, Then assert the

start_transfer bit. This method is opposed to collecting and processing data bytes after

the start_transfer bit has been asserted and data is being sent to the Host.

Once the buffer to send is filled with the requisite amount of data, the address and

buffer length should be written to the uc_addr and uc_length ports. Set the start_transfer

bit high, the user code should monitor the transfer_ready port. At the rising edge of the

transfer_ready port, the byte at transfer_to_host port is transferred to the USB chip.

Once this occurs, the user code should copy the next byte in the buffer to

transfer_to_host port. On the next rising edge of transfer-ready, the byte at

transfer_to_host will be transferred to theUSB chip. This process continues until the

number of bytes desicribed by the uc_length have been transferred into the USB chip.

DSO Development System User Manual

 Page
83

DSO Development System User Manual

 Page
84

To receive a buffer from the Host, the user code should monitor the transfer_received

port for assertion. When the bit is asserted, the next rising edge of transfer_ready will

indicate that the byte at transfer_to_device is ready for the user code to read.

[Add code snippet showing Active Block Module bytes received by the user code]

79.38.3 Timing Diagram for Active Transfer EndTerms
The Active Transfer Library uses the 66 MHz clock to organize the transfers to Host

and transfer to Device. The timing of the transfers depends on this clock and the

specifications of the USB chip. Users should use the timing diagrams to ensure proper

operation of user code in data transfer.

79.3.18.3.1 Active Trigger EndTerm Timing

Figure xx Active Trigger to Host Timing

Figure xx Active Trigger to Device Timing

79.3.28.3.2 Active Transfer EndTerm Timing

Figure xx Active Transfer To Host Timing

DSO Development System User Manual

 Page
85

Figure xx Active Transfer To Device Timing

79.3.38.3.3 Active Block EndTerm Timing

Figure xx Active Block To Host Timing

9 PC Active Host Description
The communication path between DSO 100M and the PC is made possible by the use of

EndTerms. These EndTerms provide a virtual “pipe” of data capable of sending and

receiving bytes between the Windows PC and the FPGA. In order to fully explain the

FPGA Code used in the DSO 100M, a quick explanation is needed of the transfer

mechanism in the UnoProLyzer C# project.

The Active Host SDK is provided as a dll which easily interfaces to application

software written in C#, C++ or C. It runs on the PC and provides transparent connection

DSO Development System User Manual

 Page
86

The above is a code sample from a C# Windows Form. You can see functions that write

a byte to the FPGA

• (EPT_AH_SendByte(0x01, (char)LEDStatus))

and write a trigger bit to the FPGA

• (EPT_AH_SendTrigger((byte)0x02).

DSO Development System User Manual

 Page
87

The above code is the interface Verilog which resides in the FPGA. When the C#

Windows form sends a byte or trigger, the signals in the FPGA code react and allow the

user code to receive the byte and trigger and perform some function with the

information. In the case of this example, the LEDs will change state.

Receiving data from the FPGA is made simple by Active Host. Active Host transfers

data from the FPGA as soon as it is available. It stores the transferred data into circular

buffer. When the transfer is complete, Active Host invokes a callback function which is

registered in the users application. This callback function provides a mechanism to

transparently receive data from the FPGA. The user application does not need to

schedule a read from the USB or call any blocking threads.

Active Host Application
Figure xx Active Block To Device Timing

DSO Development System User Manual

 Page
88

82 Active Host Application

The FPGA on the DSO 100M can be programmed with the Active Transfer Library and

custom HDL code created by the user. Programming the FPGA requires the use of the

Quartus Prime software and a standard USB cable. There are no extra parts to buy, just

plug in the USB cable. Once the user HDL code is written according to the syntax rules

of the language (Verilog and VHDL) it can be compiled and synthesized using the

Quartus Prime software. This manual will not focus on HDL coding or proper coding

techniques, instead it will use the example code to compile, synthesize and program the

FPGA.

85.0 Setting up the Project and Compiling
Once the HDL code (Verilog or VHDL) is written and verified using a simulator, a

project can be created using Quartus Prime. Writing the HDL code and simulating it

will be covered in later sections. Bring up Quartus Prime, then use Windows Explorer

to browse to c:/altera/xxx/quartus/qdesigns create a new directory called:

“EPT_Transfer_Demo”.

DSO Development System User Manual

 Page
89

Active Host Application

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

DSO Development System User Manual

 Page
90

Active Host Application

Select Next. At the Add Files window: Browse to the

\Projects_HDL\EPT_Transfer_Demo \src folder of the EPT FPGA Development

System DVD. Copy the files from the \src directory.

• Active_block.vqm

• Active_transfer.vqm

• Active_trigger.vqm

• Active_transfer_library.v

• ft_245_state_machine.v

• endpoint_registers.vqm

• eptWireOr.v

• mem_array.v

• read_control_logic.v

• write_control_logic.v

• EPT_4CE6_AF_D1_Top.v

DSO Development System User Manual

 Page
91

Active Host Application

Select Next, at the Device Family group, select Cyclone IV for Family. In the Available

Devices group, browse down to EP4CE6E22C8 for Name.

