
 Verilog Programming Guide

1

INTRODUCTION

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware description
language is a language used to describe a digital system: for example, a network switch,
a microprocessor or a memory or a simple flip-flop. This just means that, by using a HDL,
one can describe any (digital) hardware at any level.

 1 // D flip-flop Code

 2 module d_ff (d, clk, q, q_bar);

 3 input d ,clk;

 4 output q, q_bar;

 5 wire d ,clk;

 6 reg q, q_bar;
 7

 8 always @ (posedge clk)

 9 begin

 10 q <= d;

 11 q_bar <= ! d;

 12 end
 13

 14 endmodule

You could download file d_ff.v here

http://www.asic-world.com/code/verilog_tutorial/d_ff.v

 Verilog Programming Guide

2

One can describe a simple Flip flop as that in the above figure, as well as a complicated
design having 1 million gates. Verilog is one of the HDL languages available in the
industry for hardware designing. It allows us to design a Digital design at Behavior Level,
Register Transfer Level (RTL), Gate level and at switch level. Verilog allows hardware
designers to express their designs with behavioral constructs, deferring the details of
implementation to a later stage in the final design.

/////////////////////////////////////Lesson #1///
In this first lesson, let’s set up the ModelSim environment and simulate a simple flip

flop.

First, set up your file system to allow easy access to updating and modifying your
files. There are many ways to set up your file system, the following is the one that

works best for me.

Copy the Lesson 1 Folder over to our local drive from the DVD. In this folder you will
notice a top level project folder.

The project level folder is called “EPT_10M04_AF_Flip_Flop”. Under this project level
folder are various revisions of the project. Multiple revisions allow you to keep copies

of previously working projects and refer to them later when the currently edited source
code no longer compiles.

Under the current revision of the project, this folder does not include a “_Rev_x”
suffix. The project is organized with the following folders:

 Verilog Programming Guide

3

• EPT_10M04_AF_S2_Top – This folder contains all the Altera project level files such as

pin, sdc, configuration, programming object files etc.

• ModelSim – This folder contains all the compiled object files for ModelSims use. It

also includes the *.do files. These ‘do’ files are the make files for ModelSim. They tell

the compiler which source files to compile and allow compile time options.

• Sim – This folder contains special source files that have non-synthesizeable constructs

in them.

• Src – This folder contains all your source files. Only synthesizeable code should go into

this folder.

• Test – This folder contains source code for the models which are used to model

behavior of devices that are not part of the FPGA. These source files can contain non-

synthesizable code.

• Testbench -- This folder contains the main testbench source code. The testbench

controls the operation of the user source code, test models and simulation code. It

provides the main stimulus such as the clock and reset.

In the src folder, create a file named “EPT_10M04_AF_S2_Top.v”. Then open this file
in an editor, I prefer to use NotePad++. Add in the D flip-flop code and add comments

to describe the file and the parts of the file.

 Verilog Programming Guide

4

Next, setup the Testbench file to provide a stimulus for our user code. The Testbench

file provides all the hardware external devices that the FPGA needs to operate the
user code. These include the oscillator/clock, reset, push buttons, communications,

etc… Open the Testbench folder and notice the two files in it.

• Tb_define.v contains pre-defined parameters for the testbench execution

• Tb_ept_10m04_top.v contains declarations, stimulus, tasks and leif modules to

exercise the user code.

 Verilog Programming Guide

5

Inside the tb_ept_10m04_top.v file, we see ‘module’ declaration along with the name
of test bench. The parameter declarations are listed to allow certain registers to have
constant values. We will discuss parameters and the details of the Verilog files later in

the tutorial. For now, we will focus on getting started and performing our first
simulation. Scroll down the testbench file and locate the “Instantiate DUT” section.

 Verilog Programming Guide

6

You can see that the testbench uses the name of the module declared in

‘EPT_10M04_AF_S2_TOP.v’. This is called the leif instantiation. When ModelSIm
starts the compilation process, it will search the directory path for the module

‘EPT_10M04_AF_S2_TOP’. This instantiation must include the inputs and outputs
declared in the module. In this case:

• ‘d’ – Input into the D flip flop

• ‘clk’ – Input into the D flip flop

• ‘q’ – Output from the D flip flop

• ‘q_bar’ – Output from the D flip flop

Using the leif instantiation module, we have now connected the testbench with the
user code. When ModelSim starts the simulation process, testbench will control the

stimulus to the inputs and accept the outputs from the user code.

To add stimulus, we use Verilog code. To add a clock, we use the ‘forever’ key word.

 Verilog Programming Guide

7

The parameter ‘CYCLE_50’ is defined in the tb_define.v file. We add the ‘#’ character
at the beginning of the line to inform the compiler to “add the following” as a delay in
simulator steps. During simulation, the simulator will start a timer that halts this signal
(and only this signal) and waits for the timer to expire. After the delay has expired, the

signal is set equal to its complement state. Then, because of the ‘forever’ keyword,
the process starts over, delay, then set signal to its complement. The result is a clock

at 50MHz. We will go through the details of all these details later in the tutorial.

Next, add the stimulus for ‘d’ input. We do this using the ‘initial’ block. Everything

between the ‘begin’ ‘end’ keywords is executed once per simulation.

 Verilog Programming Guide

8

You can see here that the stimulus ‘d’ is set to 1’b1 after a delay of of 100 * CYCLE.
Where ‘CYCLE’ is defined in the tb_define.v file. Then, after another delay, the ‘d’ is

set to 1’b0. Finally, a delay of 50*CYCLE is added then the ‘d’ is set to 1’b1. The
result is a toggle from high to low to high on the ‘d’ signal.

Next, get the ModelSim loaded up on your laptop/PC. Follow the install guide on how
to install the ModelSim application.

 Verilog Programming Guide

9

Then, open the
application and Go to File->Change Directory

At the dialog box, locate the ModelSim folder under the EPT_10M04_AF_S2_TOP

project.

 Verilog Programming Guide

10

Select the ModelSim folder. Next, we will compile each module individually. Click on

the ‘Compile’ menu item. Select the ‘Compile’ tab.

In the ‘Compile Source Files’ window, select the ‘src’ folder.

 Verilog Programming Guide

11

Select the ‘EPT_10M04)AF_S2_Top.v’ file.

 Verilog Programming Guide

12

Click the ‘Compile’ button.

 Verilog Programming Guide

13

You will receive the ‘Create Library’ message box. Select Yes.

After the file is compiled, the log will indicate the status of compilation.

 Verilog Programming Guide

14

Next, repeat the compile steps for the

• tb_define.v

• tb_ept_10m04_top.v

 Verilog Programming Guide

15

Note, you will not get receive the message box asking to create the
‘work’ folder this time. After the compilation has completed, we are ready to run the

Simulation. The simulation enviroment is controlled by the *.do files. The *.do files act
as makefiles to control which files get simulated and add compile options. There are

two *.do files needed for our simulation. They are found in the ModelSim folder.

• Sim_ept10m04_top.do – Contains the files and compile options.

• Wave_ept_10m04_top.do – Contains the display flags for the ‘Waveforms’ window.

When we look inside the sim_ept_10m04_top.do file we see the two files to simulate.

There are also simulate options that use the ‘+define’ keyword. At the endof the file

we see the ‘do wave_ept_10m04_top.do’ instruction. This will add the display flags to
the ‘Waveforms’ window.

Start the simulation by typing do sim_ept_10m04_top.do into the command window.

 Verilog Programming Guide

16

When the simulator completes its run, the Wave window appears.

Zoom into the first 10 microseconds of the simulation usin the Zoom buttons.

 Verilog Programming Guide

17

Now we see the ‘d’ stimulus toggling and the ‘q’ output following the input. Zoom in

even farther.

 Verilog Programming Guide

18

We can see after first delay that ‘d’ signal is asserted high. Before this assertion the
signal is not defined in the simulation, so technically it is a Don’t Care (indicated by
the red ‘floating’ line). Once the ‘d’ is asserted, the delay is added by the simulator.

After this delay the ‘d’ signal is de-asserted. Then, another dealy and the ‘d’ is
asserted high.

Now that we know what the simulator is doing, we can exam the user code, the D Flip
Flop.

 Verilog Programming Guide

19

The D Flip Flop provides a registered output. This means that the input ‘d’ will be
applied to the output ‘q’ but only after one rising edge of the clock. Because the output
‘q’ is synchronous to the clock, it is called a synchronous register. We can really see

what this means when we zoom in even closer in the simulation.

 Verilog Programming Guide

20

Examining the user code, we can see this synchronous behavior occuring because of
the always statement.

The always keyword is used to cause a process to occur when an event happens.
The event is what is in the paranthesis. In this case, the event is the rising edge of the

‘clk’ signal). Verilog uses the ‘posedge’ keyword to describe rising edge and ‘clk’ is
our input clock from the testbench. So, what the Verilog code is telling us is that

whenever we get a rising edge on the clock, the output ‘q’ is equal to ‘d’. Also the
‘q_bar’ output is set to the complement of ‘d’. This is exactly what the simluation is

showing us.

We will cover the details of the Verilog keywords, description of synchronous code
and combinatorial code later in this tutorial. This first lesson was designed to get you

started with using ModelSim.

RTL DESCRIPTION

Many engineers who want to learn this language, very often ask this question, how much
time will it take to learn Verilog? Well my answer to them is "It may take no more than
one week, if you happen to know at least one programming language".

 Design Styles

 Verilog, like any other hardware description language, permits a design
in either Bottom-up or Top-down methodology.

 Bottom-Up Design

 The traditional method of electronic design is bottom-up. Each design is
performed at the gate-level using the standard gates (refer to the Digital Section for more

 Verilog Programming Guide

21

details). With the increasing complexity of new designs this approach is nearly impossible
to maintain. New systems consist of ASIC or microprocessors with a complexity of
thousands of transistors. These traditional bottom-up designs have to give way to new
structural, hierarchical design methods. Without these new practices it would be
impossible to handle the new complexity.

 Top-Down Design

 The desired design-style of all designers is the top-down one. A real top-
down design allows early testing, easy change of different technologies, a structured
system design and offers many other advantages. But it is very difficult to follow a pure
top-down design. Due to this fact most designs are a mix of both methods, implementing
some key elements of both design styles.

 Figure shows a Top-Down design approach.

 Verilog Programming Guide

22

 Verilog Abstraction Levels

 Verilog supports designing at many different levels of abstraction. Three
of them are very important:

• Behavioral level
• Register-Transfer Level
• Gate Level

 Behavioral level

 This level describes a system by concurrent algorithms (Behavioral).
Each algorithm itself is sequential, that means it consists of a set of instructions that are

 Verilog Programming Guide

23

executed one after the other. Functions, Tasks and Always blocks are the main elements.
There is no regard to the structural realization of the design.

 Register-Transfer Level

 Designs using the Register-Transfer Level specify the characteristics of a
circuit by operations and the transfer of data between the registers. An explicit clock is
used. RTL design contains exact timing bounds: operations are scheduled to occur at
certain times. Modern RTL code definition is "Any code that is synthesizable is called RTL
code".

 Gate Level

 Within the logic level the characteristics of a system are described by
logical links and their timing properties. All signals are discrete signals. They can only
have definite logical values (`0', `1', `X', `Z`). The usable operations are predefined logic
primitives (AND, OR, NOT etc gates). Using gate level modeling might not be a good idea
for any level of logic design. Gate level code is generated by tools like synthesis tools and
this netlist is used for gate level simulation and for backend.

MODULES, PORTS, DATA TYPES AND

OPERATORS

 Every new learner's dream is to understand Verilog in one day, at least enough
to use it. The next few pages are my attempt to make this dream a reality. There will be
some theory and examples followed by some exercises. This tutorial will not teach you
how to program; it is designed for those with some programming experience. Even
though Verilog executes different code blocks concurrently as opposed to the sequential
execution of most programming languages, there are still many parallels. Some
background in digital design is also helpful.

 Verilog Programming Guide

24

 Life before Verilog was a life full of schematics. Every design, regardless of
complexity, was designed through schematics. They were difficult to verify and error-
prone, resulting in long, tedious development cycles of design, verification... design,
verification... design, verification...

 When Verilog arrived, we suddenly had a different way of thinking about logic
circuits. The Verilog design cycle is more like a traditional programming one, and it is
what this tutorial will walk you through. Here's how it goes:

• Specifications (specs)
• High level design
• Low level (micro) design
• RTL coding
• Verification

• Synthesis.

 First on the list is specifications - what are the restrictions and requirements
we will place on our design? What are we trying to build? For this tutorial, we'll be building
a two agent arbiter: a device that selects among two agents competing for mastership.
Here are some specs we might write up.

• Two agent arbiter.
• Active high asynchronous reset.
• Fixed priority, with agent 0 having priority over agent 1

• Grant will be asserted as long as request is asserted.

 Once we have the specs, we can draw the block diagram, which is basically an
abstraction of the data flow through a system (what goes into or comes out of the black
boxes?). Since the example that we have taken is a simple one, we can have a block
diagram as shown below. We don't worry about what's inside the magical black boxes just
yet.

 Verilog Programming Guide

25

 Block diagram of arbiter

 Now, if we were designing this machine without Verilog, the standard
procedure would dictate that we draw a state machine. From there, we'd make a truth
table with state transitions for each flip-flop. And after that we'd draw Karnaugh maps,
and from K-maps we could get the optimized circuit. This method works just fine for small
designs, but with large designs this flow becomes complicated and error prone. This is
where Verilog comes in and shows us another way.

 Low level design

 To see how Verilog helps us design our arbiter, let's go on to our state
machine - now we're getting into the low-level design and peeling away the cover of the
previous diagram's black box to see how our inputs affect the machine.

 Verilog Programming Guide

26

 Each of the circles represents a state that the machine can be in. Each state
corresponds to an output. The arrows between the states are state transitions, labeled by
the event that causes the transition. For instance, the leftmost orange arrow means that if
the machine is in state GNT0 (outputting the signal that corresponds to GNT0) and
receives an input of !req_0, the machine moves to state IDLE and outputs the signal that
corresponds to that. This state machine describes all the logic of the system that you'll
need. The next step is to put it all in Verilog.

 Modules

 We'll need to backtrack a bit to do this. If you look at the arbiter block in the
first picture, we can see that it has got a name ("arbiter") and input/output ports (req_0,
req_1, gnt_0, and gnt_1).

 Since Verilog is a HDL (hardware description language - one used for the
conceptual design of integrated circuits), it also needs to have these things. In Verilog, we
call our "black boxes" module. This is a reserved word within the program used to refer to
things with inputs, outputs, and internal logic workings; they're the rough equivalents of
functions with returns in other programming languages.

 Code of module "arbiter"

 If you look closely at the arbiter block we see that there are arrow marks,
(incoming for inputs and outgoing for outputs). In Verilog, after we have declared the
module name and port names, we can define the direction of each port. (version note: In
Verilog 2001 we can define ports and port directions at the same time) The code for this
is shown below.

 1 module arbiter (

 2 // Two slashes make a comment line.

 Verilog Programming Guide

27

 3 clock , // clock

 4 reset , // Active high, syn reset

 5 req_0 , // Request 0

 6 req_1 , // Request 1

 7 gnt_0 , // Grant 0

 8 gnt_1 // Grant 1
 9);

 10 //-------------Input Ports-----------------------------

 11 // Note : all commands are semicolon-delimited

 12 input clock ;

 13 input reset ;

 14 input req_0 ;

 15 input req_1 ;

 16 //-------------Output Ports----------------------------

 17 output gnt_0 ;

 18 output gnt_1 ;

You could download file one_day1.v here

 Here we have only two types of ports, input and output. In real life, we can
have bi-directional ports as well. Verilog allows us to define bi-directional ports as "inout."

 Bi-Directional Ports Example -

 inout read_enable; // port named read_enable is bi-directional

 How do you define vector signals (signals composed of sequences of more
than one bit)? Verilog provides a simple way to define these as well.

 Vector Signals Example -

 inout [7:0] address; //port "address" is bidirectional

http://www.asic-world.com/code/verilog_tutorial/one_day1.v

 Verilog Programming Guide

28

 Note the [7:0] means we're using the little-endian convention - you start with 0
at the rightmost bit to begin the vector, then move to the left. If we had done [0:7], we
would be using the big-endian convention and moving from left to right. Endianness is a
purely arbitrary way of deciding which way your data will "read," but does differ between
systems, so using the right endianness consistently is important. As an analogy, think of
some languages (English) that are written left-to-right (big-endian) versus others (Arabic)
written right-to-left (little-endian). Knowing which way the language flows is crucial to
being able to read it, but the direction of flow itself was arbitrarily set years back.

 Summary

• We learnt how a block/module is defined in Verilog.
• We learnt how to define ports and port directions.

• We learnt how to declare vector/scalar ports.

 Data Type

 What do data types have to do with hardware? Nothing, actually. People just
wanted to write one more language that had data types in it. It's completely gratuitous;
there's no point.

 But wait... hardware does have two kinds of drivers.

 (Drivers? What are those?)

 A driver is a data type which can drive a load. Basically, in a physical circuit, a
driver would be anything that electrons can move through/into.

 Verilog Programming Guide

29

• Driver that can store a value (example: flip-flop).
• Driver that can not store value, but connects two points (example: wire).

The first type of driver is called a reg in Verilog (short for "register"). The second data type
is called a wire (for... well, "wire"). You can refer to tidbits section to understand it better.

There are lots of other data types - for instance, registers can be signed, unsigned,
floating point... as a newbie, don't worry about them right now.

 Examples :

 wire and_gate_output; // "and_gate_output" is a wire that only outputs

 reg d_flip_flop_output; // "d_flip_flop_output" is a register; it stores and outputs
a value

 reg [7:0] address_bus; // "address_bus" is a little-endian 8-bit register

 Summary

• Wire data type is used for connecting two points.
• Reg data type is used for storing values.

• May god bless the rest of data types. You'll see them someday.

 Operators

Operators, thankfully, are the same things here as they are in other programming
languages. They take two values and compare (or otherwise operate on) them to yield a

 Verilog Programming Guide

30

third result - common examples are addition, equals, logical-and... To make life easier for
us, nearly all operators (at least the ones in the list below) are exactly the same as their
counterparts in the C programming language.

 Operator Type Operator Symbol
 Operation Performed

Arithmetic * Multiply

 / Division

 + Add

 - Subtract

 % Modulus

 + Unary plus

 - Unary minus

Logical ! Logical negation

 && Logical and

 || Logical or

Relational > Greater than

 < Less than

 >= Greater than or equal

 <= Less than or equal

Equality == Equality

 != inequality

Reduction ~ Bitwise negation

 Verilog Programming Guide

31

 ~& nand

 | or

 ~| nor

 ^ xor

 ^~ xnor

 ~^ xnor

Shift >> Right shift

 << Left shift

Concatenation { } Concatenation

Conditional ? conditional

//////////////////////////////////////Lesson #2///

In this lesson, we will use some operators in Verilog code.