Select Next, leave defaults for the EDA Tool Settings.

DSO Development System User Manual

 Page
92

Active Host Application

Select Next, then select Finish. You are done with the project level selections.

Next, we will select the pins and synthesize the project.

127.0.0 Selecting Pins and Synthesizing

With the project created, we need to assign pins to the project. The signals defined in

the top level file (in this case: EPT_4CE6_AF_D1_Top.v) will connect directly to pins

on the FPGA. The Pin Planner Tool from Quartus Prime will add the pins and check to

verify that our pin selections do not violate any restrictions of the device. In the case of

this example we will import pin assignments that created at an earlier time. Under

Assignments, Select Import Assignments.

DSO Development System User Manual

 Page
93

Active Host Application

At the Import Assignment dialog box, Browse to the

\Projects_HDL\EPT_Transfer_Demo \ DSO 100M_TOP folder of the EPT FPGA

Development System DVD. Select the “DSO 100M_Top.qsf” file.

Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been imported

correctly.

DSO Development System User Manual

 Page
94

Active Host Application

The pin locations should not need to be changed for EPT USB FPGA Development

System. However, if you need to change any pin location, just click on the “location”

column for the particular node you wish to change. Then, select the new pin location

from the drop down box.

DSO Development System User Manual

 Page
95

Active Host Application

Exit the Pin Planner. Next, we need to add the Synopsys Design Constraint file. This

file contains timing constraints which forces the built in tool called TimeQuest Timing

Analyzer to analyze the path of the synthesized HDL code with setup and hold times of

the internal registers. It takes note of any path that may be too long to appropriately

meet the timing qualifications. For more information on TimeQuest Timing Analyzer,

see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

Browse to the \Projects_HDL\EPT_Transfer_Demo \ DSO 100M_TOP folder of the

EPT FPGA Development System DVD. Select the “DSO 100M_Top.sdc” file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Transfer_Demo

directory. Paste the file.

DSO Development System User Manual

 Page
96

Active Host Application

Select the Start Compilation button.

If you forget to include a file or some other error you should expect to see a screen

similar to this:

DSO Development System User Manual

 Page
97

Active Host Application

Click Ok, the select the “Error” tab to see the error.

The error in this case is the missing file “sync_fifo”. Click on the Assignment menu,

then select Settings, then select Files. Add the “sync_fifo.v” file from the database.

DSO Development System User Manual

 Page
98

Active Host Application

Click Ok then re-run the Compile process. After successful completion, the screen

should look like the following:

At this point the project has been successfully compiled, synthesized and a

programming file has been produce. See the next section on how to program the FPGA.

188.0.0 Configuring the FPGA

Configuring the FPGA is quick and easy. All that is required is a standard USB Micro B

cable and the EPT_Blaster Driver DLL. Connect the DSO 100M to the PC, open up

Quartus Prime, open the programmer tool, and click the Start button. To program the

DPL Configuration Flash, follow the steps to install the USB Driver and the JTAG

Driver Insert for Quartus Prime.

DSO Development System User Manual

 Page
99

Active Host Application

If the project created in the previous sections is not open, open it. Click on the

Programmer button.

The Programmer Window will open up with the programming file selected. Click on the

Hardware Setup button in the upper left corner.

DSO Development System User Manual

 Page
100

Active Host Application

If you successfully double clicked, the “Currently selected hardware:” dropdown box

will show the “EPT-Blaster v1.5b”.

DSO Development System User Manual

 Page
101

Active Host Application

Click on the “Add File” button

DSO Development System User Manual

 Page
102

Active Host Application

At the Browse window, double click on the output files folder.

Double click on the “EPT_4CE6_D1_Top.pof” file. Click the Open button in the lower

right corner.

Select the EPCS1 under “Device”.

DSO Development System User Manual

 Page
103

Active Host Application

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool.

Click on the Start button to to start programming the FPGA. The Progress bar will

indicate the progress of programming.

DSO Development System User Manual

 Page
104

Active Host Application

When the programming is complete, the Progress bar will indicate success.

At this point, the DSO 100M is programmed and ready for use. To test that the FPGA

is properly programmed, bring up the Active Transfer Demo Tool. Click on one of the

LED’s and verify that the LED selected lights up. Press one of the switches on the

board and ensure that the switch is captured on the Active Host Test Tool. Now you are

ready to connect to the Arduino Due and write some code to transfer data between

microcontroller and PC.

24310 Active Host Application

The Active Host SDK is provided as a dll which easily interfaces to application

software written in C#, C++ or C. It runs on the PC and provides transparent connection

from PC application code through the USB driver to the user FPGA code. The user code

connects to “Endterms” in the Active Host dll. These host “Endterms” have

complementary HDL “Endterms” in the Active Transfer Library. Users have seamless

bi-directional communications at their disposal in the form of:

• Trigger Endterm

• Transfer Endterm

• Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

DSO Development System User Manual

 Page
105

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the FPGA. The Trigger Endterms are used as “switches”. The user code can

set a Trigger bit in the FPGA and cause an event to occur. The Transfer Endterm sends

one byte to the FPGA. The Block Endterm sends a block of bytes. By using one of the

Active Host Endterms, the user can create a dynamic, bi-directional, and configurable

data transfer design.