First, lets write some user code exercise the operators. Locate the
EPT_10M04_AF_Operators folder in the DVD. We will create a standalone module

that will perform the selected operation.

 Verilog Programming Guide

32

Then we will create a test bench to exercise each operator and display the results.

 Verilog Programming Guide

33

The top level module is created following the syntax rules of Verilog. Use the keyword
“module” followed by the name of the module. Then, add an opening parenthesis and

define the inputs and outputs. This tutorial will cover in greater detail the keywords
“module”, “input”, and “output”, signals, registers and assignment statements later on.
For now, just follow the coding. This module simply takes in two operands, performs
an operation then outputs the results. This lesson is designed to get you familiar with

how operators work and how to use them. This lesson specifically takes in two
operands of eight bits each and the output is eight bits. The reason for this is in the

future you will write code that manipulates both multi-bit registers and single bit
signals. The operators will act differently on registers and signals. So, you will need to

understand this and how to use operators.

Lets look at the code,

 Verilog Programming Guide

34

The first four operators “+, -, *, /” work on the entire eight registers in total. If we look
at the test bench, we will see that we can access the inputs by placing an eight value

on the inputs at the start of the simulation. Then, use the “$display” keyword to
display the outputs on the log window.

 Verilog Programming Guide

35

You can see the testbench “$display” manipulates the operands by simply using the
“%h” syntax. This similar to the C language. When you want to display a number to

the log screen add the “%h” inside a string. Then close the string and place the name
of the register inside the paranthesis. Run the ModelSim simulation using the *.do file

by following the steps in Lesson #1. The output on the log screen looks like the
following:

 Verilog Programming Guide

36

You can see the result of the operation in the log window after running the simulation.

Note that the first four operators work on the entire eight bits of the input registers.
The “Logical Operators” only operate on single bit signals. When we use an eight bit

register, the operator has to be assigned to each individual bit in separate
assignments.

 Verilog Programming Guide

37

The result of the logical operator on an eight bit register show the number as a

complete eight bit number:

 Verilog Programming Guide

38

The rest of the operators operate on the entire eight registers. This is an important

distinction that you must handle appropriately when writing your code. The results of
the other operators:

 Verilog Programming Guide

39

Feel free to explore the operators by changing the initial values of these numbers and

seeing the results after running the simulation.

 Verilog Programming Guide

40

CONTROL STATEMENTS

Wait, what's this? if, else, repeat, while, for, case - it's Verilog that looks exactly like C
(and probably whatever other language you're used to program in)! Even though the
functionality appears to be the same as in C, Verilog is an HDL, so the descriptions
should translate to hardware. This means you've got to be careful when using control
statements (otherwise your designs might not be implementable in hardware).

 If-else

If-else statements check a condition to decide whether or not to execute a portion of
code. If a condition is satisfied, the code is executed. Else, it runs this other portion of
code.

 1 // begin and end act like curly braces in C/C++.

 2 if (enable == 1'b1) begin

 3 data = 10; // Decimal assigned

 4 address = 16'hDEAD; // Hexadecimal

 5 wr_enable = 1'b1; // Binary

 6 end else begin

 7 data = 32'b0;

 8 wr_enable = 1'b0;

 9 address = address + 1;

 10 end

You could download file one_day2.v here

One could use any operator in the condition checking, as in the case of C language. If
needed we can have nested if else statements; statements without else are also ok, but

http://www.asic-world.com/code/verilog_tutorial/one_day2.v

 Verilog Programming Guide

41

they have their own problem, when modeling combinational logic, in case they result in a
Latch (this is not always true).

 Case

Case statements are used where we have one variable which needs to be checked for
multiple values. like an address decoder, where the input is an address and it needs to be
checked for all the values that it can take. Instead of using multiple nested if-else
statements, one for each value we're looking for, we use a single case statement: this is
similar to switch statements in languages like C++.

Case statements begin with the reserved word case and end with the reserved
word endcase (Verilog does not use brackets to delimit blocks of code). The cases,
followed with a colon and the statements you wish executed, are listed within these two
delimiters. It's also a good idea to have a default case. Just like with a finite state
machine (FSM), if the Verilog machine enters into a non-covered statement, the machine
hangs. Defaulting the statement with a return to idle keeps us safe.

 1 case(address)

 2 0 : memory_cell_0 = 16’hffe0;

 3 1 : memory_cell_1 = 16’hac81;

 4 2 : memory_cell_2 = 16’h3f76;

 5 default : memory_cell_1 = 16’h0000;

 6 endcase

You could download file one_day3.v here

Note: One thing that is common to if-else and case statement is that, if you don't cover all
the cases (don't have 'else' in If-else or 'default' in Case), and you are trying to write a
combinational statement, the synthesis tool will infer Latch.

http://www.asic-world.com/code/verilog_tutorial/one_day3.v

 Verilog Programming Guide

42

 While

A while statement executes the code within it repeatedly if the condition it is assigned to
check returns true. While loops are not synthesizable in hardware and not normally used
for models in real life, but they are used in test benches. As with other statement blocks,
they are delimited by begin and end.

 1 while (free_time) begin

 2 $display ("Continue with webpage development");

 3 end

You could download file one_day4.v here

As long as free_time variable is set, code within the begin and end will be executed. i.e
print "Continue with web development". Let's looks at a stranger example, which uses
most of Verilog constructs. Well, you heard it right. Verilog has fewer reserved words than
VHDL, and in this few, we use even lesser for actual coding. So good of Verilog... so
right.

 1 module counter (clk,rst,enable,count);

 2 input clk, rst, enable;

 3 output [3:0] count;

 4 reg [3:0] count;
 5

 6 always @ (posedge clk or posedge rst)

 7 if (rst) begin

 8 count <= 0;

 9 end else begin : COUNT

 10 while (enable) begin

 11 count <= count + 1;

 12 disable COUNT;

 13 end

 14 end
 15

 16 endmodule

You could download file one_day5.v here

http://www.asic-world.com/code/verilog_tutorial/one_day4.v
http://www.asic-world.com/code/verilog_tutorial/one_day5.v

 Verilog Programming Guide

43

The example above uses most of the constructs of Verilog. You'll notice a new block
called always - this illustrates one of the key features of Verilog. Most software
languages, as we mentioned before, execute sequentially - that is, statement by
statement. Verilog programs, on the other hand, often have many statements executing in
parallel. All blocks marked always will run - simultaneously - when one or more of the
conditions listed within it is fulfilled.

In the example above, the always block will run when either rst or clk reaches a positive
edge - that is, when their value has risen from 0 to 1. You can have two or
more always blocks in a program going at the same time (not shown here, but commonly
used).

We can disable a block of code, by using the reserve word disable. In the above example,
after each counter increment, the COUNT block of code (not shown here) is disabled.

 For loop

For loops in Verilog are almost exactly like for loops in C or C++. The only difference is
that the ++ and -- operators are not supported in Verilog. Instead of writing i++ as you
would in C, you need to write out its full operational equivalent, i = i + 1.

 1 for (i = 0; i < 16; i = i +1) begin

 2 $display ("Current value of i is %d", i);

 3 end

You could download file one_day6.v here

This code will print the numbers from 0 to 15 in order. Be careful when using for loops for
register transfer logic (RTL) and make sure your code is actually sanely implementable in

http://www.asic-world.com/code/verilog_tutorial/one_day6.v

 Verilog Programming Guide

44

hardware... and that your loop is not infinite. The for keyword is synthesizable in
hardware.

 Repeat

Repeat is similar to the for loop we just covered. Instead of explicitly specifying a
variable and incrementing it when we declare the for loop, we tell the program how
many times to run through the code, and no variables are incremented (unless we want
them to be, like in this example).

 1 repeat (16) begin

 2 $display ("Current value of i is %d", i);

 3 i = i + 1;

 4 end

You could download file one_day7.v here

The output is exactly the same as in the previous for-loop program example. It is relatively
rare to use a repeat (or for-loop) in actual hardware implementation. However, the repeat
keyword is synthesizable in hardware.

 Summary

• While, if-else, case(switch) statements are the same as in C language.
• If-else and case statements require all the cases to be covered for combinational

logic.
• For-loop is the same as in C, but no ++ and -- operators.
• Repeat is the same as the for-loop but without the incrementing variable.

//////////////////////////////////////Lesson #3///

http://www.asic-world.com/code/verilog_tutorial/one_day7.v

 Verilog Programming Guide

45

In this lesson, let’s explore the Verilog control statements. The control statements are a
big contributor to a lot of Verilog code out there in the world. The control statements
encompass both synthesizable and non-synthesizable Verilog code.

This lesson will introduce the user to Verilog control statements. It provides a Testbench
and user code. The Testbench will exercise each control and display the results to the
log window of ModelSim. The user code is organized as a module with only
synthesizable code that mimics the project that will go into an FPGA. The user code:

The Testbench code contains the stimulus for the user code:

 Verilog Programming Guide

46

The If – Else control statement user code takes in an eight bit count value from the
Testbench and compares it to a maximum count value. If the incoming value is lesser
than the max count, it returns a value of zero. If the incoming value is greater than max
count, it returns the incoming value. This shows how the “if” a value is equal to zero,
“then” execute a statement, “else” execute a different statement.

 Verilog Programming Guide

47

The Testbench produces a count by using the “+” operator and adding a ‘1’ to the
current count value. The resulting incremented count is transmitted to the IF ELSE
Block in the user code.

Here, the Testbench uses the ‘while’ statement to cause the Testbench to compare the
control and if it is true, execute the statements in the loop. When the statements have
completed, the control is again compared to a value. If true, the loop continues. This
cycle continues until the while control is false. The user code is comparing the each
incremented count to the max value. When the count is greater than the max count, the
result is transmitted to the Testbench and compared to the while control. At this point
the while control will be false and the loop is exited. The next statement to execute is
the “$display(“If Else Statement reached……”). The result on the log window of the
ModelSim is:

 Verilog Programming Guide

48

The Case Control Statement uses the case->select statement->execute statement.

case(‘control’)

1: ‘statement’;

2: ‘statement’:

.

.

endcase

 Verilog Programming Guide

49

The Testbench transmits an eight bit count value to the user code. This count value
determines which statement is selected. Then the statement is executed.

The Testbench uses the ‘repeat’ control statement to cause the statements between
begin/end to execute ten times. Each iteration through the repeat cycle causes the
‘case_input_register’ to increment by one. This value is transmitted to the user code and
selects a statement to execute based on the case control. The result on the log window of
ModelSim is:

 Verilog Programming Guide

50

The while statement is not synthesizable. So, it will be implemented in the Testbench
while the user code will perform an incremented count and produce a non-zero result
when the count reaches maximum count.

 Verilog Programming Guide

51

The while loop takes the value it receives from result of the user code while block and
compares it to the control of the while statement. If it is zero, the statements in the
Testbench while loop execute. This continues as the user code increments the counter
based on the clock supplied by the Test bench. In this case it is 50 MHz. When the
counter reaches the max value, the user code transmits this value. The Testbech while
loop compares this to zero and determines the while control is false and exits the loop.
The result in the log window of ModelSIm:

 Verilog Programming Guide

52

The For Loop is used to execute statements within a pre-set range. Usually the for loop
repeats the same statement with a slight modification based on the index counter of the
for loop.

 Variable Assignment

In digital there are two types of elements, combinational and sequential. Of course we
know this. But the question is "How do we model this in Verilog ?". Well Verilog provides
two ways to model the combinational logic and only one way to model sequential logic.

• Combinational elements can be modeled using assign and always statements.
• Sequential elements can be modeled using only always statement.

• There is a third block, which is used in test benches only: it is called Initial statement.

 Initial Blocks

An initial block, as the name suggests, is executed only once when simulation starts. This
is useful in writing test benches. If we have multiple initial blocks, then all of them are
executed at the beginning of simulation.

 Example

 1 initial begin

 2 clk = 0;

 3 reset = 0;

 4 req_0 = 0;

 5 req_1 = 0;

 6 end

You could download file one_day8.v here

In the above example, at the beginning of simulation, (i.e. when time = 0), all the variables
inside the begin and end block are driven zero.

http://www.asic-world.com/code/verilog_tutorial/one_day8.v

 Verilog Programming Guide

53

 Always Blocks

As the name suggests, an always block executes always, unlike initial blocks which
execute only once (at the beginning of simulation). A second difference is that an
always block should have a sensitive list or a delay associated with it.

The sensitive list is the one which tells the always block when to execute the block of
code, as shown in the figure below. The @ symbol after reserved word ' always',
indicates that the block will be triggered "at" the condition in parenthesis after symbol
@.

 An always block indicates a set of procedural instructions that happen in the order they
are written. The reg data type can hold on to its value while the rest of the always block
is completed, while the 'wire' data type (the default one) does not. Reg is what has to be
used in every always block, even though that particular block is short and ends
immediately. Assign is used for wire types and can be thought of as connecting physical
wires between pieces of hardware, or a path for a signal to travel.

One important note about always block: it can not drive wire data type, but can drive reg
and integer data types.

 1 always @ (a or b or sel)

 2 begin

 3 y = 0;

 4 if (sel == 0) begin

 5 y = a;

 6 end else begin

 7 y = b;

 8 end

 9 end

You could download file one_day9.v here

http://www.asic-world.com/code/verilog_tutorial/one_day9.v

 Verilog Programming Guide

54

The above example is a 2:1 mux, with input a and b; sel is the select input and y is the
mux output. In any combinational logic, output changes whenever input changes. This
theory when applied to always blocks means that the code inside always blocks needs
to be executed whenever the input variables (or output controlling variables) change.
These variables are the ones included in the sensitive list, namely a, b and sel.

There are two types of sensitive list: level sensitive (for combinational circuits) and edge
sensitive (for flip-flops). The code below is the same 2:1 Mux but the output y is now a
flip-flop output.

 1 always @ (posedge clk)

 2 if (reset == 0) begin

 3 y <= 0;

 4 end else if (sel == 0) begin

 5 y <= a;

 6 end else begin

 7 y <= b;

 8 end

You could download file one_day10.v here

We normally have to reset flip-flops, thus every time the clock makes the transition from
0 to 1 (posedge), we check if reset is asserted (synchronous reset), then we go on with
normal logic. If we look closely we see that in the case of combinational logic we had "="
for assignment, and for the sequential block we had the "<=" operator. Well, "=" is
blocking assignment and "<=" is nonblocking assignment. "=" executes code
sequentially inside a begin / end, whereas nonblocking "<=" executes in parallel.

We can have an always block without sensitive list, in this case we need to have a delay
as shown in the code below.

 1 always begin

 2 #5 clk = ~clk;

http://www.asic-world.com/code/verilog_tutorial/one_day10.v

 Verilog Programming Guide

55

 3 end

You could download file one_day11.v here

 #5 in front of the statement delays its execution by 5 time units.

 Assign Statement

An assign statement is used for modeling only combinational logic and it is executed
continuously. So the assign statement is called 'continuous assignment statement' as
there is no sensitive list.

 1 assign out = (enable) ? data : 1'bz;

You could download file one_day12.v here

The above example is a tri-state buffer. When enable is 1, data is driven to out, else out
is pulled to high-impedance. We can have nested conditional operators to construct
mux, decoders and encoders.

 1 assign out = data;

You could download file one_day13.v here

 This example is a simple buffer.

http://www.asic-world.com/code/verilog_tutorial/one_day11.v
http://www.asic-world.com/code/verilog_tutorial/one_day12.v
http://www.asic-world.com/code/verilog_tutorial/one_day13.v

 Verilog Programming Guide

56

 Task and Function

When repeating the same old things again and again, Verilog, like any other
programming language, provides means to address repeated used code, these are
called Tasks and Functions. I wish I had something similar for webpages, just call it to
print this programming language stuff again and again.

 Code below is used for calculating even parity.

 1 function parity;

 2 input [31:0] data;

 3 integer i;

 4 begin

 5 parity = 0;

 6 for (i= 0; i < 32; i = i + 1) begin

 7 parity = parity ^ data[i];

 8 end

 9 end

 10 endfunction

You could download file one_day14.v here

Functions and tasks have the same syntax; one difference is that tasks can have
delays, whereas functions can not have any delay. This means that function can be
used for modeling combinational logic.

A second difference is that functions can return a value, whereas tasks can not.

TEST BENCHES

Ok, we have code written according to the design document, now what?

http://www.asic-world.com/code/verilog_tutorial/one_day14.v

 Verilog Programming Guide

57

Well we need to test it to see if it works according to specs. Most of the time, it's the
same we use to do in digital labs in college days: drive the inputs, match the outputs
with expected values. Let's look at the arbiter testbench.

 1 module arbiter (
 2 clock,

 3 reset,

 4 req_0,

 5 req_1,

 6 gnt_0,

 7 gnt_1

 8);

 9

 10 input clock, reset, req_0, req_1;

 11 output gnt_0, gnt_1;
 12

 13 reg gnt_0, gnt_1;
 14

 15 always @ (posedge clock or posedge reset)

 16 if (reset) begin

 17 gnt_0 <= 0;

 18 gnt_1 <= 0;

 19 end else if (req_0) begin

 20 gnt_0 <= 1;

 21 gnt_1 <= 0;

 22 end else if (req_1) begin

 23 gnt_0 <= 0;

 24 gnt_1 <= 1;

 25 end
 26

 27 endmodule

 28 // Testbench Code Goes here

 29 module arbiter_tb;
 30

 31 reg clock, reset, req0,req1;

 32 wire gnt0,gnt1;
 33

 34 initial begin

 35 $monitor ("req0=%b,req1=%b,gnt0=%b,gnt1=%b", req0,req1,gnt0,gnt1);

 36 clock = 0;

 37 reset = 0;

 38 req0 = 0;

 39 req1 = 0;

 Verilog Programming Guide

58

 40 #5 reset = 1;

 41 #15 reset = 0;

 42 #10 req0 = 1;

 43 #10 req0 = 0;

 44 #10 req1 = 1;

 45 #10 req1 = 0;

 46 #10 {req0,req1} = 2'b11;

 47 #10 {req0,req1} = 2'b00;

 48 #10 $finish;

 49 end
 50

 51 always begin

 52 #5 clock = ! clock;

 53 end
 54

 55 arbiter U0 (

 56 .clock (clock),

 57 .reset (reset),

 58 .req_0 (req0),

 59 .req_1 (req1),

 60 .gnt_0 (gnt0),

 61 .gnt_1 (gnt1)

 62);

 63

 64 endmodule

You could download file arbiter.v here

It looks like we have declared all the arbiter inputs as reg and outputs as wire; well,
that's true. We are doing this as test bench needs to drive inputs and needs to monitor
outputs.

After we have declared all needed variables, we initialize all the inputs to known state:
we do that in the initial block. After initialization, we assert/de-assert reset, req0, req1 in
the sequence we want to test the arbiter. Clock is generated with an always block.

After we are done with the testing, we need to stop the simulator. Well, we use $finish to
terminate simulation. $monitor is used to monitor the changes in the signal list and print
them in the format we want.

http://www.asic-world.com/code/verilog_tutorial/arbiter.v

 Verilog Programming Guide

59

 req0=0,req1=0,gnt0=x,gnt1=x
 req0=0,req1=0,gnt0=0,gnt1=0
 req0=1,req1=0,gnt0=0,gnt1=0
 req0=1,req1=0,gnt0=1,gnt1=0
 req0=0,req1=0,gnt0=1,gnt1=0
 req0=0,req1=1,gnt0=1,gnt1=0
 req0=0,req1=1,gnt0=0,gnt1=1
 req0=0,req1=0,gnt0=0,gnt1=1
 req0=1,req1=1,gnt0=0,gnt1=1
 req0=1,req1=1,gnt0=1,gnt1=0
 req0=0,req1=0,gnt0=1,gnt1=0

Introduction

Being new to Verilog you might want to try some examples and try designing something
new. I have listed the tool flow that could be used to achieve this. I have personally tried
this flow and found this to be working just fine for me. Here I have taken only the front
end design part and bits of FPGA design of the tool flow, that can be done without any
fat money spent on tools.

 Various stages of ASIC/FPGA

• Specification : Word processor like Word, Kwriter, AbiWord, Open
Office.

• High Level Design : Word processor like Word, Kwriter, AbiWord, for drawing
waveform use tools like waveformer or testbencher or Word, Open Office.

• Micro Design/Low level design: Word processor like Word, Kwriter, AbiWord,
for drawing waveform use tools like waveformer or testbencher or Word.

• RTL Coding : Vim, Emacs, conTEXT, HDL TurboWriter
• Simulation : Modelsim, VCS, Verilog-XL, Veriwell, Finsim, Icarus.
• Synthesis : Design Compiler, FPGA Compiler, Synplify, Leonardo Spectrum.

You can download this from FPGA vendors like Altera and Xilinx for free.
• Place & Route : For FPGA use FPGA' vendors P&R tool. ASIC tools require

expensive P&R tools like Apollo. Students can use LASI, Magic.
• Post Si Validation : For ASIC and FPGA, the chip needs to be tested in real

environment. Board design, device drivers needs to be in place.

 Figure : Typical Design flow

 Verilog Programming Guide

60

 Specification

This is the stage at which we define what are the important parameters of the
system/design that you are planning to design. A simple example would be: I want to
design a counter; it should be 4 bit wide, should have synchronous reset, with active
high enable; when reset is active, counter output should go to "0".

 High Level Design

 Verilog Programming Guide

61

This is the stage at which you define various blocks in the design and how they
communicate. Let's assume that we need to design a microprocessor: high level design
means splitting the design into blocks based on their function; in our case the blocks are
registers, ALU, Instruction Decode, Memory Interface, etc.

 Figure : I8155 High Level Block Diagram

 Micro Design/Low level design

Low level design or Micro design is the phase in which the designer describes how each
block is implemented. It contains details of State machines, counters, Mux, decoders,
internal registers. It is always a good idea to draw waveforms at various interfaces. This
is the phase where one spends lot of time.

 Verilog Programming Guide

62

 Figure : Sample Low level design

 RTL Coding

 In RTL coding, Micro design is converted into Verilog/VHDL code, using
synthesizable constructs of the language. Normally we like to lint the code, before
starting verification or synthesis.

 1 module addbit (

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

 20 wire co;

 21 //Code starts here

 Verilog Programming Guide

63

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

 Simulation

Simulation is the process of verifying the functional characteristics of models at any
level of abstraction. We use simulators to simulate the Hardware models. To test if the
RTL code meets the functional requirements of the specification, we must see if all the
RTL blocks are functionally correct. To achieve this we need to write a testbench, which
generates clk, reset and the required test vectors. A sample testbench for a counter is
shown below. Normally we spend 60-70% of time in design verification.

 Figure : Sample Testbench Env

We use the waveform output from the simulator to see if the DUT (Device Under Test)
is functionally correct. Most of the simulators come with a waveform viewer. As design
becomes complex, we write self checking testbench, where testbench applies the test
vector, then compares the output of DUT with expected values.

There is another kind of simulation, called timing simulation, which is done after
synthesis or after P&R (Place and Route). Here we include the gate delays and wire

http://www.asic-world.com/code/verilog_tutorial/addbit.v

 Verilog Programming Guide

64

delays and see if DUT works at rated clock speed. This is also called as SDF
simulation or gate level simulation.

 Figure : 4 bit Up Counter Waveform

 Synthesis

Synthesis is the process in which synthesis tools like design compiler or Synplify take
RTL in Verilog or VHDL, target technology, and constrains as input and maps the RTL
to target technology primitives. Synthesis tool, after mapping the RTL to gates, also do
the minimal amount of timing analysis to see if the mapped design is meeting the timing
requirements. (Important thing to note is, synthesis tools are not aware of wire delays,
they only know of gate delays). After the synthesis there are a couple of things that are
normally done before passing the netlist to backend (Place and Route)

• Formal Verification : Check if the RTL to gate mapping is correct.
• Scan insertion : Insert the scan chain in the case of ASIC.

 Verilog Programming Guide

65

 Figure : Synthesis Flow

 Place & Route

The gatelevel netlist from the synthesis tool is taken and imported into place and route
tool in Verilog netlist format. All the gates and flip-flops are placed; clock tree synthesis
and reset is routed. After this each block is routed. The P&R tool output is a GDS file,
used by foundry for fabricating the ASIC. Backend team normally dumps out SPEF
(standard parasitic exchange format) /RSPF (reduced parasitic exchange format)/DSPF
(detailed parasitic exchange format) from layout tools like ASTRO to the frontend team,
who then use the read_parasitic command in tools like Prime Time to write out SDF
(standard delay format) for gate level simulation purposes.

 Verilog Programming Guide

66

 Figure : Sample micro-processor placement

 Figure : J-K Flip-Flop

 Verilog Programming Guide

67

 Post Silicon Validation

Once the chip (silicon) is back from fab, it needs to be put in a real environment and
tested before it can be released into Market. Since the simulation speed (number of
clocks per second) with RTL is very slow, there is always the possibility to find a bug in
Post silicon validation.

Introduction

If you refer to any book on programming languages, it starts with an "Hello World"
program; once you have written it, you can be sure that you can do something in that

language .

Well I am also going to show how to write a "hello world" program, followed by
a "counter" design, in Verilog.

 Hello World Program

 1 //---

 2 // This is my first Verilog Program

 3 // Design Name : hello_world

 4 // File Name : hello_world.v

 5 // Function : This program will print 'hello world'

 6 // Coder : Deepak

 7 //---

 8 module hello_world ;
 9

 10 initial begin

 11 $display ("Hello World by Deepak");

 12 #10 $finish;

 13 end
 14

 15 endmodule // End of Module hello_world

You could download file hello_world.v here

http://www.asic-world.com/code/verilog_tutorial/hello_world.v

 Verilog Programming Guide

68

Words in green are comments, blue are reserved words. Any program in Verilog starts
with reserved word 'module' <module_name>. In the above example line 8 contains
module hello_world. (Note: We can have compiler pre-processor statements like
`include', `define' before module declaration)

Line 10 contains the initial block: this block gets executed only once after the simulation
starts, at time=0 (0ns). This block contains two statements which are enclosed within
begin, at line 10, and end, at line 13. In Verilog, if you have multiple lines within a block,
you need to use begin and end. Module ends with 'endmodule' reserved word, in this
case at line 15.

 Hello World Program Output

 Hello World by Deepak

 Counter Design Block

 Verilog Programming Guide

69

 Counter Design Specs

• 4-bit synchronous up counter.
• active high, synchronous reset.
• Active high enable.

 Counter Design

 1 //---

 2 // This is my second Verilog Design

 3 // Design Name : first_counter

 4 // File Name : first_counter.v

 5 // Function : This is a 4 bit up-counter with

 6 // Synchronous active high reset and

 7 // with active high enable signal

 8 //---

 9 module first_counter (

 10 clock , // Clock input of the design

 11 reset , // active high, synchronous Reset input

 12 enable , // Active high enable signal for counter

 13 counter_out // 4 bit vector output of the counter

 14); // End of port list

 15 //-------------Input Ports-----------------------------

 16 input clock ;

 17 input reset ;

 18 input enable ;

 19 //-------------Output Ports----------------------------

 20 output [3:0] counter_out ;

 21 //-------------Input ports Data Type-------------------

 22 // By rule all the input ports should be wires

 23 wire clock ;

 24 wire reset ;

 25 wire enable ;

 26 //-------------Output Ports Data Type------------------

 27 // Output port can be a storage element (reg) or a wire

 28 reg [3:0] counter_out ;
 29

 30 //------------Code Starts Here-------------------------

 31 // Since this counter is a positive edge trigged one,

 Verilog Programming Guide

70

 32 // We trigger the below block with respect to positive

 33 // edge of the clock.

 34 always @ (posedge clock)

 35 begin : COUNTER // Block Name

 36 // At every rising edge of clock we check if reset is active

 37 // If active, we load the counter output with 4'b0000

 38 if (reset == 1'b1) begin

 39 counter_out <= #1 4'b0000;

 40 end

 41 // If enable is active, then we increment the counter

 42 else if (enable == 1'b1) begin

 43 counter_out <= #1 counter_out + 1;

 44 end

 45 end // End of Block COUNTER
 46

 47 endmodule // End of Module counter

You could download file first_counter.v here

 Counter Test Bench

Any digital circuit, no matter how complex, needs to be tested. For the counter logic, we
need to provide clock and reset logic. Once the counter is out of reset, we toggle the
enable input to the counter, and check the waveform to see if the counter is counting
correctly. This is done in Verilog.

http://www.asic-world.com/code/verilog_tutorial/first_counter.v

 Verilog Programming Guide

71

The counter testbench consists of clock generator, reset control, enable control and
monitor/checker logic. Below is the simple code of testbench without the
monitor/checker logic.

 1 `include "first_counter.v"

 2 module first_counter_tb();

 3 // Declare inputs as regs and outputs as wires

 4 reg clock, reset, enable;

 5 wire [3:0] counter_out;
 6

 7 // Initialize all variables

 8 initial begin

 9 $display ("time\t clk reset enable counter");

 10 $monitor ("%g\t %b %b %b %b",

 11 $time, clock, reset, enable, counter_out);

 12 clock = 1; // initial value of clock

 13 reset = 0; // initial value of reset

 14 enable = 0; // initial value of enable

 15 #5 reset = 1; // Assert the reset

 16 #10 reset = 0; // De-assert the reset

 17 #10 enable = 1; // Assert enable

 18 #100 enable = 0; // De-assert enable

 19 #5 $finish; // Terminate simulation

 20 end
 21

 22 // Clock generator

 23 always begin

 24 #5 clock = ~clock; // Toggle clock every 5 ticks

 25 end
 26

 27 // Connect DUT to test bench
 28 first_counter U_counter (

 29 clock,

 30 reset,

 31 enable,

 32 counter_out

 33);

 34

 35 endmodule

You could download file first_counter_tb.v here

 time clk reset enable counter
 0 1 0 0 xxxx

http://www.asic-world.com/code/verilog_tutorial/first_counter_tb.v

 Verilog Programming Guide

72

 5 0 1 0 xxxx
 10 1 1 0 xxxx
 11 1 1 0 0000
 15 0 0 0 0000
 20 1 0 0 0000
 25 0 0 1 0000
 30 1 0 1 0000
 31 1 0 1 0001
 35 0 0 1 0001
 40 1 0 1 0001
 41 1 0 1 0010
 45 0 0 1 0010
 50 1 0 1 0010
 51 1 0 1 0011
 55 0 0 1 0011
 60 1 0 1 0011
 61 1 0 1 0100
 65 0 0 1 0100
 70 1 0 1 0100
 71 1 0 1 0101
 75 0 0 1 0101
 80 1 0 1 0101
 81 1 0 1 0110
 85 0 0 1 0110
 90 1 0 1 0110
 91 1 0 1 0111
 95 0 0 1 0111
 100 1 0 1 0111
 101 1 0 1 1000
 105 0 0 1 1000
 110 1 0 1 1000
 111 1 0 1 1001
 115 0 0 1 1001
 120 1 0 1 1001
 121 1 0 1 1010
 125 0 0 0 1010

 Counter Waveform

 Verilog Programming Guide

73

Lexical Conventions

The basic lexical conventions used by Verilog HDL are similar to those in the C
programming language. Verilog HDL is a case-sensitive language. All keywords are in
lowercase.

 White Space

White space can contain the characters for blanks, tabs, newlines, and form feeds.
These characters are ignored except when they serve to separate other tokens.
However, blanks and tabs are significant in strings.

 White space characters are :

• Blank spaces
• Tabs
• Carriage returns
• New-line
• Form-feeds

 Examples of White Spaces

 Functional Equivalent Code

 Verilog Programming Guide

74

 Bad Code : Never write code like this.

 1 module addbit(a,b,ci,sum,co);

 2 input a,b,ci;output sum co;

 3 wire a,b,ci,sum,co;endmodule

You could download file bad_code.v here

 Good Code : Nice way to write code.

 1 module addbit (
 2 a,

 3 b,

 4 ci,

 5 sum,

 6 co);

 7 input a;

 8 input b;

 9 input ci;

 10 output sum;

 11 output co;

 12 wire a;

 13 wire b;

 14 wire ci;

 15 wire sum;

 16 wire co;
 17

 18 endmodule

You could download file good_code.v here

 Comments

 There are two forms to introduce comments.

• Single line comments begin with the token // and end with a carriage return
• Multi line comments begin with the token /* and end with the token */

http://www.asic-world.com/code/verilog_tutorial/bad_code.v
http://www.asic-world.com/code/verilog_tutorial/good_code.v

 Verilog Programming Guide

75

 Examples of Comments

 1 /* This is a
 2 Multi line comment

 3 example */

 4 module addbit (
 5 a,

 6 b,

 7 ci,

 8 sum,

 9 co);

 10

 11 // Input Ports Single line comment

 12 input a;

 13 input b;

 14 input ci;

 15 // Output ports

 16 output sum;

 17 output co;

 18 // Data Types

 19 wire a;

 20 wire b;

 21 wire ci;

 22 wire sum;

 23 wire co;
 24

 25 endmodule

You could download file comment.v here

 Case Sensitivity

 Verilog HDL is case sensitive

• Lower case letters are unique from upper case letters
• All Verilog keywords are lower case

 Examples of Unique names

http://www.asic-world.com/code/verilog_tutorial/comment.v

 Verilog Programming Guide

76

 1 input // a Verilog Keyword

 2 wire // a Verilog Keyword

 3 WIRE // a unique name (not a keyword)

 4 Wire // a unique name (not a keyword)

You could download file unique_names.v here

NOTE : Never use Verilog keywords as unique names, even if the case is different.

 Identifiers

Identifiers are names used to give an object, such as a register or a function or a
module, a name so that it can be referenced from other places in a description.

• Identifiers must begin with an alphabetic character or the underscore character
(a-z A-Z _)

• Identifiers may contain alphabetic characters, numeric characters, the
underscore, and the dollar sign (a-z A-Z 0-9 _ $)

• Identifiers can be up to 1024 characters long.

 Examples of legal identifiers

 data_input mu

 clk_input my$clk

 i386 A

http://www.asic-world.com/code/verilog_tutorial/unique_names.v

 Verilog Programming Guide

77

 Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by escaping the identifier.
Escaped identifiers provide a means of including any of the printable ASCII characters
in an identifier (the decimal values 33 through 126, or 21 through 7E in hexadecimal).

• Escaped identifiers begin with the back slash (\)
• Entire identifier is escaped by the back slash.
• Escaped identifier is terminated by white space (Characters such as commas,

parentheses, and semicolons become part of the escaped identifier unless
preceded by a white space)

• Terminate escaped identifiers with white space, otherwise characters that should
follow the identifier are considered as part of it.

 Examples of escape identifiers

Verilog does not allow to identifier to start with a numeric character. So if you really want
to use a identifier to start with a numeric value then use a escape character as shown
below.

 1 // There must be white space after the

 2 // string which uses escape character

 3 module \1dff (

 4 q, // Q output

 5 \q~ , // Q_out output

 6 d, // D input

 7 cl$k, // CLOCK input

 8 \reset* // Reset input
 9);

 10

 11 input d, cl$k, \reset* ;

 12 output q, \q~ ;
 13

 14 endmodule

You could download file escape_id.v here

http://www.asic-world.com/code/verilog_tutorial/escape_id.v

 Verilog Programming Guide

78

 Numbers in Verilog

You can specify constant numbers in decimal, hexadecimal, octal, or binary format.
Negative numbers are represented in 2's complement form. When used in a number,
the question mark (?) character is the Verilog alternative for the z character. The
underscore character (_) is legal anywhere in a number except as the first character,
where it is ignored.

 Integer Numbers

Verilog HDL allows integer numbers to be specified as

• Sized or unsized numbers (Unsized size is 32 bits)
• In a radix of binary, octal, decimal, or hexadecimal
• Radix and hex digits (a,b,c,d,e,f) are case insensitive
• Spaces are allowed between the size, radix and value

 Syntax: <size>'<radix><value>;

 Example of Integer Numbers

 Integer Stored as

1 00000000000000000000000000000001

8'hAA 10101010

6'b10_0011 100011

'hF 00000000000000000000000000001111

Verilog expands <value> filling the specified <size> by working from right-to-left

 Verilog Programming Guide

79

• When <size> is smaller than <value>, then leftmost bits of <value> are truncated
• When <size> is larger than <value>, then leftmost bits are filled, based on the

value of the leftmost bit in <value>.
o Leftmost '0' or '1' are filled with '0'
o Leftmost 'Z' are filled with 'Z'
o Leftmost 'X' are filled with 'X'

Note : X Stands for unknown and Z stands for high impedance, 1 for logic high or 1 and
0 for logic low or 0.

 Example of Integer Numbers

 Integer Stored as

6'hCA 001010

6'hA 001010

16'bZ ZZZZZZZZZZZZZZZZ

8'bx xxxxxxxx

 Real Numbers

• Verilog supports real constants and variables
• Verilog converts real numbers to integers by rounding
• Real Numbers can not contain 'Z' and 'X'
• Real numbers may be specified in either decimal or scientific notation
• < value >.< value >

 Verilog Programming Guide

80

• < mantissa >E< exponent >
• Real numbers are rounded off to the nearest integer when assigning to an

integer.

 Example of Real Numbers

 Real Number Decimal notation

1.2 1.2

0.6 0.6

3.5E6 3,500000.0

 Signed and Unsigned Numbers

Verilog Supports both types of numbers, but with certain restrictions. Like in C language
we don't have int and unint types to say if a number is signed integer or unsigned
integer.