243.110.1 Trigger EndTerm
The Trigger EndTerm is a software component that provides a direct path from the

users application to the commensurate Trigger EndTerm in the FPGA. The Trigger has

eight bits and is intended to be used to provide a switch at the opposite EndTerm. They

are fast acting and are not stored or buffered by memory. When the user code sets a

Trigger, it is immediately passed through to the opposite EndTerm via the USB driver.

When receiving Trigger, the user application is required to respond to a callback from

the Active Host dll.

243.210.2 Transfer(Byte) EndTerm
The Transfer EndTerm is a software component that provides a direct path from the

users application to the commensurate Transfer EndTerm in the FPGA. It is used to

transfer a byte to and from the FPGA. Eight separate Transfer EndTerm modules can be

instantiated in the FPGA. Each module is addressed by the user application. Sending a

byte is easy, just use the function call with the address and byte value. The byte is

immediately sent to the corresponding EndTerm in the FPGA. Receiving a byte is just

as easy, a callback function is registered at initialization. When the FPGA transmits a

byte using its EndTerm, the callback function is called in the user application. The user

code must store this byte in order to use it. The incoming Transfers are stored in a

DSO Development System User Manual

 Page
106

circular buffer in memory. This allows the user code to fetch the transfers with out

losing bytes.

243.310.3 Block EndTerm
The Block EndTerm is a software component that provides a direct path from the users

application to the commensurate Block EndTerm in the FPGA. The Block EndTerm is

used to transfer a complete block to the FPGA. Block size is limited to 1 to 256 bytes.

Eight separate Block EndTerm modules can be instantiated in the FPGA. Each module

is addressed by the user application. Sending a block is easy, just use the function call

with the address, block length, byte array. The block is buffered into a circular buffer in

memory then transmitted via the USB bus to the Block EndTerm in the FPGA.

Receiving a block is just as easy, a callback function is registered at initialization. When

the FPGA transmits a block using its EndTerm, the callback function is called in the

user application. The incoming Transfers are stored in a circular buffer in memory. This

allows the user code to fetch the transfers with out losing bytes.

243.410.4 Active Host DLL
The Active_Host DLL is designed to transfer data from the FPGA when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

FPGA. This method of automatically moving data from the user code Endterm in the

FPGA makes the data transfer transparent.

The data seamlessly appears in Host PC memory from the Arduino. The user code will

direct the data to a control such as a textbox on a Windows Form. The transparent

receive transfer path is made possible by a Callback mechanism in the Active Host dll.

The dll calls a registered callback function in the user code. The user code callback can

be designed to generate any number of events to handle the received data.

The user application will access the FPGA by use of functions contained in the Active

Host dll. The functions to access the FPGA are:

• EPT_AH_GetName()

• EPT_AH_GetVersionString()

• EPT_AH_GetVersionControl()

• EPT_AH_GetInterfaceVersion()

• EPT_AH_CheckCompatibility()

• EPT_AH_Open()

• EPT_AH_Close()

• EPT_AH_Initialize()

DSO Development System User Manual

 Page
107

• EPT_AH_Release()

• EPT_AH_QueryDevices()

• EPT_AH_SelectActiveDeviceByName()

• EPT_AH_SelectActiveDeviceByIndex()

• EPT_AH_GetDeviceName()

• EPT_AH_GetDeviceSerial()

• EPT_AH_OpenDeviceByIndex()

• EPT_AH_CloseDeviceByIndex()

• EPT_AH_CloseDeviceByName()

• EPT_AH_SendTrigger ()

• EPT_AH_SendByte ()

• EPT_AH_SendBlock ()

• EPT_AH_SendTransferControlByte()

• EPT_AH_RegisterReadCallback ()

• EPT_AH_GetLastError()

• EPT_AH_PerformSelfTest()

• EPT_AH_LEDBlinky()

• EPT_AH_SetDebugMode()

• EPT_AH_RegisterReadCallbackForChannel()

• EPT_AH_FlushDeviceChannelBuffer()

• EPT_AH_GetDeviceChannelFreeBufferBytes()

• EPT_AH_GetDeviceChannelPendingBufferBytes()

• EPT_AH_SetChannelConnectionFlag()

• EPT_AH_GetChannelConnectionFlag()

243.4.110.4.1 Active Host Open Device

To use the library functions for data transfer and triggering, an Earth People

Technology device must be opened. The first function called when the Windows Form

loads up is the <project_name>_Load(). This function is called automatically upon the

completion of the Windows Form, so there is no need to do anything to call it. Once this

function is called, it in turn calls the ListDevices(). Use the function List Devices() to

detect all EPT devices connected to the PC.

DSO Development System User Manual

 Page
108

The ListDevices() function calls the EPT_AH_Open() function to load up the

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

DSO Development System User Manual

 Page
109

The user will select the device from the drop down combo box. This can be seen when

the Windows Form is opened and the cmbDevList combo box is populated with all the

devices. The selected device will be stored as an index number in the variable

device_index.

In order to select the device, the user will click on the “Open” button which calls the

Open_Device() function. The device_index is passed into the

EPT_AH_OpenDeviceByIndex() function. If the function is successful, the device

name is displayed in the label, labelDeviceCnt. Next, the device is made the active

device and the callback function is registered. Finally, the Open button is grayed out

and the Close button is made active.

DSO Development System User Manual

 Page
110

243.4.210.4.2 Active Host Read Callback Function

The local callback function is populated. It resides in the active_transfer.cs file. This

function will be called from the Active Host dll. When the EPT Device has transferred

data to the PC, the callback function will do something with the data and command.

DSO Development System User Manual

 Page
111

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C# Windows Form, the Marshaling scheme must be used.

Marshaling allows pointer variables created in the dll to be passed into the C#. It is an

advanced topic and will not be covered in this manual.

243.4.310.4.3 Active Host Triggers

The user application can send a trigger to the FPGA by using the

EPT_AH_SendTrigger() function. First, open the EPT device to be used with

EPT_AH_OpenDeviceByIndex(). Call the function with the bit or bits to assert high on

the trigger byte as the parameter. Then execute the function, the trigger bit or bits will

momentarily assert high in the user code on the FPGA.

To detect a trigger from the FPGA, the user application must subscribe to the event

created when the incoming trigger has arrived at the Read Callback function. The Read

Callback must store the incoming trigger in a local variable. A switch statement is used

to decode which event should be called to handle the incoming received data.

• TRIGGER_IN

• TRANSFER_IN

• BLOCK_IN

DSO Development System User Manual

 Page
112

The event handler function for the TRIGGER_IN’s uses a switch statement to

determine which trigger was asserted and what to do with it.

DSO Development System User Manual

 Page
113

The receive callback method is complex, however, Earth People Technology has

created several projects which implement callbacks. Any part of these sample projects

can copied and pasted into a user’s project.

243.4.410.4.4 Active Host Byte Transfers

The Active Host Byte Transfer EndTerm is designed to send/receive one byte to/from

the EPT Device. To send a byte to the Device, the appropriate address must be selected

for the Transfer module in the FPGA. Up to eight modules can be instantiated in the

user code on the FPGA. Each module has its own address.

Use the function EPT_AH_SendByte() to send a byte the selected module. First, open

the EPT device to be used with EPT_AH_OpenDeviceByIndex(). Then add the address

of the transfer module as the first parameter of the EPT_AH_SendByte() function. Enter

the byte to be transferred in the second parameter. Then execute the function, the byte

will appear in the ports of the Active Transfer module in the user code on the FPGA.

To transfer data from the FPGA Device, a polling technique is used. This polling

technique is because the Bulk Transfer USB is a Host initiated bus. The Device will not

transfer any bytes until the Host commands it to. If the Device has data to send to the

Host in an asynchronous manner (meaning the Host did not command the Device to

send data), the Host must periodically check the Device for data in it’s transmit FIFO. If

DSO Development System User Manual

 Page
114

data exists, the Host will command the Device to send it’s data. The received data is

then stored into local memory and register bits are set that will indicate data has been

received from a particular address.

To receive a byte transfer from the Active host dll, user code must subscribe to the

event created when the incoming byte transfer has arrived at the Read Callback

function. The Read Callback must store the incoming transfer payload and module

address in a local memory block. A switch statement is used to decode which event

should be called to handle the incoming received data. The event handler function will

check for any bytes read for that address.

DSO Development System User Manual

 Page
115

The EventHandler function EPTParseReceive() is called by the Read Callback function.

The EPTParseReceive() function will examine the command of the incoming byte

transfer and determine which receive function to call.

For our example project, the TransferOutReceive() function writes the Transfer byte

received to a text block. The receive callback method is complex, however, Earth

People Technology has created several projects which implement callbacks. Any part of

these sample projects can copied and pasted into a user’s project.

243.4.510.4.5 Active Host Block Transfers

The Active Host Block Transfer is designed to transfer blocks of data between Host and

FPGA and vice versa through the Block EndTerm. This allows buffers of data to be

transferred with a minimal amount of code. The Active Host Block module (in the User

Code) is addressable, so up to eight individual modules can be instantiated and

separately addressed. The length of the block to be transferred must also be specified.

The Block EndTerm is limited to 1 to 256 bytes.

To send a block, first, open the EPT device to be used with

EPT_AH_OpenDeviceByIndex(). Next, use the EPT_AH_SendBlock() function to send

the block. Add the address of the transfer module as the first parameter. Next, place the

pointer to the buffer in the second parameter of EPT_AH_SendBlock(). Add the length

DSO Development System User Manual

 Page
116

of the buffer as the third parameter. Then execute the function, the entire buffer will be

transferred to the USB chip. The data is available at the port of the Active Block

module in the user code on the FPGA.