Any number that does not have negative sign prefix is a positive number. Or indirect
way would be "Unsigned".

Negative numbers can be specified by putting a minus sign before the size for a
constant number, thus they become signed numbers. Verilog internally represents
negative numbers in 2's complement format. An optional signed specifier can be added
for signed arithmetic.

 Verilog Programming Guide

81

 Examples

 Number Description

32'hDEAD_BEEF Unsigned or signed positive number

-14'h1234 Signed negative number

The example file below shows how Verilog treats signed and unsigned numbers.

 1 module signed_number;
 2

 3 reg [31:0] a;
 4

 5 initial begin

 6 a = 14'h1234;

 7 $display ("Current Value of a = %h", a);

 8 a = -14'h1234;

 9 $display ("Current Value of a = %h", a);

 10 a = 32'hDEAD_BEEF;

 11 $display ("Current Value of a = %h", a);

 12 a = -32'hDEAD_BEEF;

 13 $display ("Current Value of a = %h", a);

 14 #10 $finish;

 15 end
 16

 17 endmodule

You could download file signed_number.v here

 Current Value of a = 00001234
 Current Value of a = ffffedcc
 Current Value of a = deadbeef
 Current Value of a = 21524111

Modules

http://www.asic-world.com/code/verilog_tutorial/signed_number.v

 Verilog Programming Guide

82

• Modules are the building blocks of Verilog designs
• You create the design hierarchy by instantiating modules in other modules.

• You instance a module when you use that module in another, higher-level module.

 Ports

• Ports allow communication between a module and its environment.
• All but the top-level modules in a hierarchy have ports.

• Ports can be associated by order or by name.

You declare ports to be input, output or inout. The port declaration syntax is :

 input [range_val:range_var] list_of_identifiers;

 output [range_val:range_var] list_of_identifiers;

 Verilog Programming Guide

83

 inout [range_val:range_var] list_of_identifiers;

 NOTE : As a good coding practice, there should be only one port
identifier per line, as shown below

 Examples : Port Declaration

 1 input clk ; // clock input

 2 input [15:0] data_in ; // 16 bit data input bus

 3 output [7:0] count ; // 8 bit counter output

 4 inout data_bi ; // Bi-Directional data bus

You could download file port_declare.v here

 Examples : A complete Example in Verilog

 1 module addbit (

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

http://www.asic-world.com/code/verilog_tutorial/port_declare.v

 Verilog Programming Guide

84

 20 wire co;

 21 //Code starts here

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

 Modules connected by port order (implicit)

 Here order should match correctly. Normally it's not a good idea to
connect ports implicitly. It could cause problem in debug (for example: locating the port
which is causing a compile error), when any port is added or deleted.

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_implicit

 4 // File Name : adder_implicit.v

 5 // Function : This program shows how implicit

 6 // port connection are done

 7 // Coder : Deepak Kumar Tala

 8 //---

 9 module adder_implicit (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

http://www.asic-world.com/code/verilog_tutorial/addbit.v

 Verilog Programming Guide

85

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (

 40 r1[0] ,

 41 r2[0] ,

 42 ci ,

 43 result[0] ,

 44 c1

 45);

 46

 47 addbit u1 (

 48 r1[1] ,

 49 r2[1] ,

 50 c1 ,

 51 result[1] ,

 52 c2

 53);

 54

 55 addbit u2 (

 56 r1[2] ,

 57 r2[2] ,

 58 c2 ,

 59 result[2] ,

 60 c3

 61);

 62

 63 addbit u3 (

 64 r1[3] ,

 65 r2[3] ,

 66 c3 ,

 67 result[3] ,

 68 carry

 69);

 70

 71 endmodule // End Of Module adder

You could download file adder_implicit.v here

http://www.asic-world.com/code/verilog_tutorial/adder_implicit.v

 Verilog Programming Guide

86

 Modules connected by name

 Here the name should match with the leaf module, the order is not
important.

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_explicit

 4 // File Name : adder_explicit.v

 5 // Function : Here the name should match

 6 // with the leaf module, the order is not important.

 7 // Coder : Deepak Kumar Tala

 8 //---

 9 module adder_explicit (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (

 40 .a (r1[0]) ,

 Verilog Programming Guide

87

 41 .b (r2[0]) ,

 42 .ci (ci) ,

 43 .sum (result[0]) ,

 44 .co (c1)

 45);

 46

 47 addbit u1 (

 48 .a (r1[1]) ,

 49 .b (r2[1]) ,

 50 .ci (c1) ,

 51 .sum (result[1]) ,

 52 .co (c2)

 53);

 54

 55 addbit u2 (

 56 .a (r1[2]) ,

 57 .b (r2[2]) ,

 58 .ci (c2) ,

 59 .sum (result[2]) ,

 60 .co (c3)

 61);

 62

 63 addbit u3 (

 64 .a (r1[3]) ,

 65 .b (r2[3]) ,

 66 .ci (c3) ,

 67 .sum (result[3]) ,

 68 .co (carry)

 69);

 70

 71 endmodule // End Of Module adder

You could download file adder_explicit.v here

 Instantiating a module

 1 //---

 2 // This is simple parity Program

 3 // Design Name : parity

 4 // File Name : parity.v

 5 // Function : This program shows how a verilog

 6 // primitive/module port connection are done

 7 // Coder : Deepak

 8 //---

 9 module parity (

 10 a , // First input

http://www.asic-world.com/code/verilog_tutorial/adder_explicit.v

 Verilog Programming Guide

88

 11 b , // Second input

 12 c , // Third Input

 13 d , // Fourth Input

 14 y // Parity output
 15);

 16

 17 // Input Declaration

 18 input a ;

 19 input b ;

 20 input c ;

 21 input d ;

 22 // Ouput Declaration

 23 output y ;

 24 // port data types

 25 wire a ;

 26 wire b ;

 27 wire c ;

 28 wire d ;

 29 wire y ;

 30 // Internal variables

 31 wire out_0 ;

 32 wire out_1 ;
 33

 34 // Code starts Here

 35 xor u0 (out_0,a,b);
 36

 37 xor u1 (out_1,c,d);
 38

 39 xor u2 (y,out_0,out_1);
 40

 41 endmodule // End Of Module parity

You could download file parity.v here

 Question : What is the difference between u0 in module adder and u0 in
module parity?

 Schematic

http://www.asic-world.com/code/verilog_tutorial/parity.v

 Verilog Programming Guide

89

 Port Connection Rules

• Inputs : internally must always be of type net, externally the inputs
can be connected to a variable of type reg or net.

• Outputs : internally can be of type net or reg, externally the outputs must be
connected to a variable of type net.

• Inouts : internally or externally must always be type net, can only be connected to a
variable net type.

• Width matching : It is legal to connect internal and external ports of
different sizes. But beware, synthesis tools could report problems.

• Unconnected ports : unconnected ports are allowed by using a ",".
• The net data types are used to connect structure.

• A net data type is required if a signal can be driven a structural connection.

 Verilog Programming Guide

90

 Example - Implicit Unconnected Port

 1 module implicit();

 2 reg clk,d,rst,pre;

 3 wire q;
 4

 5 // Here second port is not connected
 6 dff u0 (q,,clk,d,rst,pre);

 7

 8 endmodule
 9

 10 // D fli-flop

 11 module dff (q, q_bar, clk, d, rst, pre);

 12 input clk, d, rst, pre;

 13 output q, q_bar;

 14 reg q;
 15

 16 assign q_bar = ~q;
 17

 18 always @ (posedge clk)

 19 if (rst == 1'b1) begin

 20 q <= 0;

 21 end else if (pre == 1'b1) begin

 22 q <= 1;

 23 end else begin

 24 q <= d;

 25 end
 26

 27 endmodule

You could download file implicit.v here

 Example - Explicit Unconnected Port

 1 module explicit();

 2 reg clk,d,rst,pre;

 3 wire q;
 4

 5 // Here q_bar is not connected

http://www.asic-world.com/code/verilog_tutorial/implicit.v

 Verilog Programming Guide

91

 6 // We can connect ports in any order
 7 dff u0 (

 8 .q (q),

 9 .d (d),

 10 .clk (clk),

 11 .q_bar (),

 12 .rst (rst),

 13 .pre (pre)

 14);

 15

 16 endmodule
 17

 18 // D fli-flop

 19 module dff (q, q_bar, clk, d, rst, pre);

 20 input clk, d, rst, pre;

 21 output q, q_bar;

 22 reg q;
 23

 24 assign q_bar = ~q;
 25

 26 always @ (posedge clk)

 27 if (rst == 1'b1) begin

 28 q <= 0;

 29 end else if (pre == 1'b1) begin

 30 q <= 1;

 31 end else begin

 32 q <= d;

 33 end
 34

 35 endmodule

You could download file explicit.v here
Hierarchical Identifiers

 Hierarchical path names are based on the top module iden

tifier followed by module instant identifiers, separated by periods.

 This is useful basically when we want to see the signal inside a lower
module, or want to force a value inside an internal module. The example below shows how
to monitor the value of an internal module signal.

http://www.asic-world.com/code/verilog_tutorial/explicit.v

 Verilog Programming Guide

92

 Example

 1 //---

 2 // This is simple adder Program

 3 // Design Name : adder_hier

 4 // File Name : adder_hier.v

 5 // Function : This program shows verilog hier path works

 6 // Coder : Deepak

 7 //---

 8 `include "addbit.v"

 9 module adder_hier (

 10 result , // Output of the adder

 11 carry , // Carry output of adder

 12 r1 , // first input

 13 r2 , // second input

 14 ci // carry input
 15);

 16

 17 // Input Port Declarations

 18 input [3:0] r1 ;

 19 input [3:0] r2 ;

 20 input ci ;
 21

 22 // Output Port Declarations

 23 output [3:0] result ;

 24 output carry ;
 25

 26 // Port Wires

 27 wire [3:0] r1 ;

 28 wire [3:0] r2 ;

 29 wire ci ;

 30 wire [3:0] result ;

 31 wire carry ;
 32

 33 // Internal variables

 34 wire c1 ;

 35 wire c2 ;

 36 wire c3 ;
 37

 38 // Code Starts Here
 39 addbit u0 (r1[0],r2[0],ci,result[0],c1);

 40 addbit u1 (r1[1],r2[1],c1,result[1],c2);

 41 addbit u2 (r1[2],r2[2],c2,result[2],c3);

 Verilog Programming Guide

93

 42 addbit u3 (r1[3],r2[3],c3,result[3],carry);

 43

 44 endmodule // End Of Module adder
 45

 46 module tb();
 47

 48 reg [3:0] r1,r2;

 49 reg ci;

 50 wire [3:0] result;

 51 wire carry;
 52

 53 // Drive the inputs

 54 initial begin

 55 r1 = 0;

 56 r2 = 0;

 57 ci = 0;

 58 #10 r1 = 10;

 59 #10 r2 = 2;

 60 #10 ci = 1;

 61 #10 $display("+--+");

 62 $finish;

 63 end
 64

 65 // Connect the lower module
 66 adder_hier U (result,carry,r1,r2,ci);

 67

 68 // Hier demo here

 69 initial begin

 70 $display("+--+");

 71 $display("| r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum |");

 72 $display("+--+");

 73 $monitor("| %h | %h | %h | %h | %h | %h | %h |",
 74 r1,r2,ci, tb.U.u0.sum, tb.U.u1.sum, tb.U.u2.sum, tb.U.u3.sum);

 75 end
 76

 77 endmodule

You could download file adder_hier.v here

 +--+
 | r1 | r2 | ci | u0.sum | u1.sum | u2.sum | u3.sum |
 +--+
0	0	0	0	0	0	0
a	0	0	0	1	0	1
a	2	0	0	0	1	1
a	2	1	1	0	1	1
 +--+

http://www.asic-world.com/code/verilog_tutorial/adder_hier.v

 Verilog Programming Guide

94

 Data Types

 Verilog Language has two primary data types:

• Nets - represent structural connections between components.
• Registers - represent variables used to store data.

 Every signal has a data type associated with it:

• Explicitly declared with a declaration in your Verilog code.
• Implicitly declared with no declaration when used to connect structural building blocks in

your code. Implicit declaration is always a net type "wire" and is one bit wi

 Types of Nets

 Each net type has a functionality that is used to
model different types of hardware (such as PMOS, NMOS, CMOS, etc)

 Net Data Type Functionality

wire, tri Interconnecting wire - no special resolution function

wor, trior Wired outputs OR together (models ECL)

wand, triand Wired outputs AND together (models open-collector)

tri0, tri1 Net pulls-down or pulls-up when not driven

 Verilog Programming Guide

95

supply0, supply1 Net has a constant logic 0 or logic 1 (supply strength)

trireg Retains last value, when driven by z (tristate).

 Note : Of all net types, wire is the one which is most
widely used.

 Example - wor

 1 module test_wor();
 2

 3 wor a;

 4 reg b, c;
 5

 6 assign a = b;

 7 assign a = c;
 8

 9 initial begin

 10 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 11 #1 b = 0;

 12 #1 c = 0;

 13 #1 b = 1;

 14 #1 b = 0;

 15 #1 c = 1;

 16 #1 b = 1;

 17 #1 b = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file test_wor.v here

 Simulator Output

 0 a = x b = x c = x

http://www.asic-world.com/code/verilog_tutorial/test_wor.v

 Verilog Programming Guide

96

 1 a = x b = 0 c = x
 2 a = 0 b = 0 c = 0
 3 a = 1 b = 1 c = 0
 4 a = 0 b = 0 c = 0
 5 a = 1 b = 0 c = 1
 6 a = 1 b = 1 c = 1
 7 a = 1 b = 0 c = 1

 Example - wand

 1 module test_wand();
 2

 3 wand a;

 4 reg b, c;
 5

 6 assign a = b;

 7 assign a = c;
 8

 9 initial begin

 10 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 11 #1 b = 0;

 12 #1 c = 0;

 13 #1 b = 1;

 14 #1 b = 0;

 15 #1 c = 1;

 16 #1 b = 1;

 17 #1 b = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file test_wand.v here

 Simulator Output

http://www.asic-world.com/code/verilog_tutorial/test_wand.v

 Verilog Programming Guide

97

 0 a = x b = x c = x
 1 a = 0 b = 0 c = x
 2 a = 0 b = 0 c = 0
 3 a = 0 b = 1 c = 0
 4 a = 0 b = 0 c = 0
 5 a = 0 b = 0 c = 1
 6 a = 1 b = 1 c = 1
 7 a = 0 b = 0 c = 1

 Example - tri

 1 module test_tri();
 2

 3 tri a;

 4 reg b, c;
 5

 6 assign a = (b) ? c : 1'bz;
 7

 8 initial begin

 9 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 10 b = 0;

 11 c = 0;

 12 #1 b = 1;

 13 #1 b = 0;

 14 #1 c = 1;

 15 #1 b = 1;

 16 #1 b = 0;

 17 #1 $finish;

 18 end
 19

 20 endmodule

You could download file test_tri.v here

 Simulator Output

 0 a = z b = 0 c = 0
 1 a = 0 b = 1 c = 0
 2 a = z b = 0 c = 0
 3 a = z b = 0 c = 1
 4 a = 1 b = 1 c = 1

http://www.asic-world.com/code/verilog_tutorial/test_tri.v

 Verilog Programming Guide

98

 5 a = z b = 0 c = 1

 Example - trireg

 1 module test_trireg();
 2

 3 trireg a;

 4 reg b, c;
 5

 6 assign a = (b) ? c : 1'bz;
 7

 8 initial begin

 9 $monitor("%g a = %b b = %b c = %b", $time, a, b, c);

 10 b = 0;

 11 c = 0;

 12 #1 b = 1;

 13 #1 b = 0;

 14 #1 c = 1;

 15 #1 b = 1;

 16 #1 b = 0;

 17 #1 $finish;

 18 end
 19

 20 endmodule

You could download file test_trireg.v here

 Simulator Output

 0 a = x b = 0 c = 0
 1 a = 0 b = 1 c = 0
 2 a = 0 b = 0 c = 0
 3 a = 0 b = 0 c = 1
 4 a = 1 b = 1 c = 1
 5 a = 1 b = 0 c = 1

http://www.asic-world.com/code/verilog_tutorial/test_trireg.v

 Verilog Programming Guide

99

 Register Data Types

• Registers store the last value assigned to them until another
assignment statement changes their value.

• Registers represent data storage constructs.
• You can create regs arrays called memories.
• register data types are used as variables in procedural blocks.
• A register data type is required if a signal is assigned a value within a procedural

block
• Procedural blocks begin with keyword initial and always.

 Data Types Functionality

reg Unsigned variable

integer Signed variable - 32 bits

time Unsigned integer - 64 bits

real Double precision floating point variable

 Note : Of all register types, reg is the one which is
most widely used

 Strings

 A string is a sequence of characters enclosed by
double quotes and all contained on a single line. Strings used as operands in expressions
and assignments are treated as a sequence of eight-bit ASCII values, with one eight-bit
ASCII value representing one character. To declare a variable to store a string, declare a

 Verilog Programming Guide

100

register large enough to hold the maximum number of characters the variable will hold.
Note that no extra bits are required to hold a termination character; Verilog does not store
a string termination character. Strings can be manipulated using the standard operators.

 When a variable is larger than required to hold a
value being assigned, Verilog pads the contents on the left with zeros after the
assignment. This is consistent with the padding that occurs during assignment of non-
string values.

 Certain characters can be used in strings only when
preceded by an introductory character called an escape character. The following table lists
these characters in the right-hand column together with the escape sequence that
represents the character in the left-hand column.

 Special Characters in Strings

 Character Description

\n New line character

\t Tab character

\\ Backslash (\) character

\" Double quote (") character

\ddd A character specified in 1-3 octal digits (0 <= d <= 7)

%% Percent (%) character

 Verilog Programming Guide

101

 Example

 1 //---

 2 // Design Name : strings

 3 // File Name : strings.v

 4 // Function : This program shows how string

 5 // can be stored in reg

 6 // Coder� : Deepak Kumar Tala

 7 //---

 8 module strings();

 9 // Declare a register variable that is 21 bytes

 10 reg [8*21:0] string ;
 11

 12 initial begin

 13 string = "This is sample string";

 14 $display ("%s \n", string);

 15 end
 16

 17 endmodule

You could download file strings.v here

 This is sample string

Introduction

 Verilog has built in primitives like gates, transmission gates, and switches. These
are rarely used in design (RTL Coding), but are used in post synthesis world for modeling the
ASIC/FPGA cells; these cells are then used for gate level simulation, or what is called as SDF
simulation. Also the output netlist format from the synthesis tool, which is imported into the place
and route tool, is also in Verilog gate level primitives.

 Note : RTL engineers still may use gate level primitivies or ASIC library cells
in RTL when using IO CELLS, Cross domain synch cells.