To receive a block transfer from the FPGA Device, a polling technique is used by the

Active Host dll. This is because the Bulk Transfer USB is a Host initiated bus. The

Device will not transfer any bytes until the Host commands it to. If the Device has data

to send to the Host in an asynchronous manner (meaning the Host did not command the

Device to send data), the Host must periodically check the Device for data in its

transmit FIFO. If data exists, the Host will command the Device to send its data. The

received data is then stored into local memory and register bits are set that will indicate

data has been received from a particular address. The receive callback function is then

called from the Active Host dll. This function start a thread to do something with the

block data.

To receive a byte transfer from the callback function, user code must subscribe to the

event created when the incoming byte transfer has arrived at the Read Callback

function. The Read Callback must store the incoming transfer payload and module

DSO Development System User Manual

 Page
117

address in a local memory block. A switch statement is used to decode which event

should be called to handle the incoming received data. The event handler function will

check for any bytes read for that address.

DSO Development System User Manual

 Page
118

The EventHandler function EPTParseReceive() is called by the Read Callback function.

The EPTParseReceive() function will examine the command of the incoming byte

transfer and determine which receive function to call.

For our example project, the Receive_Block_In() function writes the Transfer block

received to a text block. The receive callback method is complex, however, Earth

People Technology has created several projects which implement callbacks. Any part of

these sample projects can copied and pasted into a user’s project.

24411 Assembling, Building, and Executing a .NET
Project on the PC

The Active Host Application DLL is used to build a custom standalone executable on

the PC that can perform Triggers and Transfer data to/from the DSO 100M. A

standalone project can be range from a simple program to display and send data from

the user to/from the Arduino Due. Or it can more complex to include receiving data,

processing it, and start or end a process on the Arduino. This section will outline the

procedures to take an example project and Assemble it, Build it, and Execute it.

This guide will focus on writing a Windows Forms application using the C# language

for the Microsoft Visual Studio with .NET Framework. This is due to the idea that

beginners can write effective Windows applications with the C# .NET Framework.

They can focus on a subset of the language which is very similar to the C language.

DSO Development System User Manual

 Page
119

Anything that deviates from the subset of the C language, presented as in the Arduino

implication (such as events and controls), will be explained as the explanation

progresses. Any language can be used with the Active Host Application DLL.

244.111.1 Creating a Project
Once the application is installed, open it up. Click on File->New Project.

At the New Project window, select the Windows Forms Application. Then, at the

Name: box, type in EPT_Transfer_Demo

The project creation is complete.

DSO Development System User Manual

 Page
120

Save the project, go to File->Save as, browse to a folder to create EPT_Transfer_Demo

folder. The default location is c:\Users\<Users Name>\documents\visual studio

2010\Projects.

244.1.111.1.1 Setting up the C# Express Environment x64 bit

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. If your system supports 64 bit operation, perform

the following steps

DSO Development System User Manual

 Page
121

Click on System.

Check under System\System type:

First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings

Formatted: Left

Formatted: Left

DSO Development System User Manual

 Page
122

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

DSO Development System User Manual

 Page
123

Go to Build->Configuration Manager.

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

DSO Development System User Manual

 Page
124

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:”. Select “x64”.

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

DSO Development System User Manual

 Page
125

Also, select “Release” under “Active solution configuration”. Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

DSO Development System User Manual

 Page
126

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host. Click on the Build tab and locate the “Allow unsafe code” check box.

Check the box

Click on the Save All button on the tool bar. The project environment is now setup and

ready for the project files. Close the Project.

244.211.2 Assembling Files into the Project
The

following is an example for demonstration purposes only. Create the fictional

EPT_Transfer_Demo project

.

.

DSO Development System User Manual

 Page
127

244.2.1 Add Files to Project

NOTE

If you named your project something other than EPT_Transfer_Demo, you will have to

make changes to the *.cs files above. This is because Visual C# Express links the

project files and program files together. These chages can be made by modifying the

following:

244. Change namespace of Form1.cs to new project name.

244. Change class of Form1.cs to new project name.

244. Change constructor of Form1.cs to new project name.

244. Change EPT_Transfer_Demo_Load of Form1.cs to new <project

name>_Load

DSO Development System User Manual

 Page
128

244.2.1 Add Files to Project

244. Change namespace of Form1.Designer.cs to new project name.

244. Change clase of Form1.Designer.cs to new project name.

244. Change the this.Name and this.Text in Form1Designer.cs to new project

name.

244. Change this.Load in Form1Designer.cs to include new project name.

244. Change namespace in Program.cs to new project name

244. Change Application.Run() in Program .cs to new projectname.

DSO Development System User Manual

 Page
129

244.2.1 Add Files to Project

Open the EPT_Transfer_Demo project. Right click on the project in the Solutions

Explorer. Select Add->Existing Item.

Browse to the EPT_Transfer_Demo project folder and select the active_transfer_xx.cs

file (choose either the 32 bit or 64 bit version, depending on whether your OS is 32 or

64 bit). Click Add.

In the C# Express Solution Explorer, you should be able to browse the files by clicking

on them. There should be no errors noted in the Error List box.

DSO Development System User Manual

 Page
130

244.2.2211.2.2 Adding Controls to the Project

Although, the C# language is very similar to C Code, there are a few major differences.