 Gate Primitives

http://www.asic-world.com/code/verilog_tutorial/strings.v

 Verilog Programming Guide

102

 The gates have one scalar output and multiple scalar
inputs. The 1st terminal in the list of gate terminals is an output and the other terminals are
inputs.

 Gate Description

and N-input AND gate

nand N-input NAND gate

or N-input OR gate

nor N-input NOR gate

xor N-input XOR gate

xnor N-input XNOR gate

 Examples

 Verilog Programming Guide

103

 1 module gates();
 2

 3 wire out0;

 4 wire out1;

 5 wire out2;

 6 reg in1,in2,in3,in4;
 7

 8 not U1(out0,in1);

 9 and U2(out1,in1,in2,in3,in4);

 10 xor U3(out2,in1,in2,in3);
 11

 12 initial begin

 13 $monitor(

 14 "in1=%b in2=%b in3=%b in4=%b out0=%b out1=%b out2=%b",
 15 in1,in2,in3,in4,out0,out1,out2);

 16 in1 = 0;

 17 in2 = 0;

 18 in3 = 0;

 19 in4 = 0;

 20 #1 in1 = 1;

 21 #1 in2 = 1;

 22 #1 in3 = 1;

 23 #1 in4 = 1;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file gates.v here

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out0 = 1 out1 = 0 out2 = 0
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out0 = 0 out1 = 0 out2 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out0 = 0 out1 = 0 out2 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out0 = 0 out1 = 1 out2 = 1

 Transmission Gate Primitives

 Transmission gates are bi-directional and can be
resistive or non-resistive.

http://www.asic-world.com/code/verilog_tutorial/gates.v

 Verilog Programming Guide

104

 Syntax: keyword unique_name (inout1, inout2,
control);

 Gate Description

not N-output inverter

buf N-output buffer.

bufif0 Tri-state buffer, Active low en.

bufif1 Tri-state buffer, Active high en.

notif0 Tristate inverter, Low en.

notif1 Tristate inverter, High en.

 Transmission gates tran and rtran are permanently
on and do not have a control line. Tran can be used to interface two wires with seperate
drives, and rtran can be used to weaken signals.

 Verilog Programming Guide

105

 Examples

 1 module transmission_gates();
 2

 3 reg data_enable_low, in;

 4 wire data_bus, out1, out2;
 5

 6 bufif0 U1(data_bus,in, data_enable_low);

 7 buf U2(out1,in);

 8 not U3(out2,in);
 9

 10 initial begin

 11 $monitor(

 12 "@%g in=%b data_enable_low=%b out1=%b out2= b data_bus=%b",

 13 $time, in, data_enable_low, out1, out2, data_bus);

 14 data_enable_low = 0;

 15 in = 0;

 16 #4 data_enable_low = 1;

 17 #8 $finish;

 18 end
 19

 20 always #2 in = ~in;
 21

 22 endmodule

You could download file transmission_gates.v here

 @0 in = 0 data_enable_low = 0 out1 = 0 out2 = 1 data_bus = 0
 @2 in = 1 data_enable_low = 0 out1 = 1 out2 = 0 data_bus = 1
 @4 in = 0 data_enable_low = 1 out1 = 0 out2 = 1 data_bus = z
 @6 in = 1 data_enable_low = 1 out1 = 1 out2 = 0 data_bus = z
 @8 in = 0 data_enable_low = 1 out1 = 0 out2 = 1 data_bus = z
 @10 in = 1 data_enable_low = 1 out1 = 1 out2 = 0 data_bus = z

 Switch Primitives

http://www.asic-world.com/code/verilog_tutorial/transmission_gates.v

 Verilog Programming Guide

106

 There are six different switch primitives (transistor
models) used in Verilog, nmos, pmos and cmos and the corresponding three resistive
versions rnmos, rpmos and rcmos. The cmos type of switches have two gates and so
have two control signals.

 Syntax: keyword unique_name (drain. source, gate)

 Gate Description

1. pmos Uni-directional PMOS switch

1. rpmos Resistive PMOS switch

2. nmos Uni-directional NMOS switch

2. rnmos Resistive NMOS switch

3. cmos Uni-directional CMOS switch

3. rcmos Resistive CMOS switch

 Verilog Programming Guide

107

4. tranif1 Bi-directional transistor (High)

4. tranif0 Bi-directional transistor (Low)

5. rtranif1 Resistive Transistor (High)

5. rtranif0 Resistive Transistor (Low)

6. tran Bi-directional pass transistor

6. rtran Resistive pass transistor

7. pullup Pull up resistor

8. pulldown Pull down resistor

 Transmission gates are bi-directional and can be
resistive or non-resistive. Resistive devices reduce the signal strength which appears on
the output by one level. All the switches only pass signals from source to drain, incorrect
wiring of the devices will result in high impedance outputs.

 Examples

 1 module switch_primitives();
 2

 3 wire net1, net2, net3;

 4 wire net4, net5, net6;
 5

 6 tranif0 my_gate1 (net1, net2, net3);

 7 rtranif1 my_gate2 (net4, net5, net6);
 8

 9 endmodule

You could download file switch_primitives.v here

http://www.asic-world.com/code/verilog_tutorial/switch_primitives.v

 Verilog Programming Guide

108

 Transmission gates tran and rtran are permanently
on and do not have a control line. Tran can be used to interface two wires with separate
drives, and rtran can be used to weaken signals. Resistive devices reduce the signal
strength which appears on the output by one level. All the switches only pass signals from
source to drain, incorrect wiring of the devices will result in high impedance outputs.

 Logic Values and signal Strengths

 The Verilog HDL has got four logic values

 Logic Value Description

0 zero, low, false

1 one, high, true

z or Z high impedance, floating

x or X unknown, uninitialized, contention

 Verilog Strength Levels

 Strength Level Specification Keyword

7 Supply Drive supply0 supply1

6 Strong Pull strong0 strong1

5 Pull Drive pull0 pull1

4 Large Capacitance large

 Verilog Programming Guide

109

3 Weak Drive weak0 weak1

2 Medium Capacitance medium

1 Small Capacitance small

0 Hi Impedance highz0 highz1

 Example : Strength Level

 Two buffers that has output

 A : Pull 1

 B : Supply 0

 Since supply 0 is stronger then pull 1, Output C takes
value of B.

 Example 2 : Strength Level

 Verilog Programming Guide

110

 Two buffers that has output

 A : Supply 1

 B : Large 1

 Since Supply 1 is stronger then Large 1, Output C
takes the value of A

Designing Using Primitives

 Designing using primitives is used only in library development, where the
ASIC vendor provides the ASIC library Verilog description, using Verilog primitives and
user defined primitives (UDP).

 AND Gate from NAND Gate

 Code

 Verilog Programming Guide

111

 1 // Structural model of AND gate from two NANDS

 2 module and_from_nand();
 3

 4 reg X, Y;

 5 wire F, W;

 6 // Two instantiations of the module NAND

 7 nand U1(W,X, Y);

 8 nand U2(F, W, W);
 9

 10 // Testbench Code

 11 initial begin

 12 $monitor ("X = %b Y = %b F = %b", X, Y, F);

 13 X = 0;

 14 Y = 0;

 15 #1 X = 1;

 16 #1 Y = 1;

 17 #1 X = 0;

 18 #1 $finish;

 19 end
 20

 21 endmodule

You could download file and_from_nand.v here

 X = 0 Y = 0 F = 0
 X = 1 Y = 0 F = 0
 X = 1 Y = 1 F = 1
 X = 0 Y = 1 F = 0

 D-Flip flop from NAND Gate

http://www.asic-world.com/code/verilog_tutorial/and_from_nand.v

 Verilog Programming Guide

112

 Verilog Code

 1 module dff_from_nand();

 2 wire Q,Q_BAR;

 3 reg D,CLK;
 4

 5 nand U1 (X,D,CLK) ;

 6 nand U2 (Y,X,CLK) ;

 7 nand U3 (Q,Q_BAR,X);

 8 nand U4 (Q_BAR,Q,Y);
 9

 10 // Testbench of above code

 11 initial begin

 12 $monitor("CLK = %b D = %b Q = %b Q_BAR = %b",CLK, D, Q, Q_BAR);

 13 CLK = 0;

 14 D = 0;

 15 #3 D = 1;

 16 #3 D = 0;

 17 #3 $finish;

 18 end
 19

 20 always #2 CLK = ~CLK;
 21

 22 endmodule

You could download file dff_from_nand.v here

http://www.asic-world.com/code/verilog_tutorial/dff_from_nand.v

 Verilog Programming Guide

113

 CLK = 0 D = 0 Q = x Q_BAR = x
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 1 D = 1 Q = 1 Q_BAR = 0
 CLK = 0 D = 1 Q = 1 Q_BAR = 0
 CLK = 1 D = 0 Q = 0 Q_BAR = 1
 CLK = 0 D = 0 Q = 0 Q_BAR = 1

 Multiplexer from primitives

 Verilog Code

 1 module mux_from_gates ();

 2 reg c0,c1,c2,c3,A,B;

 Verilog Programming Guide

114

 3 wire Y;

 4 //Invert the sel signals

 5 not (a_inv, A);

 6 not (b_inv, B);

 7 // 3-input AND gate

 8 and (y0,c0,a_inv,b_inv);

 9 and (y1,c1,a_inv,B);

 10 and (y2,c2,A,b_inv);

 11 and (y3,c3,A,B);

 12 // 4-input OR gate

 13 or (Y, y0,y1,y2,y3);
 14

 15 // Testbench Code goes here

 16 initial begin

 17 $monitor (

 18 "c0 = %b c1 = %b c2 = %b c3 = %b A = %b B = %b Y = %b",
 19 c0, c1, c2, c3, A, B, Y);

 20 c0 = 0;

 21 c1 = 0;

 22 c2 = 0;

 23 c3 = 0;

 24 A = 0;

 25 B = 0;

 26 #1 A = 1;

 27 #2 B = 1;

 28 #4 A = 0;

 29 #8 $finish;

 30 end
 31

 32 always #1 c0 = ~c0;

 33 always #2 c1 = ~c1;

 34 always #3 c2 = ~c2;

 35 always #4 c3 = ~c3;
 36

 37 endmodule

You could download file mux_from_gates.v here

 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 0 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 0 c1 = 1 c2 = 0 c3 = 0 A = 1 B = 0 Y = 0
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 1 B = 1 Y = 0
 c0 = 0 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 0 c2 = 1 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 1 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 0 A = 0 B = 1 Y = 0

http://www.asic-world.com/code/verilog_tutorial/mux_from_gates.v

 Verilog Programming Guide

115

 c0 = 1 c1 = 0 c2 = 1 c3 = 0 A = 0 B = 1 Y = 0
 c0 = 0 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 1 c1 = 1 c2 = 1 c3 = 0 A = 0 B = 1 Y = 1
 c0 = 0 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0
 c0 = 1 c1 = 0 c2 = 0 c3 = 1 A = 0 B = 1 Y = 0

 c0 = 0 c1 = 1 c2 = 0 c3 = 1 A = 0 B = 1 Y = 1

Gate and Switch delays

 In real circuits, logic gates have delays associated with them. Verilog
provides the mechanism to associate delays with gates.

• Rise, Fall and Turn-off delays.
• Minimal, Typical, and Maximum delays.

 In Verilog delays can be introduced with #'num' as in the examples below,
where # is a special character to introduce delay, and 'num' is the number of ticks
simulator should delay current statement execution.

• #1 a = b : Delay by 1, i.e. execute after 1 tick
• #2 not (a,b) : Delay by 2 all assignments made to a.

 Real transistors have resolution delays between the input and output.
This is modeled in Verilog by specifying one or more delays for the rise, fall, turn-on and
turn off time seperated by commas.

 Syntax: keyword #(delay{s}) unique_name (node specifications);

 Switch element Number Of Delays Specified
delays

Switch 1 Rise, fall and turn-off times of equal length

 Verilog Programming Guide

116

 2 Rise and fall times

 3 Rise, fall and turn off

(r)tranif0, (r)tranif1 1 both turn on and turn off

 2 turn on, turn off

(r)tran 0 None allowed

 Rise Delay

 The rise delay is associated with a gate output transition to 1 from
another value (0, x, z).

 Fall Delay

 The fall delay is associated with a gate output transition to 0 from another
value (1, x, z).

 Verilog Programming Guide

117

 Turn-off Delay

 The Turn-off delay is associated with a gate output transition to z from
another value (0, 1, x).

 Min Value

 The min value is the minimum delay value that the gate is expected to
have.

 Typ Value

 The typ value is the typical delay value that the gate is expected to have.

 Max Value

 The max value is the maximum delay value that the gate is expected to
have.

 Verilog Programming Guide

118

 Example

 Below are some examples to show the usage of delays.

 Example - Single Delay

 1 module buf_gate ();

 2 reg in;

 3 wire out;
 4

 5 buf #(5) (out,in);
 6

 7 initial begin

 8 $monitor ("Time = %g in = %b out=%b", $time, in, out);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #10 $finish;

 13 end
 14

 15 endmodule

You could download file buf_gate.v here

 Time = 0 in = 0 out=x
 Time = 5 in = 0 out=0
 Time = 10 in = 1 out=0
 Time = 15 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 25 in = 0 out=0

http://www.asic-world.com/code/verilog_tutorial/buf_gate.v

 Verilog Programming Guide

119

 Example - Two Delays

 1 module buf_gate1 ();

 2 reg in;

 3 wire out;
 4

 5 buf #(2,3) (out,in);
 6

 7 initial begin

 8 $monitor ("Time = %g in = %b out=%b", $time, in, out);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #10 $finish;

 13 end
 14

 15 endmodule

You could download file buf_gate1.v here

 Time = 0 in = 0 out=x
 Time = 3 in = 0 out=0
 Time = 10 in = 1 out=0
 Time = 12 in = 1 out=1
 Time = 20 in = 0 out=1
 Time = 23 in = 0 out=0

http://www.asic-world.com/code/verilog_tutorial/buf_gate1.v

 Verilog Programming Guide

120

 Example - All Delays

 1 module delay();

 2 reg in;

 3 wire rise_delay, fall_delay, all_delay;
 4

 5 initial begin

 6 $monitor (

 7 "Time=%g in=%b rise_delay=%b fall_delay=%b all_delay=%b",

 8 $time, in, rise_delay, fall_delay, all_delay);

 9 in = 0;

 10 #10 in = 1;

 11 #10 in = 0;

 12 #20 $finish;

 13 end
 14

 15 buf #(1,0)U_rise (rise_delay,in);

 16 buf #(0,1)U_fall (fall_delay,in);

 17 buf #1 U_all (all_delay,in);
 18

 19 endmodule

You could download file delay.v here

 Time = 0 in = 0 rise_delay = 0 fall_delay = x all_delay = x

http://www.asic-world.com/code/verilog_tutorial/delay.v

 Verilog Programming Guide

121

 Time = 1 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0
 Time = 10 in = 1 rise_delay = 0 fall_delay = 1 all_delay = 0
 Time = 11 in = 1 rise_delay = 1 fall_delay = 1 all_delay = 1
 Time = 20 in = 0 rise_delay = 0 fall_delay = 1 all_delay = 1
 Time = 21 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0

 Example - Complex Example

 1 module delay_example();
 2

 3 wire out1,out2,out3,out4,out5,out6;

 4 reg b,c;
 5

 6 // Delay for all transitions

 7 or #5 u_or (out1,b,c);

 8 // Rise and fall delay

 9 and #(1,2) u_and (out2,b,c);

 10 // Rise, fall and turn off delay

 11 nor #(1,2,3) u_nor (out3,b,c);

 12 //One Delay, min, typ and max

 13 nand #(1:2:3) u_nand (out4,b,c);

 14 //Two delays, min,typ and max

 15 buf #(1:4:8,4:5:6) u_buf (out5,b);

 16 //Three delays, min, typ, and max

 17 notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (out6,b,c);
 18

 19 //Testbench code

 20 initial begin

 21 $monitor (

 22 "Time=%g b=%b c=%b out1=%b out2=%b out3=%b out4=%b out5=%b out6=%b",

 Verilog Programming Guide

122

 23 $time, b, c , out1, out2, out3, out4, out5, out6);

 24 b = 0;

 25 c = 0;

 26 #10 b = 1;

 27 #10 c = 1;

 28 #10 b = 0;

 29 #10 $finish;

 30 end
 31

 32 endmodule

You could download file delay_example.v here

 Time = 0 b = 0 c=0 out1=x out2=x out3=x out4=x out5=x out6=x
 Time = 1 b = 0 c=0 out1=x out2=x out3=1 out4=x out5=x out6=x
 Time = 2 b = 0 c=0 out1=x out2=0 out3=1 out4=1 out5=x out6=z
 Time = 5 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 8 b = 0 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 10 b = 1 c=0 out1=0 out2=0 out3=1 out4=1 out5=0 out6=z
 Time = 12 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=0 out6=z
 Time = 14 b = 1 c=0 out1=0 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 15 b = 1 c=0 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 20 b = 1 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=z
 Time = 21 b = 1 c=1 out1=1 out2=1 out3=0 out4=1 out5=1 out6=z
 Time = 22 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=z
 Time = 25 b = 1 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 30 b = 0 c=1 out1=1 out2=1 out3=0 out4=0 out5=1 out6=0
 Time = 32 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=1 out6=1
 Time = 35 b = 0 c=1 out1=1 out2=0 out3=0 out4=1 out5=0 out6=1

 N-Input Primitives

 The and, nand, or, nor, xor, and xnor primitives have one output and any
number of inputs

• The single output is the first terminal.
• All other terminals are inputs.

http://www.asic-world.com/code/verilog_tutorial/delay_example.v

 Verilog Programming Guide

123

 Examples

 1 module n_in_primitive();
 2

 3 wire out1,out2,out3;

 4 reg in1,in2,in3,in4;
 5

 6 // Two input AND gate

 7 and u_and1 (out1, in1, in2);

 8 // four input AND gate

 9 and u_and2 (out2, in1, in2, in3, in4);

 10 // three input XNOR gate

 11 xnor u_xnor1 (out3, in1, in2, in3);
 12

 13 //Testbench Code

 14 initial begin

 15 $monitor (

 16 "in1 = %b in2 = %b in3 = %b in4 = %b out1 = %b out2 = %b out3 = %b",
 17 in1, in2, in3, in4, out1, out2, out3);

 18 in1 = 0;

 19 in2 = 0;

 20 in3 = 0;

 21 in4 = 0;

 22 #1 in1 = 1;

 23 #1 in2 = 1;

 24 #1 in3 = 1;

 25 #1 in4 = 1;

 26 #1 $finish;

 27 end
 28

 29 endmodule

You could download file n_in_primitive.v here

 in1 = 0 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 1
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out1 = 1 out2 = 0 out3 = 1
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out1 = 1 out2 = 0 out3 = 0
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out1 = 1 out2 = 1 out3 = 0

http://www.asic-world.com/code/verilog_tutorial/n_in_primitive.v

 Verilog Programming Guide

124

 N-Output Primitives

 The buf and not primitives have any number of outputs and one input

• The outputs are the first terminals listed.
• The last terminal is the single input.