The first is C# .NET environment is event based. A second is C# utilizes classes. This

guide will keep the details of these items hidden to keep things simple. However, a brief

introduction to events and classes will allow the beginner to create effective programs.

Event based programming means the software responds to events created by the user, a

timer event, external events such as serial communication into PC, internal events such

as the OS, or other events. The events we are concerned with for our example program

are user events and the timer event. The user events occur when the user clicks on a

button on the Windows Form or selects a radio button. We will add a button to our

example program to show how the button adds an event to the Windows Form and a

function that gets executed when the event occurs.

The easiest way to add a button to a form is to double click the Form1.cs in the Solution

Explorer. Click on the button to launch the Toolbox.

DSO Development System User Manual

 Page
131

Locate the button on the Toolbox, grab and drag the button onto the Form1.cs [Design]

and drop it near the top.

DSO Development System User Manual

 Page
132

Go to the Properties box and locate the (Name) cell. Change the name to

“btnOpenDevice”. Locate the Text cell, and change the name to Open.

DSO Development System User Manual

 Page
133

Double click on the Open button. The C# Explorer will automatically switch to the

Form1.cs code view. The callback function will be inserted with the name of the button

along with “_click” appended to it. The parameter list includes (object sender,

System.EventArgs e). These two additions are required for the callback function to

initiate when the “click” event occurs.

Private void btnOpenDevice_click(object sender, System.EventArgs e)

There is one more addition to the project files. Double click on the Form1.Designer.cs

file in the Solution Explorer. Locate the following section of code.

This code sets up the button, size, placement, and text. It also declares the

“System.EventHandler()”. This statement sets the click method (which is a member of

DSO Development System User Manual

 Page
134

the button class) of the btnOpenDevice button to call the EventHandler –

btnOpenDevice_Click. This is where the magic of the button click event happens.

When btnOpenDevice_Click is called, it calls the function “OpenDevice()”. This

function is defined in the dll and will connect to the device selected in the combo box.

This is a quick view of how to create, add files, and add controls to a C# project. The

user is encouraged to spend some time reviewing the online tutorial at

http://www.homeandlearn.co.uk/csharp/csharp.html to become intimately familiar with

Visual C# .NET programming. In the meantime, follow the examples from the Earth

People Technology to perform some simple reads and writes to the EPT USB-FPGA

Development System.

244.2.2311.2.3 Adding the DLL’s to the Project

Locate the EPT FPGA Development System DVD installed on your PC. Browse to the

Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending on

whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

• ActiveHostXX.dll

• ftd2xxXX.dll

and install them in the bin\x64\x64 folder of your EPT_Transfer_Demo project.

http://www.homeandlearn.co.uk/csharp/csharp.html

DSO Development System User Manual

 Page
135

Save the project.

244.2.2411.2.4 Building the Project

Building the EPT_Transfer_Demo project will compile the code in the project and

produce an executable file. To build the project, go to Debug->Build Solution.

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

DSO Development System User Manual

 Page
136

12 FPGA DSO 100M Verilog Description
At this point, the following has been accomplished:

• Description of the DSO 100M hardware

• Instructions on loading the drivers for the DSO 100M

• Instructions for loading the Quartus Prime and JTAG *.dll

• Instructions on how to create a Quartus project

• Instructions for loading the Visual Studio Express

• Description of the FPGA EndTerm interface

• Description of the PC Active Host interface

• Instructions on how to create a C# Windows Form

So, now a description of the FPGA code for the DSO 100M can be given. This code

description is meant to be thorough, however, it cannot cover every detail of the code. If

any questions arise that cannot be determined from code and comments. Please send an

email for assistance on the EPT support email:

support@earthpeopletechnology.com

The FPGA code base for the DSO 100M is quite large and comprises several sections.

mailto:support@earthpeopletechnology.com

DSO Development System User Manual

 Page
137

The following sections of this document will attempt to explain the details of the code.

However, a thorough examination of the code will be necessary to come to a complete

understanding of the code. Also, there are several testbenches with fully simulated code

to help the user. The following components make up the DSO 100M Code Base:

• Host Interface Component

• ADC Sample Storage Component

• Data Transmit Component

These components depend on the Active Transfer Library (and conversely on the Active

Host dll) to communicate, initiate functions, start ADC sampling and transmit data.

All source files, compiled projects, testbenches, test models are included on the EPT

Project DVD. Locate the Projects_HDL folder on the DVD for the project.

Formatted: Centered

DSO Development System User Manual

 Page
138

12.1 Verilog Top Level Description
The top level of the FPGA code is made up of several modules. Each of these modules

are connected to the top level through Leif instantiations. This user manual will use

block diagrams, source code, pseudo code and timing diagrams to explain the operation

of the code. Below is a simplified abstraction of the top level. The Verilog code is based

on a command/response scheme. The PC application sends commands to the FPGA and

the FGPA responds with status or data. Both the PC and FPGA code use the EndTerms

to send and receive commands and data. The use of EndTerms allows a simple

communication system but has a lot of flexibility to add new functions quickly.