 Examples

 1 module n_out_primitive();
 2

 3 wire out,out_0,out_1,out_2,out_3,out_a,out_b,out_c;

 4 wire in;
 5

 6 // one output Buffer gate

 7 buf u_buf0 (out,in);

 8 // four output Buffer gate

 9 buf u_buf1 (out_0, out_1, out_2, out_3, in);

 10 // three output Invertor gate

 11 not u_not0 (out_a, out_b, out_c, in);
 12

 13 endmodule

You could download file n_out_primitive.v here

Arithmetic Operators

• Binary: +, -, *, /, % (the modulus operator)
• Unary: +, - (This is used to specify the sign)
• Integer division truncates any fractional part
• The result of a modulus operation takes the sign of the first operand
• If any operand bit value is the unknown value x, then the entire result value is x

http://www.asic-world.com/code/verilog_tutorial/n_out_primitive.v

 Verilog Programming Guide

125

• Register data types are used as unsigned values (Negative numbers are stored in two's
complement form)

 Example

 1 module arithmetic_operators();
 2

 3 initial begin

 4 $display (" 5 + 10 = %d", 5 + 10);

 5 $display (" 5 - 10 = %d", 5 - 10);

 6 $display (" 10 - 5 = %d", 10 - 5);

 7 $display (" 10 * 5 = %d", 10 * 5);

 8 $display (" 10 / 5 = %d", 10 / 5);

 9 $display (" 10 / -5 = %d", 10 / -5);

 10 $display (" 10 %s 3 = %d","%", 10 % 3);

 11 $display (" +5 = %d", +5);

 12 $display (" -5 = %d", -5);

 13 #10 $finish;

 14 end
 15

 16 endmodule

You could download file arithmetic_operators.v here

 5 + 10 = 15
 5 - 10 = -5
 10 - 5 = 5
 10 * 5 = 50
 10 / 5 = 2
 10 / -5 = -2
 10 % 3 = 1
 +5 = 5
 -5 = -5

http://www.asic-world.com/code/verilog_tutorial/arithmetic_operators.v

 Verilog Programming Guide

126

 Relational Operators

 Operator Description

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

• The result is a scalar value (example a < b)
• 0 if the relation is false (a is bigger then b)
• 1 if the relation is true (a is smaller then b)

• x if any of the operands has unknown x bits (if a or b contains X)

 Note: If any operand is x or z, then the result of that test is treated as false
(0)

 Example

 Verilog Programming Guide

127

 1 module relational_operators();
 2

 3 initial begin

 4 $display (" 5 <= 10 = %b", (5 <= 10));

 5 $display (" 5 >= 10 = %b", (5 >= 10));

 6 $display (" 1'bx <= 10 = %b", (1'bx <= 10));

 7 $display (" 1'bz <= 10 = %b", (1'bz <= 10));

 8 #10 $finish;

 9 end
 10

 11 endmodule

You could download file relational_operators.v here

 5 <= 10 = 1
 5 >= 10 = 0
 1'bx <= 10 = x
 1'bz <= 10 = x

 Equality Operators

 There are two types of Equality operators. Case Equality and Logical
Equality.

http://www.asic-world.com/code/verilog_tutorial/relational_operators.v

 Verilog Programming Guide

128

 Operator Description

a === b a equal to b, including x and z (Case equality)

a !== b a not equal to b, including x and z (Case inequality)

a == b a equal to b, result may be unknown (logical equality)

a != b a not equal to b, result may be unknown (logical equality)

• Operands are compared bit by bit, with zero filling if the two
operands do not have the same length

• Result is 0 (false) or 1 (true)
• For the == and != operators, the result is x, if either operand contains an x or a z

• For the === and !== operators, bits with x and z are included in the comparison and must
match for the result to be true

 Note : The result is always 0 or 1.

 Example

 1 module equality_operators();
 2

 3 initial begin

 4 // Case Equality

 5 $display (" 4'bx001 === 4'bx001 = %b", (4'bx001 === 4'bx001));

 Verilog Programming Guide

129

 6 $display (" 4'bx0x1 === 4'bx001 = %b", (4'bx0x1 === 4'bx001));

 7 $display (" 4'bz0x1 === 4'bz0x1 = %b", (4'bz0x1 === 4'bz0x1));

 8 $display (" 4'bz0x1 === 4'bz001 = %b", (4'bz0x1 === 4'bz001));

 9 // Case Inequality

 10 $display (" 4'bx0x1 !== 4'bx001 = %b", (4'bx0x1 ! == 4'bx001));

 11 $display (" 4'bz0x1 !== 4'bz001 = %b", (4'bz0x1 ! == 4'bz001));

 12 // Logical Equality

 13 $display (" 5 == 10 = %b", (5 == 10));

 14 $display (" 5 == 5 = %b", (5 == 5));

 15 // Logical Inequality

 16 $display (" 5 != 5 = %b", (5 ! = 5));

 17 $display (" 5 != 6 = %b", (5 ! = 6));

 18 #10 $finish;

 19 end
 20

 21 endmodule

You could download file equality_operators.v here

 4'bx001 === 4'bx001 = 1
 4'bx0x1 === 4'bx001 = 0
 4'bz0x1 === 4'bz0x1 = 1
 4'bz0x1 === 4'bz001 = 0
 4'bx0x1 !== 4'bx001 = 1
 4'bz0x1 !== 4'bz001 = 1
 5 == 10 = 0
 5 == 5 = 1
 5 != 5 = 0
 5 != 6 = 1

 Logical Operators

 Operator Description

! logic negation

http://www.asic-world.com/code/verilog_tutorial/equality_operators.v

 Verilog Programming Guide

130

&& logical and

|| logical or

• Expressions connected by && and || are evaluated from left to right
• Evaluation stops as soon as the result is known
• The result is a scalar value:

o 0 if the relation is false
o 1 if the relation is true

o x if any of the operands has x (unknown) bits

 Example

 1 module logical_operators();
 2

 3 initial begin

 4 // Logical AND

 5 $display ("1'b1 && 1'b1 = %b", (1'b1 && 1'b1));

 6 $display ("1'b1 && 1'b0 = %b", (1'b1 && 1'b0));

 7 $display ("1'b1 && 1'bx = %b", (1'b1 && 1'bx));

 8 // Logical OR

 9 $display ("1'b1 || 1'b0 = %b", (1'b1 || 1'b0));

 10 $display ("1'b0 || 1'b0 = %b", (1'b0 || 1'b0));

 11 $display ("1'b0 || 1'bx = %b", (1'b0 || 1'bx));

 12 // Logical Negation

 13 $display ("! 1'b1 = %b", (! 1'b1));

 14 $display ("! 1'b0 = %b", (! 1'b0));

 15 #10 $finish;

 16 end
 17

 18 endmodule

 Verilog Programming Guide

131

You could download file logical_operators.v here

 1'b1 && 1'b1 = 1
 1'b1 && 1'b0 = 0
 1'b1 && 1'bx = x
 1'b1 || 1'b0 = 1
 1'b0 || 1'b0 = 0
 1'b0 || 1'bx = x
 ! 1'b1 = 0
 ! 1'b0 = 1

 Bit-wise Operators

 Bitwise operators perform a bit wise operation on two operands. They take
each bit in one operand and perform the operation with the corresponding bit in the other
operand. If one operand is shorter than the other, it will be extended on the left side with
zeroes to match the length of the longer operand.

 Operator Description

~ negation

& and

| inclusive or

^ exclusive or

^~ or ~^ exclusive nor (equivalence)

http://www.asic-world.com/code/verilog_tutorial/logical_operators.v

 Verilog Programming Guide

132

• Computations include unknown bits, in the following way:
o ~x = x
o 0&x = 0
o 1&x = x&x = x
o 1|x = 1

o 0|x = x|x = x
o 0^x = 1^x = x^x = x
o 0^~x = 1^~x = x^~x = x

• When operands are of unequal bit length, the shorter operand is zero-filled in the most
significant bit positions.

 Example

 1 module bitwise_operators();
 2

 3 initial begin

 4 // Bit Wise Negation

 5 $display (" ~4'b0001 = %b", (~4'b0001));

 6 $display (" ~4'bx001 = %b", (~4'bx001));

 7 $display (" ~4'bz001 = %b", (~4'bz001));

 8 // Bit Wise AND

 9 $display (" 4'b0001 & 4'b1001 = %b", (4'b0001 & 4'b1001));

 10 $display (" 4'b1001 & 4'bx001 = %b", (4'b1001 & 4'bx001));

 11 $display (" 4'b1001 & 4'bz001 = %b", (4'b1001 & 4'bz001));

 12 // Bit Wise OR

 13 $display (" 4'b0001 | 4'b1001 = %b", (4'b0001 | 4'b1001));

 14 $display (" 4'b0001 | 4'bx001 = %b", (4'b0001 | 4'bx001));

 15 $display (" 4'b0001 | 4'bz001 = %b", (4'b0001 | 4'bz001));

 16 // Bit Wise XOR

 17 $display (" 4'b0001 ^ 4'b1001 = %b", (4'b0001 ^ 4'b1001));

 18 $display (" 4'b0001 ^ 4'bx001 = %b", (4'b0001 ^ 4'bx001));

 19 $display (" 4'b0001 ^ 4'bz001 = %b", (4'b0001 ^ 4'bz001));

 20 // Bit Wise XNOR

 21 $display (" 4'b0001 ~^ 4'b1001 = %b", (4'b0001 ~^ 4'b1001));

 Verilog Programming Guide

133

 22 $display (" 4'b0001 ~^ 4'bx001 = %b", (4'b0001 ~^ 4'bx001));

 23 $display (" 4'b0001 ~^ 4'bz001 = %b", (4'b0001 ~^ 4'bz001));

 24 #10 $finish;

 25 end
 26

 27 endmodule

You could download file bitwise_operators.v here

 ~4'b0001 = 1110
 ~4'bx001 = x110
 ~4'bz001 = x110
 4'b0001 & 4'b1001 = 0001
 4'b1001 & 4'bx001 = x001
 4'b1001 & 4'bz001 = x001
 4'b0001 | 4'b1001 = 1001
 4'b0001 | 4'bx001 = x001
 4'b0001 | 4'bz001 = x001
 4'b0001 ^ 4'b1001 = 1000
 4'b0001 ^ 4'bx001 = x000
 4'b0001 ^ 4'bz001 = x000
 4'b0001 ~^ 4'b1001 = 0111
 4'b0001 ~^ 4'bx001 = x111
 4'b0001 ~^ 4'bz001 = x111

Reduction Operators

 Operator Description

& and

~& nand

| or

~| nor

^ xor

^~ or ~^ xnor

http://www.asic-world.com/code/verilog_tutorial/bitwise_operators.v

 Verilog Programming Guide

134

• Reduction operators are unary.
• They perform a bit-wise operation on a single operand to produce a single bit

result.
• Reduction unary NAND and NOR operators operate as AND and OR
respectively, but with their outputs negated.

o Unknown bits are treated as described before.

 Example

 1 module reduction_operators();
 2

 3 initial begin

 4 // Bit Wise AND reduction

 5 $display (" & 4'b1001 = %b", (& 4'b1001));

 6 $display (" & 4'bx111 = %b", (& 4'bx111));

 7 $display (" & 4'bz111 = %b", (& 4'bz111));

 8 // Bit Wise NAND reduction

 9 $display (" ~& 4'b1001 = %b", (~& 4'b1001));

 10 $display (" ~& 4'bx001 = %b", (~& 4'bx001));

 11 $display (" ~& 4'bz001 = %b", (~& 4'bz001));

 12 // Bit Wise OR reduction

 13 $display (" | 4'b1001 = %b", (| 4'b1001));

 14 $display (" | 4'bx000 = %b", (| 4'bx000));

 15 $display (" | 4'bz000 = %b", (| 4'bz000));

 16 // Bit Wise NOR reduction

 17 $display (" ~| 4'b1001 = %b", (~| 4'b1001));

 18 $display (" ~| 4'bx001 = %b", (~| 4'bx001));

 19 $display (" ~| 4'bz001 = %b", (~| 4'bz001));

 20 // Bit Wise XOR reduction

 21 $display (" ^ 4'b1001 = %b", (^ 4'b1001));

 22 $display (" ^ 4'bx001 = %b", (^ 4'bx001));

 23 $display (" ^ 4'bz001 = %b", (^ 4'bz001));

 24 // Bit Wise XNOR

 25 $display (" ~^ 4'b1001 = %b", (~^ 4'b1001));

 26 $display (" ~^ 4'bx001 = %b", (~^ 4'bx001));

 27 $display (" ~^ 4'bz001 = %b", (~^ 4'bz001));

 Verilog Programming Guide

135

 28 #10 $finish;

 29 end
 30

 31 endmodule

You could download file reduction_operators.v here

 & 4'b1001 = 0
 & 4'bx111 = x
 & 4'bz111 = x
 ~& 4'b1001 = 1
 ~& 4'bx001 = 1
 ~& 4'bz001 = 1
 | 4'b1001 = 1
 | 4'bx000 = x
 | 4'bz000 = x
 ~| 4'b1001 = 0
 ~| 4'bx001 = 0
 ~| 4'bz001 = 0
 ^ 4'b1001 = 0
 ^ 4'bx001 = x
 ^ 4'bz001 = x
 ~^ 4'b1001 = 1
 ~^ 4'bx001 = x
 ~^ 4'bz001 = x

 Shift Operators

 Operator Description

<< left shift

>> right shift

• The left operand is shifted by the number of bit positions given by
the right operand.

http://www.asic-world.com/code/verilog_tutorial/reduction_operators.v

 Verilog Programming Guide

136

• The vacated bit positions are filled with zeroes.

 Example

 1 module shift_operators();
 2

 3 initial begin

 4 // Left Shift

 5 $display (" 4'b1001 << 1 = %b", (4'b1001 << 1));

 6 $display (" 4'b10x1 << 1 = %b", (4'b10x1 << 1));

 7 $display (" 4'b10z1 << 1 = %b", (4'b10z1 << 1));

 8 // Right Shift

 9 $display (" 4'b1001 >> 1 = %b", (4'b1001 >> 1));

 10 $display (" 4'b10x1 >> 1 = %b", (4'b10x1 >> 1));

 11 $display (" 4'b10z1 >> 1 = %b", (4'b10z1 >> 1));

 12 #10 $finish;

 13 end
 14

 15 endmodule

You could download file shift_operators.v here

 4'b1001 << 1 = 0010
 4'b10x1 << 1 = 0x10
 4'b10z1 << 1 = 0z10
 4'b1001 >> 1 = 0100
 4'b10x1 >> 1 = 010x
 4'b10z1 >> 1 = 010z

 Concatenation Operator

• Concatenations are expressed using the brace characters { and },
with commas separating the expressions within.

http://www.asic-world.com/code/verilog_tutorial/shift_operators.v

 Verilog Programming Guide

137

o Example: + {a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the
results has 24 bits

• Unsized constant numbers are not allowed in concatenations.

 Example

 1 module concatenation_operator();
 2

 3 initial begin

 4 // concatenation

 5 $display (" {4'b1001,4'b10x1} = %b", {4'b1001,4'b10x1});

 6 #10 $finish;

 7 end
 8

 9 endmodule

You could download file concatenation_operator.v here

 {4'b1001,4'b10x1} = 100110x1

 Replication Operator

 Replication operator is used to replicate a group of bits n times. Say you
have a 4 bit variable and you want to replicate it 4 times to get a 16 bit variable: then we
can use the replication operator.

 Operator Description

{n{m}} Replicate value m, n times

http://www.asic-world.com/code/verilog_tutorial/concatenation_operator.v

 Verilog Programming Guide

138

• Repetition multipliers (must be constants) can be used:
o {3{a}} // this is equivalent to {a, a, a}

• Nested concatenations and replication operator are possible:
o {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d}

 Example

 1 module replication_operator();
 2

 3 initial begin

 4 // replication

 5 $display (" {4{4'b1001}} = %b", {4{4'b1001}});

 6 // replication and concatenation

 7 $display (" {4{4'b1001,1'bz}} = %b", {4{4'b1001,1'bz}});

 8 #10 $finish;

 9 end
 10

 11 endmodule

You could download file replication_operator.v here

 {4{4'b1001} = 1001100110011001
 {4{4'b1001,1'bz} = 1001z1001z1001z1001z

 Conditional Operators

• The conditional operator has the following C-like format:
o cond_expr ? true_expr : false_expr

http://www.asic-world.com/code/verilog_tutorial/replication_operator.v

 Verilog Programming Guide

139

• The true_expr or the false_expr is evaluated and used as a result depending on what
cond_expr evaluates to (true or false).

 Example

 1 module conditional_operator();
 2

 3 wire out;

 4 reg enable,data;

 5 // Tri state buffer

 6 assign out = (enable) ? data : 1'bz;
 7

 8 initial begin

 9 $display ("time\t enable data out");

 10 $monitor ("%g\t %b %b %b",$time,enable,data,out);

 11 enable = 0;

 12 data = 0;

 13 #1 data = 1;

 14 #1 data = 0;

 15 #1 enable = 1;

 16 #1 data = 1;

 17 #1 data = 0;

 18 #1 enable = 0;

 19 #10 $finish;

 20 end
 21

 22 endmodule

You could download file conditional_operator.v here

 time enable data out
 0 0 0 z
 1 0 1 z
 2 0 0 z
 3 1 0 0
 4 1 1 1
 5 1 0 0
 6 0 0 z

http://www.asic-world.com/code/verilog_tutorial/conditional_operator.v

 Verilog Programming Guide

140

 Operator Precedence

 Operator Symbols

Unary, Multiply, Divide, Modulus !, ~, *, /, %

Add, Subtract, Shift +, - , <<, >>

Relation, Equality <,>,<=,>=,==,!=,===,!==

Reduction &, !&,^,^~,|,~|

Logic &&, ||

Conditional ? :

Verilog HDL Abstraction Levels

• Behavioral Models : Higher level of modeling where behavior of
logic is modeled.

• RTL Models : Logic is modeled at register level
• Structural Models : Logic is modeled at both register level and gate level.

 Procedural Blocks

 Verilog behavioral code is inside procedure blocks,
but there is an exception: some behavioral code also exist outside procedure blocks. We
can see this in detail as we make progress.

 Verilog Programming Guide

141

 There are two types of procedural blocks in Verilog:

• initial : initial blocks execute only once at time zero (start execution
at time zero).

• always : always blocks loop to execute over and over again; in other words, as the name
suggests, it executes always.

 Example - initial

 1 module initial_example();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 clk = 0;

 6 reset = 0;

 7 enable = 0;

 8 data = 0;

 9 end
 10

 11 endmodule

You could download file initial_example.v here

 In the above example, the initial block execution and
always block execution starts at time 0. Always block waits for the event, here positive
edge of clock, whereas initial block just executed all the statements within begin and end
statement, without waiting.

 Example - always

http://www.asic-world.com/code/verilog_tutorial/initial_example.v

 Verilog Programming Guide

142

 1 module always_example();

 2 reg clk,reset,enable,q_in,data;
 3

 4 always @ (posedge clk)

 5 if (reset) begin

 6 data <= 0;

 7 end else if (enable) begin

 8 data <= q_in;

 9 end
 10

 11 endmodule

You could download file always_example.v here

 In an always block, when the trigger event occurs,
the code inside begin and end is executed; then once again the always block waits for
next event triggering. This process of waiting and executing on event is repeated till
simulation stops.

 Procedural Assignment Statements

• Procedural assignment statements assign values to reg, integer,
real, or time variables and can not assign values to nets (wire data types)

• You can assign to a register (reg data type) the value of a net (wire), constant, another
register, or a specific value.

 Example - Bad procedural assignment

 1 module initial_bad();

 2 reg clk,reset;

 3 wire enable,data;
 4

 5 initial begin

 6 clk = 0;

http://www.asic-world.com/code/verilog_tutorial/always_example.v

 Verilog Programming Guide

143

 7 reset = 0;

 8 enable = 0;

 9 data = 0;

 10 end
 11

 12 endmodule

You could download file initial_bad.v here

 Example - Good procedural assignment

 1 module initial_good();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 clk = 0;

 6 reset = 0;

 7 enable = 0;

 8 data = 0;

 9 end
 10

 11 endmodule

You could download file initial_good.v here

 Procedural Assignment Groups

 If a procedure block contains more than one
statement, those statements must be enclosed within

• Sequential begin - end block
• Parallel fork - join block

 When using begin-end, we can give name to that
group. This is called named blocks.

http://www.asic-world.com/code/verilog_tutorial/initial_bad.v
http://www.asic-world.com/code/verilog_tutorial/initial_good.v

 Verilog Programming Guide

144

 Example - "begin-end"

 1 module initial_begin_end();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 $monitor(

 6 "%g clk=%b reset=%b enable=%b data=%b",

 7 $time, clk, reset, enable, data);

 8 #1 clk = 0;

 9 #10 reset = 0;

 10 #5 enable = 0;

 11 #3 data = 0;

 12 #1 $finish;

 13 end
 14

 15 endmodule

You could download file initial_begin_end.v here

 Begin : clk gets 0 after 1 time unit, reset gets 0 after
11 time units, enable after 16 time units, data after 19 units. All the statements are
executed sequentially.

 Simulator Output

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 11 clk=0 reset=0 enable=x data=x
 16 clk=0 reset=0 enable=0 data=x
 19 clk=0 reset=0 enable=0 data=0

 Example - "fork-join"

http://www.asic-world.com/code/verilog_tutorial/initial_begin_end.v

 Verilog Programming Guide

145

 1 module initial_fork_join();

 2 reg clk,reset,enable,data;
 3

 4 initial begin

 5 $monitor("%g clk=%b reset=%b enable=%b data=%b",

 6 $time, clk, reset, enable, data);

 7 fork

 8 #1 clk = 0;

 9 #10 reset = 0;

 10 #5 enable = 0;

 11 #3 data = 0;

 12 join

 13 #1 $display ("%g Terminating simulation", $time);

 14 $finish;

 15 end
 16

 17 endmodule

You could download file initial_fork_join.v here

 Fork : clk gets its value after 1 time unit, reset after
10 time units, enable after 5 time units, data after 3 time units. All the statements are
executed in parallel.

 Simulator Output

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 3 clk=0 reset=x enable=x data=0
 5 clk=0 reset=x enable=0 data=0
 10 clk=0 reset=0 enable=0 data=0
 11 Terminating simulation

http://www.asic-world.com/code/verilog_tutorial/initial_fork_join.v

 Verilog Programming Guide

146

 Sequential Statement Groups

 The begin - end keywords:

• Group several statements together.
• Cause the statements to be evaluated sequentially (one at a time)

o Any timing within the sequential groups is relative to the previous
statement.

o Delays in the sequence accumulate (each delay is added to the previous
delay)

o Block finishes after the last statement in the block.

 Example - sequential

 1 module sequential();
 2

 3 reg a;
 4

 5 initial begin

 6 $monitor ("%g a = %b", $time, a);

 7 #10 a = 0;

 8 #11 a = 1;

 9 #12 a = 0;

 10 #13 a = 1;

 11 #14 $finish;

 12 end
 13

 14 endmodule

You could download file sequential.v here

 Simulator Output

http://www.asic-world.com/code/verilog_tutorial/sequential.v

 Verilog Programming Guide

147

 0 a = x
 10 a = 0
 21 a = 1
 33 a = 0
 46 a = 1

 Parallel Statement Groups

 The fork - join keywords:

• Group several statements together.
• Cause the statements to be evaluated in parallel (all at the same time).

o Timing within parallel group is absolute to the beginning of the group.
o Block finishes after the last statement completes (Statement with highest delay, it can be

the first statement in the block).

 Example - Parallel

 1 module parallel();
 2

 3 reg a;
 4

 5 initial

 6 fork

 7 $monitor ("%g a = %b", $time, a);

 8 #10 a = 0;

 9 #11 a = 1;

 10 #12 a = 0;

 11 #13 a = 1;

 12 #14 $finish;

 13 join
 14

 15 endmodule

You could download file parallel.v here

http://www.asic-world.com/code/verilog_tutorial/parallel.v

 Verilog Programming Guide

148

 Simulator Output

 0 a = x
 10 a = 0
 11 a = 1
 12 a = 0
 13 a = 1

 Example - Mixing "begin-end" and "fork - join"

 1 module fork_join();
 2

 3 reg clk,reset,enable,data;
 4

 5 initial begin

 6 $display ("Starting simulation");

 7 $monitor("%g clk=%b reset=%b enable=%b data=%b",

 8 $time, clk, reset, enable, data);

 9 fork : FORK_VAL

 10 #1 clk = 0;

 11 #5 reset = 0;

 12 #5 enable = 0;

 13 #2 data = 0;

 14 join

 15 #10 $display ("%g Terminating simulation", $time);

 16 $finish;

 17 end
 18

 19 endmodule

You could download file fork_join.v here

 Simulator Output

http://www.asic-world.com/code/verilog_tutorial/fork_join.v

 Verilog Programming Guide

149

 0 clk=x reset=x enable=x data=x
 1 clk=0 reset=x enable=x data=x
 2 clk=0 reset=x enable=x data=0
 5 clk=0 reset=0 enable=0 data=0
 15 Terminating simulation

 Blocking and Nonblocking assignment

 Blocking assignments are executed in the order they
are coded, hence they are sequential. Since they block the execution of next statment, till
the current statement is executed, they are called blocking assignments. Assignment are
made with "=" symbol. Example a = b;

 Nonblocking assignments are executed in parallel.
Since the execution of next statement is not blocked due to execution of current
statement, they are called nonblocking statement. Assignments are made with "<="
symbol. Example a <= b;

 Note : Correct way to spell 'nonblocking' is
'nonblocking' and not 'non-blocking'.

 Example - blocking and nonblocking

 1 module blocking_nonblocking();
 2

 3 reg a,b,c,d;

 4 // Blocking Assignment

 5 initial begin

 6 #10 a = 0;

 7 #11 a = 1;

 8 #12 a = 0;

 9 #13 a = 1;

 Verilog Programming Guide

150

 10 end
 11

 12 initial begin

 13 #10 b <= 0;

 14 #11 b <= 1;

 15 #12 b <= 0;

 16 #13 b <= 1;

 17 end
 18

 19 initial begin

 20 c = #10 0;

 21 c = #11 1;

 22 c = #12 0;

 23 c = #13 1;

 24 end
 25

 26 initial begin

 27 d <= #10 0;

 28 d <= #11 1;

 29 d <= #12 0;

 30 d <= #13 1;

 31 end
 32

 33 initial begin

 34 $monitor("TIME = %g A = %b B = %b C = %b D = %b",$time, a, b, c, d);

 35 #50 $finish;

 36 end
 37

 38 endmodule

You could download file blocking_nonblocking.v here

 Simulator Output

 TIME = 0 A = x B = x C = x D = x
 TIME = 10 A = 0 B = 0 C = 0 D = 0
 TIME = 11 A = 0 B = 0 C = 0 D = 1
 TIME = 12 A = 0 B = 0 C = 0 D = 0
 TIME = 13 A = 0 B = 0 C = 0 D = 1
 TIME = 21 A = 1 B = 1 C = 1 D = 1
 TIME = 33 A = 0 B = 0 C = 0 D = 1
 TIME = 46 A = 1 B = 1 C = 1 D = 1

http://www.asic-world.com/code/verilog_tutorial/blocking_nonblocking.v

 Verilog Programming Guide

151

 Waveform

 assign and deassign

 The assign and deassign procedural assignment
statements allow continuous assignments to be placed onto registers for controlled
periods of time. The assign procedural statement overrides procedural assignments to
a register. The deassign procedural statement ends a continuous assignment to a
register.

 Example - assign and deassign

 1 module assign_deassign ();
 2

 3 reg clk,rst,d,preset;

 4 wire q;
 5

 6 initial begin

 7 $monitor("@%g clk %b rst %b preset %b d %b q %b",

 8 $time, clk, rst, preset, d, q);

 9 clk = 0;

 10 rst = 0;

 11 d = 0;

 12 preset = 0;

 13 #10 rst = 1;

 14 #10 rst = 0;

 Verilog Programming Guide

152

 15 repeat (10) begin

 16 @ (posedge clk);

 17 d <= $random;

 18 @ (negedge clk) ;

 19 preset <= ~preset;

 20 end

 21 #1 $finish;

 22 end

 23 // Clock generator

 24 always #1 clk = ~clk;
 25

 26 // assign and deassign q of flip flop module

 27 always @(preset)

 28 if (preset) begin

 29 assign U.q = 1; // assign procedural statement

 30 end else begin

 31 deassign U.q; // deassign procedural statement

 32 end
 33

 34 d_ff U (clk,rst,d,q);

 35

 36 endmodule
 37

 38 // D Flip-Flop model

 39 module d_ff (clk,rst,d,q);

 40 input clk,rst,d;

 41 output q;

 42 reg q;
 43

 44 always @ (posedge clk)

 45 if (rst) begin

 46 q <= 0;

 47 end else begin

 48 q <= d;

 49 end
 50

 51 endmodule

You could download file assign_deassign.v here

 Simulator Output

 @0 clk 0 rst 0 preset 0 d 0 q x
 @1 clk 1 rst 0 preset 0 d 0 q 0
 @2 clk 0 rst 0 preset 0 d 0 q 0

http://www.asic-world.com/code/verilog_tutorial/assign_deassign.v

 Verilog Programming Guide

153

 @3 clk 1 rst 0 preset 0 d 0 q 0
 @4 clk 0 rst 0 preset 0 d 0 q 0
 @5 clk 1 rst 0 preset 0 d 0 q 0
 @6 clk 0 rst 0 preset 0 d 0 q 0
 @7 clk 1 rst 0 preset 0 d 0 q 0
 @8 clk 0 rst 0 preset 0 d 0 q 0
 @9 clk 1 rst 0 preset 0 d 0 q 0
 @10 clk 0 rst 1 preset 0 d 0 q 0
 @11 clk 1 rst 1 preset 0 d 0 q 0
 @12 clk 0 rst 1 preset 0 d 0 q 0
 @13 clk 1 rst 1 preset 0 d 0 q 0
 @14 clk 0 rst 1 preset 0 d 0 q 0
 @15 clk 1 rst 1 preset 0 d 0 q 0
 @16 clk 0 rst 1 preset 0 d 0 q 0
 @17 clk 1 rst 1 preset 0 d 0 q 0
 @18 clk 0 rst 1 preset 0 d 0 q 0
 @19 clk 1 rst 1 preset 0 d 0 q 0
 @20 clk 0 rst 0 preset 0 d 0 q 0
 @21 clk 1 rst 0 preset 0 d 0 q 0
 @22 clk 0 rst 0 preset 1 d 0 q 1
 @23 clk 1 rst 0 preset 1 d 1 q 1
 @24 clk 0 rst 0 preset 0 d 1 q 1
 @25 clk 1 rst 0 preset 0 d 1 q 1
 @26 clk 0 rst 0 preset 1 d 1 q 1
 @27 clk 1 rst 0 preset 1 d 1 q 1
 @28 clk 0 rst 0 preset 0 d 1 q 1
 @29 clk 1 rst 0 preset 0 d 1 q 1
 @30 clk 0 rst 0 preset 1 d 1 q 1
 @31 clk 1 rst 0 preset 1 d 1 q 1
 @32 clk 0 rst 0 preset 0 d 1 q 1
 @33 clk 1 rst 0 preset 0 d 1 q 1
 @34 clk 0 rst 0 preset 1 d 1 q 1
 @35 clk 1 rst 0 preset 1 d 0 q 1
 @36 clk 0 rst 0 preset 0 d 0 q 1
 @37 clk 1 rst 0 preset 0 d 1 q 0
 @38 clk 0 rst 0 preset 1 d 1 q 1
 @39 clk 1 rst 0 preset 1 d 1 q 1
 @40 clk 0 rst 0 preset 0 d 1 q 1

 force and release

 Another form of procedural continuous assignment is
provided by the force and release procedural statements. These statements have a similar
effect on the assign-deassign pair, but a force can be applied to nets as well as to
registers.

 Verilog Programming Guide

154

 One can use force and release while doing gate level
simulation to work around reset connectivity problems. Also can be used insert single and
double bit errors on data read from memory.

 Example - force and release

 1 module force_release ();
 2

 3 reg clk,rst,d,preset;

 4 wire q;
 5

 6 initial begin

 7 $monitor("@%g clk %b rst %b preset %b d %b q %b",

 8 $time, clk, rst, preset, d, q);

 9 clk = 0;

 10 rst = 0;

 11 d = 0;

 12 preset = 0;

 13 #10 rst = 1;

 14 #10 rst = 0;

 15 repeat (10) begin

 16 @ (posedge clk);

 17 d <= $random;

 18 @ (negedge clk) ;

 19 preset <= ~preset;

 20 end

 21 #1 $finish;

 22 end

 23 // Clock generator

 24 always #1 clk = ~clk;
 25

 26 // force and release of flip flop module

 27 always @(preset)

 28 if (preset) begin

 29 force U.q = preset; // force procedural statement

 30 end else begin

 31 release U.q; // release procedural statement

 32 end
 33

 34 d_ff U (clk,rst,d,q);

 Verilog Programming Guide

155

 35

 36 endmodule
 37

 38 // D Flip-Flop model

 39 module d_ff (clk,rst,d,q);

 40 input clk,rst,d;

 41 output q;

 42 wire q;

 43 reg q_reg;
 44

 45 assign q = q_reg;
 46

 47 always @ (posedge clk)

 48 if (rst) begin

 49 q_reg <= 0;

 50 end else begin

 51 q_reg <= d;

 52 end
 53

 54 endmodule

You could download file force_release.v here

 Simulator Output

 @0 clk 0 rst 0 preset 0 d 0 q x
 @1 clk 1 rst 0 preset 0 d 0 q 0
 @2 clk 0 rst 0 preset 0 d 0 q 0
 @3 clk 1 rst 0 preset 0 d 0 q 0
 @4 clk 0 rst 0 preset 0 d 0 q 0
 @5 clk 1 rst 0 preset 0 d 0 q 0
 @6 clk 0 rst 0 preset 0 d 0 q 0
 @7 clk 1 rst 0 preset 0 d 0 q 0
 @8 clk 0 rst 0 preset 0 d 0 q 0
 @9 clk 1 rst 0 preset 0 d 0 q 0
 @10 clk 0 rst 1 preset 0 d 0 q 0
 @11 clk 1 rst 1 preset 0 d 0 q 0
 @12 clk 0 rst 1 preset 0 d 0 q 0
 @13 clk 1 rst 1 preset 0 d 0 q 0
 @14 clk 0 rst 1 preset 0 d 0 q 0
 @15 clk 1 rst 1 preset 0 d 0 q 0
 @16 clk 0 rst 1 preset 0 d 0 q 0
 @17 clk 1 rst 1 preset 0 d 0 q 0
 @18 clk 0 rst 1 preset 0 d 0 q 0
 @19 clk 1 rst 1 preset 0 d 0 q 0
 @20 clk 0 rst 0 preset 0 d 0 q 0

http://www.asic-world.com/code/verilog_tutorial/force_release.v

 Verilog Programming Guide

156

 @21 clk 1 rst 0 preset 0 d 0 q 0
 @22 clk 0 rst 0 preset 1 d 0 q 1
 @23 clk 1 rst 0 preset 1 d 1 q 1
 @24 clk 0 rst 0 preset 0 d 1 q 0
 @25 clk 1 rst 0 preset 0 d 1 q 1
 @26 clk 0 rst 0 preset 1 d 1 q 1
 @27 clk 1 rst 0 preset 1 d 1 q 1
 @28 clk 0 rst 0 preset 0 d 1 q 1
 @29 clk 1 rst 0 preset 0 d 1 q 1
 @30 clk 0 rst 0 preset 1 d 1 q 1
 @31 clk 1 rst 0 preset 1 d 1 q 1
 @32 clk 0 rst 0 preset 0 d 1 q 1
 @33 clk 1 rst 0 preset 0 d 1 q 1
 @34 clk 0 rst 0 preset 1 d 1 q 1
 @35 clk 1 rst 0 preset 1 d 0 q 1
 @36 clk 0 rst 0 preset 0 d 0 q 1
 @37 clk 1 rst 0 preset 0 d 1 q 0
 @38 clk 0 rst 0 preset 1 d 1 q 1
 @39 clk 1 rst 0 preset 1 d 1 q 1
 @40 clk 0 rst 0 preset 0 d 1 q 1

The Conditional Statement if-else

 It's known fact that priority implementation takes more logic to implement
than parallel implementation. So if you know the inputs are mutually exclusive, then you
can code the logic in parallel if.

 1 module parallel_if();
 2

 3 reg [3:0] counter;

 4 wire clk,reset,enable, up_en, down_en;
 5

 6 always @ (posedge clk)

 7 // If reset is asserted

 8 if (reset == 1'b0) begin

 9 counter <= 4'b0000;

 10 end else begin

 11 // If counter is enable and up count is mode

 12 if (enable == 1'b1 && up_en == 1'b1) begin

 13 counter <= counter + 1'b1;

 14 end

 Verilog Programming Guide

157

 15 // If counter is enable and down count is mode

 16 if (enable == 1'b1 && down_en == 1'b1) begin

 17 counter <= counter - 1'b1;

 18 end

 19 end
 20

 21 endmodule

You could download file parallel_if.v here

 The Case Statement

 The case statement compares an expression to a series of cases and
executes the statement or statement group associated with the first matching case:

• case statement supports single or multiple statements.
• Group multiple statements using begin and end keywords.