DSO Development System User Manual

 Page
139

12.2 Host Interface Description
The PC communicates with the FPGA code using one of the following three methods:

• Host Memory Read/Writes

• Host Control Register Read/Writes

• Block data Read (ADC data)

The above block diagram shows the Host Interface Component and the ADC storage

registers only. The PC will initiate the Host Read/Write and the Host Control Register

Read/Write communications. This means the FPGA code does not send data to the PC

unless the PC commands it to. The ADC data is transmitted only when commanded to

by the PC.

The above diagram shows the Host Interface Component State Machine

Formatted: Normal

DSO Development System User Manual

 Page
140

12.2.1 Host Interface Memory

12.2.2 Host Interface Control Register

DSO Development System User Manual

 Page
141

DSO Development System User Manual

 Page
142

DSO Development System User Manual

 Page
143

12.2.3 Memory Controller

DSO Development System User Manual

 Page
144

12.3 I2C Communications Interface

DSO Development System User Manual

 Page
145

12.4 SPI Communications

DSO Development System User Manual

 Page
146

12.5 ADC Storage Description

Formatted: Centered

DSO Development System User Manual

 Page
147

Formatted: Normal

DSO Development System User Manual

 Page
148

12.6 ADC Conversion Encode Clock
The ADC_ENCODE signal is produced by a counter that counts from 0 to

adc_convst_delay_value.

DSO Development System User Manual

 Page
149

12.7 ADC Conversion Start
The ADC conversion command will start the conversion of each of the four ADC’s.

The command is first set up by the first bit of the adc_control_reg, then the fourth bit of

the trigger in byte is used to set the adc_convst_cmd. To reset the adc_convst_cmd, the

fourth bit of adc_control_reg is set high. The host will write to the control register and

set the first bit high. Then the trigger in byte fourth bit is set from the host.

DSO Development System User Manual

 Page
150

Formatted: Normal

DSO Development System User Manual

 Page
151

12.8 DSO Main Clock

12.9 Serial Clock

DSO Development System User Manual

 Page
152

12.10 Active Transfer Library

13 Compiling, Synthesizing, and Programming FPGA

The FPGA on the DSO 100M can be programmed with the Active Transfer Library and

custom HDL code created by the user. Programming the FPGA requires the use of the

Quartus Prime software and a standard USB cable. There are no extra parts to buy, just

plug in the USB cable. Once the user HDL code is written according to the syntax rules

of the language (Verilog and VHDL) it can be compiled and synthesized using the

Quartus Prime software. This manual will not focus on HDL coding or proper coding

techniques, instead it will use the example code to compile, synthesize and program the

FPGA.

13.1 Setting up the Project and Compiling
Once the HDL code (Verilog or VHDL) is written and verified using a simulator, a

project can be created using Quartus Prime. Writing the HDL code and simulating it

Formatted: Left

DSO Development System User Manual

 Page
153

will be covered in later sections. Bring up Quartus Prime, then use Windows Explorer

to browse to c:/altera/xxx/quartus/qdesigns create a new directory called:

“EPT_Transfer_Demo”.

Open Quartus Prime by clicking on the icon .

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

DSO Development System User Manual

 Page
154

At the Top-Level Entity page, browse to the c:/altera/xxx/quartus/qdesigns directory to

store your project. Type in a name for your project “EPT_4CE6_AF_D1_Top”.

DSO Development System User Manual

 Page
155

Select Next. At the Add Files window: Browse to the

\Projects_HDL\EPT_Transfer_Demo \src folder of the EPT FPGA Development

System DVD. Copy the files from the \src directory.

• Active_block.vqm

• Active_transfer.vqm

• Active_trigger.vqm

• Active_transfer_library.v

• ft_245_state_machine.v

• endpoint_registers.vqm

• eptWireOr.v

• mem_array.v

• read_control_logic.v

• write_control_logic.v

• EPT_4CE6_AF_D1_Top.v

Select Next, at the Device Family group, select Cyclone IV for Family. In the Available

Devices group, browse down to EP4CE6E22C8 for Name.

DSO Development System User Manual

 Page
156

Select Next, leave defaults for the EDA Tool Settings.

DSO Development System User Manual

 Page
157

Select Next, then select Finish. You are done with the project level selections.

DSO Development System User Manual

 Page
158

Next, we will select the pins and synthesize the project.

13.1.1 Selecting Pins and Synthesizing

With the project created, we need to assign pins to the project. The signals defined in

the top level file (in this case: EPT_4CE6_AF_D1_Top.v) will connect directly to pins

on the FPGA. The Pin Planner Tool from Quartus Prime will add the pins and check to

verify that our pin selections do not violate any restrictions of the device. In the case of

this example we will import pin assignments that created at an earlier time. Under

Assignments, Select Import Assignments.

At the Import Assignment dialog box, Browse to the

\Projects_HDL\EPT_Transfer_Demo \ DSO 100M_TOP folder of the EPT FPGA

Development System DVD. Select the “DSO 100M_Top.qsf” file.

DSO Development System User Manual

 Page
159

Click Ok. Under Assignments, Select Pin Planner. Verify the pins have been imported

correctly.

DSO Development System User Manual

 Page
160

The pin locations should not need to be changed for EPT USB FPGA Development

System. However, if you need to change any pin location, just click on the “location”

column for the particular node you wish to change. Then, select the new pin location

from the drop down box.

DSO Development System User Manual

 Page
161

Exit the Pin Planner. Next, we need to add the Synopsys Design Constraint file. This

file contains timing constraints which forces the built in tool called TimeQuest Timing

Analyzer to analyze the path of the synthesized HDL code with setup and hold times of

the internal registers. It takes note of any path that may be too long to appropriately

meet the timing qualifications. For more information on TimeQuest Timing Analyzer,

see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

DSO Development System User Manual

 Page
162

Browse to the \Projects_HDL\EPT_Transfer_Demo \ DSO 100M_TOP folder of the

EPT FPGA Development System DVD. Select the “DSO 100M_Top.sdc” file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Transfer_Demo

directory. Paste the file.

Select the Start Compilation button.

DSO Development System User Manual

 Page
163

If you forget to include a file or some other error you should expect to see a screen

similar to this:

DSO Development System User Manual

 Page
164

Click Ok, the select the “Error” tab to see the error.

The error in this case is the missing file “sync_fifo”. Click on the Assignment menu,

then select Settings, then select Files. Add the “sync_fifo.v” file from the database.

DSO Development System User Manual

 Page
165

Click Ok then re-run the Compile process. After successful completion, the screen

should look like the following:

DSO Development System User Manual

 Page
166

At this point the project has been successfully compiled, synthesized and a

programming file has been produce. See the next section on how to program the FPGA.

13.1.2 Configuring the FPGA

Configuring the FPGA is quick and easy. All that is required is a standard USB Micro B

cable and the EPT_Blaster Driver DLL. Connect the DSO 100M to the PC, open up

Quartus Prime, open the programmer tool, and click the Start button. To program the

DPL Configuration Flash, follow the steps to install the USB Driver and the JTAG

Driver Insert for Quartus Prime.

DSO Development System User Manual

 Page
167

If the project created in the previous sections is not open, open it. Click on the

Programmer button.

The Programmer Window will open up with the programming file selected. Click on the

Hardware Setup button in the upper left corner.

DSO Development System User Manual

 Page
168

The Hardware Setup Window will open. In the “Available hardware items”, double

click on “EPT-Blaster v1.5b”.

If you successfully double clicked, the “Currently selected hardware:” dropdown box

will show the “EPT-Blaster v1.5b”.

DSO Development System User Manual

 Page
169

Click on the “Mode:” drop down box. Select the “Active Serial Programming” option.

Click on the “Add File” button

DSO Development System User Manual

 Page
170

At the Browse window, double click on the output files folder.

DSO Development System User Manual

 Page
171

Double click on the “EPT_4CE6_D1_Top.pof” file. Click the Open button in the lower

right corner.

Select the EPCS1 under “Device”.

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool.

DSO Development System User Manual

 Page
172

Click on the Start button to to start programming the FPGA. The Progress bar will

indicate the progress of programming.

When the programming is complete, the Progress bar will indicate success.

DSO Development System User Manual

 Page
173

At this point, the DSO 100M is programmed and ready for use. To test that the FPGA

is properly programmed, bring up the Active Transfer Demo Tool. Click on one of the

LED’s and verify that the LED selected lights up. Press one of the switches on the

board and ensure that the switch is captured on the Active Host Test Tool. Now you are

ready to connect to the Arduino Due and write some code to transfer data between

microcontroller and PC.

244.2.25

Once the project has been successfully built, it produces an *.exe file. The file will be

saved in the Release or Debug folders.

DSO Development System User Manual

 Page
174

 With the application loaded, select the USB-FPGA board from the dropdown combo

box and click on the “Open” button.

DSO Development System User Manual

 Page
175

Click on one of the LED buttons in the middle of the window. The corresponding LED

on the DSO 100M board should light up.

To exercise the Single Byte Transfer EndTerm, click the “LoopBack” button in the

Transfer Controls group. Type in several numbers separated by a space and less 256

into the Multiple Byte textbox. Then hit the Multi Byte button. The numbers appear in

the Receive Byte textbox.

DSO Development System User Manual

 Page
176

14 PC UnoProLyzer Code Base Description
At this point, the following has been accomplished:

• Description of the DSO 100M hardware

• Instructions on loading the drivers for the DSO 100M

• Instructions for loading the Quartus Prime and JTAG *.dll

• Instructions on how to create a Quartus project

• Instructions for loading the Visual Studio Express

• Description of the FPGA EndTerm interface

• Description of the PC Active Host interface

• Instructions on how to create a C# Windows Form

• FPGA code Description DSO 100M

So, now a description of the PC application, UnoProLyzer, for the DSO 100M can be

given. This code description is meant to be thorough, however, it cannot cover every

detail of the code. If any questions arise that cannot be determined from code and

comments. Please send an email for assistance on the EPT support email:

support@earthpeopletechnology.com

14.1 UnoProLyzer Application Overview

mailto:support@earthpeopletechnology.com

DSO Development System User Manual

 Page
177

14.2 Software Flow Diagram