 Syntax of a case statement look as shown below.

 case ()

 < case1 > : < statement >

 < case2 > : < statement >

http://www.asic-world.com/code/verilog_tutorial/parallel_if.v

 Verilog Programming Guide

158

 default : < statement >

 endcase

 Normal Case

 Example- case

 1 module mux (a,b,c,d,sel,y);

 2 input a, b, c, d;

 3 input [1:0] sel;

 4 output y;
 5

 6 reg y;
 7

 8 always @ (a or b or c or d or sel)

 9 case (sel)

 10 0 : y = a;

 11 1 : y = b;

 12 2 : y = c;

 13 3 : y = d;

 14 default : $display("Error in SEL");

 15 endcase
 16

 Verilog Programming Guide

159

 17 endmodule

You could download file mux.v here

 Example- case without default

 1 module mux_without_default (a,b,c,d,sel,y);

 2 input a, b, c, d;

 3 input [1:0] sel;

 4 output y;
 5

 6 reg y;
 7

 8 always @ (a or b or c or d or sel)

 9 case (sel)

 10 0 : y = a;

 11 1 : y = b;

 12 2 : y = c;

 13 3 : y = d;
 14 2'bxx,2'bx0,2'bx1,2'b0x,2'b1x,

 15 2'bzz,2'bz0,2'bz1,2'b0z,2'b1z : $display("Error in SEL");

 16 endcase
 17

 18 endmodule

You could download file mux_without_default.v here

 The example above shows how to specify multiple case items as a single
case item.

 The Verilog case statement does an identity comparison (like the ===

http://www.asic-world.com/code/verilog_tutorial/mux.v
http://www.asic-world.com/code/verilog_tutorial/mux_without_default.v

 Verilog Programming Guide

160

operator); one can use the case statement to check for logic x and z values as shown in
the example below.

 Example- case with x and z

 1 module case_xz(enable);

 2 input enable;
 3

 4 always @ (enable)

 5 case(enable)

 6 1'bz : $display ("enable is floating");

 7 1'bx : $display ("enable is unknown");

 8 default : $display ("enable is %b",enable);

 9 endcase
 10

 11 endmodule

You could download file case_xz.v here

 The casez and casex statement

 Special versions of the case statement allow the x ad z logic values to be
used as "don't care":

• casez : Treats z as don't care.
• casex : Treats x and z as don't care.

http://www.asic-world.com/code/verilog_tutorial/case_xz.v

 Verilog Programming Guide

161

 Example- casez

 1 module casez_example();

 2 reg [3:0] opcode;

 3 reg [1:0] a,b,c;

 4 reg [1:0] out;
 5

 6 always @ (opcode or a or b or c)

 7 casez(opcode)

 8 4'b1zzx : begin // Don't care about lower 2:1 bit, bit 0 match with x

 9 out = a;

 10 $display("@%0dns 4'b1zzx is selected, opcode %b",$time,opcode);

 11 end

 12 4'b01?? : begin

 13 out = b; // bit 1:0 is don't care

 14 $display("@%0dns 4'b01?? is selected, opcode %b",$time,opcode);

 15 end

 16 4'b001? : begin // bit 0 is don't care

 17 out = c;

 18 $display("@%0dns 4'b001? is selected, opcode %b",$time,opcode);

 19 end

 20 default : begin

 21 $display("@%0dns default is selected, opcode %b",$time,opcode);

 22 end

 23 endcase
 24

 25 // Testbench code goes here

 26 always #2 a = $random;

 27 always #2 b = $random;

 28 always #2 c = $random;

 29

 30 initial begin

 31 opcode = 0;

 32 #2 opcode = 4'b101x;

 33 #2 opcode = 4'b0101;

 34 #2 opcode = 4'b0010;

 35 #2 opcode = 4'b0000;

 36 #2 $finish;

 37 end
 38

 39 endmodule

You could download file casez_example.v here

http://www.asic-world.com/code/verilog_tutorial/casez_example.v

 Verilog Programming Guide

162

 Simulation Output - casez

 @0ns default is selected, opcode 0000
 @2ns 4'b1zzx is selected, opcode 101x
 @4ns 4'b01?? is selected, opcode 0101
 @6ns 4'b001? is selected, opcode 0010
 @8ns default is selected, opcode 0000

 Example- casex

 1 module casex_example();

 2 reg [3:0] opcode;

 3 reg [1:0] a,b,c;

 4 reg [1:0] out;
 5

 6 always @ (opcode or a or b or c)

 7 casex(opcode)

 8 4'b1zzx : begin // Don't care 2:0 bits

 9 out = a;

 10 $display("@%0dns 4'b1zzx is selected, opcode %b",$time,opcode);

 11 end

 12 4'b01?? : begin // bit 1:0 is don't care

 13 out = b;

 14 $display("@%0dns 4'b01?? is selected, opcode %b",$time,opcode);

 15 end

 16 4'b001? : begin // bit 0 is don't care

 17 out = c;

 18 $display("@%0dns 4'b001? is selected, opcode %b",$time,opcode);

 19 end

 20 default : begin

 Verilog Programming Guide

163

 21 $display("@%0dns default is selected, opcode %b",$time,opcode);

 22 end

 23 endcase
 24

 25 // Testbench code goes here

 26 always #2 a = $random;

 27 always #2 b = $random;

 28 always #2 c = $random;

 29

 30 initial begin

 31 opcode = 0;

 32 #2 opcode = 4'b101x;

 33 #2 opcode = 4'b0101;

 34 #2 opcode = 4'b0010;

 35 #2 opcode = 4'b0000;

 36 #2 $finish;

 37 end
 38

 39 endmodule

You could download file casex_example.v here

 Simulation Output - casex

 @0ns default is selected, opcode 0000
 @2ns 4'b1zzx is selected, opcode 101x
 @4ns 4'b01?? is selected, opcode 0101
 @6ns 4'b001? is selected, opcode 0010
 @8ns default is selected, opcode 0000

 Example- Comparing case, casex, casez

http://www.asic-world.com/code/verilog_tutorial/casex_example.v

 Verilog Programming Guide

164

 1 module case_compare;
 2

 3 reg sel;
 4

 5 initial begin

 6 #1 $display ("\n Driving 0");

 7 sel = 0;

 8 #1 $display ("\n Driving 1");

 9 sel = 1;

 10 #1 $display ("\n Driving x");

 11 sel = 1'bx;

 12 #1 $display ("\n Driving z");

 13 sel = 1'bz;

 14 #1 $finish;

 15 end
 16

 17 always @ (sel)

 18 case (sel)

 19 1'b0 : $display("Normal : Logic 0 on sel");

 20 1'b1 : $display("Normal : Logic 1 on sel");

 21 1'bx : $display("Normal : Logic x on sel");

 22 1'bz : $display("Normal : Logic z on sel");

 23 endcase
 24

 25 always @ (sel)

 26 casex (sel)

 27 1'b0 : $display("CASEX : Logic 0 on sel");

 28 1'b1 : $display("CASEX : Logic 1 on sel");

 29 1'bx : $display("CASEX : Logic x on sel");

 30 1'bz : $display("CASEX : Logic z on sel");

 31 endcase
 32

 33 always @ (sel)

 34 casez (sel)

 35 1'b0 : $display("CASEZ : Logic 0 on sel");

 36 1'b1 : $display("CASEZ : Logic 1 on sel");

 37 1'bx : $display("CASEZ : Logic x on sel");

 38 1'bz : $display("CASEZ : Logic z on sel");

 39 endcase
 40

 41 endmodule

You could download file case_compare.v here

http://www.asic-world.com/code/verilog_tutorial/case_compare.v

 Verilog Programming Guide

165

 Simulation Output

 Driving 0
 Normal : Logic 0 on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic 0 on sel

 Driving 1
 Normal : Logic 1 on sel
 CASEX : Logic 1 on sel
 CASEZ : Logic 1 on sel

 Driving x
 Normal : Logic x on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic x on sel

 Driving z
 Normal : Logic z on sel
 CASEX : Logic 0 on sel
 CASEZ : Logic 0 on sel

Looping Statements

 Looping statements appear inside procedural blocks only; Verilog has
four looping statements like any other programming language.

• forever
• repeat
• while

• for

 Verilog Programming Guide

166

 The forever statement

 The forever loop executes continually, the loop never ends. Normally we
use forever statements in initial blocks.

 syntax : forever < statement >

 One should be very careful in using a forever statement: if no timing
construct is present in the forever statement, simulation could hang. The code below is
one such application, where a timing construct is included inside a forever statement.

 Example - Free running clock generator

 1 module forever_example ();
 2

 3 reg clk;
 4

 5 initial begin

 6 #1 clk = 0;

 7 forever begin

 8 #5 clk = ! clk;

 9 end

 10 end
 11

 12 initial begin

 13 $monitor ("Time = %d clk = %b",$time, clk);

 Verilog Programming Guide

167

 14 #100 $finish;

 15 end
 16

 17 endmodule

You could download file forever_example.v here

 The repeat statement

 The repeat loop executes < statement > a fixed < number > of times.

 syntax : repeat (< number >) < statement >

 Example- repeat

 1 module repeat_example();

 2 reg [3:0] opcode;

 3 reg [15:0] data;

 4 reg temp;
 5

 6 always @ (opcode or data)

 7 begin

http://www.asic-world.com/code/verilog_tutorial/forever_example.v

 Verilog Programming Guide

168

 8 if (opcode == 10) begin

 9 // Perform rotate

 10 repeat (8) begin

 11 #1 temp = data[15];

 12 data = data << 1;

 13 data[0] = temp;

 14 end

 15 end

 16 end

 17 // Simple test code

 18 initial begin

 19 $display (" TEMP DATA");

 20 $monitor (" %b %b ",temp, data);

 21 #1 data = 18'hF0;

 22 #1 opcode = 10;

 23 #10 opcode = 0;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file repeat_example.v here

 The while loop statement

 The while loop executes as long as an < expression > evaluates as true.
This is the same as in any other programming language.

 syntax : while (< expression >) < statement >

http://www.asic-world.com/code/verilog_tutorial/repeat_example.v

 Verilog Programming Guide

169

 Example- while

 1 module while_example();
 2

 3 reg [5:0] loc;

 4 reg [7:0] data;
 5

 6 always @ (data or loc)

 7 begin

 8 loc = 0;

 9 // If Data is 0, then loc is 32 (invalid value)

 10 if (data == 0) begin

 11 loc = 32;

 12 end else begin

 13 while (data[0] == 0) begin

 14 loc = loc + 1;

 15 data = data >> 1;

 16 end

 17 end

 18 $display ("DATA = %b LOCATION = %d",data,loc);

 19 end
 20

 21 initial begin

 22 #1 data = 8'b11;

 23 #1 data = 8'b100;

 24 #1 data = 8'b1000;

 25 #1 data = 8'b1000_0000;

 26 #1 data = 8'b0;

 27 #1 $finish;

 28 end
 29

 30 endmodule

You could download file while_example.v here

 The for loop statement

http://www.asic-world.com/code/verilog_tutorial/while_example.v

 Verilog Programming Guide

170

 The for loop is the same as the for loop used in any other programming
language.

• Executes an < initial assignment > once at the start of the loop.
• Executes the loop as long as an < expression > evaluates as true.

• Executes a < step assignment > at the end of each pass through the loop.

 syntax : for (< initial assignment >; < expression >, < step assignment >)
< statement >

 Note : verilog does not have ++ operator as in the case of C language.

 Example - For

 1 module for_example();
 2

 3 integer i;

 4 reg [7:0] ram [0:255];
 5

 6 initial begin

 7 for (i = 0; i < 256; i = i + 1) begin

 8 #1 $display(" Address = %g Data = %h",i,ram[i]);

 9 ram[i] <= 0; // Initialize the RAM with 0

 10 #1 $display(" Address = %g Data = %h",i,ram[i]);

 11 end

 12 #1 $finish;

 13 end

 Verilog Programming Guide

171

 14

 15 endmodule

You could download file for_example.v here

Continuous
Assignment
Statements

 Continuous assignment statements drive nets (wire data type). They
represent structural connections.

• They are used for modeling Tri-State buffers.
• They can be used for modeling combinational logic.
• They are outside the procedural blocks (always and initial

blocks).
• The continuous assign overrides any procedural assignments.
• The left-hand side of a continuous assignment must be net

data type.

• syntax : assign (strength, strength) #(delay) net = expression;

Example - One bit Adder

 1 module adder_using_assign ();

 2 reg a, b;

 3 wire sum, carry;
 4

 5 assign #5 {carry,sum} = a+b;
 6

 7 initial begin

 8 $monitor (" A = %b B = %b CARRY = %b SUM =

%b",a,b,carry,sum);

 9 #10 a = 0;

 10 b = 0;

 11 #10 a = 1;

 12 #10 b = 1;

 13 #10 a = 0;

 14 #10 b = 0;

 15 #10 $finish;

 16 end
 17

 18 endmodule

You could download file adder_using_assign.v here

http://www.asic-world.com/code/verilog_tutorial/for_example.v
http://www.asic-world.com/code/verilog_tutorial/adder_using_assign.v

 Verilog Programming Guide

172

Example - Tri-state buffer

 1 module tri_buf_using_assign();

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",

 9 $time, enable, data_in, pad);

 10 #1 enable = 0;

 11 #1 data_in = 1;

 12 #1 enable = 1;

 13 #1 data_in = 0;

 14 #1 enable = 0;

 15 #1 $finish;

 16 end
 17

 18 endmodule

You could download file tri_buf_using_assign.v here

Propagation Delay

Continuous Assignments may have a delay specified; only one delay
for all transitions may be specified. A minimum:typical:maximum delay
range may be specified.

Example - Tri-state buffer

 1 module tri_buf_using_assign_delays();

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign #(1:2:3) pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("ENABLE = %b DATA : %b PAD %b",enable,
data_in,pad);

 9 #10 enable = 0;

 10 #10 data_in = 1;

 11 #10 enable = 1;

 12 #10 data_in = 0;

 13 #10 enable = 0;

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign.v

 Verilog Programming Guide

173

 14 #10 $finish;

 15 end
 16

 17 endmodule

You could download file tri_buf_using_assign_delays.v here

 Procedural Block Control

 Procedural blocks become active at simulation time zero. Use level
sensitive event controls to control the execution of a procedure.

 1 module dlatch_using_always();

 2 reg q;
 3

 4 reg d, enable;
 5

 6 always @ (d or enable)

 7 if (enable) begin

 8 q = d;

 9 end
 10

 11 initial begin

 12 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 13 #1 enable = 0;

 14 #1 d = 1;

 15 #1 enable = 1;

 16 #1 d = 0;

 17 #1 d = 1;

 18 #1 d = 0;

 19 #1 enable = 0;

 20 #10 $finish;

 21 end
 22

 23 endmodule

You could download file dlatch_using_always.v here

 Any change in either d or enable satisfies the event control and
allows the execution of the statements in the procedure. The procedure is sensitive to
any change in d or enable.

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign_delays.v
http://www.asic-world.com/code/verilog_tutorial/dlatch_using_always.v

 Verilog Programming Guide

174

 Combo Logic using Procedural Coding

 To model combinational logic, a procedure block must be sensitive to
any change on the input. There is one important rule that needs to be followed while
modeling combinational logic. If you use conditional checking using "if", then you need
to mention the "else" part. Missing the else part results in a latch. If you don't like typing
the else part, then you must initialize all the variables of that combo block as soon as it
enters.

 Example - One bit Adder

 1 module adder_using_always ();

 2 reg a, b;

 3 reg sum, carry;
 4

 5 always @ (a or b)

 6 begin

 7 {carry,sum} = a + b;

 8 end
 9

 10 initial begin

 11 $monitor (" A = %b B = %b CARRY = %b SUM = %b",a,b,carry,sum);

 12 #10 a = 0;

 13 b = 0;

 14 #10 a = 1;

 15 #10 b = 1;

 16 #10 a = 0;

 17 #10 b = 0;

 18 #10 $finish;

 19 end
 20

 21 endmodule

You could download file adder_using_always.v here

 The statements within the procedural block work with entire vectors at
a time.

http://www.asic-world.com/code/verilog_tutorial/adder_using_always.v

 Verilog Programming Guide

175

 Example - 4-bit Adder

 1 module adder_4_bit_using_always ();

 2 reg[3:0] a, b;

 3 reg [3:0] sum;

 4 reg carry;
 5

 6 always @ (a or b)

 7 begin

 8 {carry,sum} = a + b;

 9 end
 10

 11 initial begin

 12 $monitor (" A = %b B = %b CARRY = %b SUM = %b",a,b,carry,sum);

 13 #10 a = 8;

 14 b = 7;

 15 #10 a = 10;

 16 #10 b = 15;

 17 #10 a = 0;

 18 #10 b = 0;

 19 #10 $finish;

 20 end
 21

 22 endmodule

You could download file adder_4_bit_using_always.v here

 Example - Ways to avoid Latches - Cover all conditions

 1 module avoid_latch_else ();
 2

 3 reg q;

 4 reg enable, d;
 5

 6 always @ (enable or d)

 7 if (enable) begin

 8 q = d;

 9 end else begin

http://www.asic-world.com/code/verilog_tutorial/adder_4_bit_using_always.v

 Verilog Programming Guide

176

 10 q = 0;

 11 end
 12

 13 initial begin

 14 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 15 #1 enable = 0;

 16 #1 d = 0;

 17 #1 enable = 1;

 18 #1 d = 1;

 19 #1 d = 0;

 20 #1 d = 1;

 21 #1 d = 0;

 22 #1 d = 1;

 23 #1 enable = 0;

 24 #1 $finish;

 25 end
 26

 27 endmodule

You could download file avoid_latch_else.v here

 Example - Ways to avoid Latches - Snit the variables to zero

 1 module avoid_latch_init ();
 2

 3 reg q;

 4 reg enable, d;
 5

 6 always @ (enable or d)

 7 begin

 8 q = 0;

 9 if (enable) begin

 10 q = d;

 11 end

 12 end
 13

 14 initial begin

 15 $monitor (" ENABLE = %b D = %b Q = %b",enable,d,q);

 16 #1 enable = 0;

 17 #1 d = 0;

 18 #1 enable = 1;

 19 #1 d = 1;

 20 #1 d = 0;

http://www.asic-world.com/code/verilog_tutorial/avoid_latch_else.v

 Verilog Programming Guide

177

 21 #1 d = 1;

 22 #1 d = 0;

 23 #1 d = 1;

 24 #1 enable = 0;

 25 #1 $finish;

 26 end
 27

 28 endmodule

You could download file avoid_latch_init.v here

 Sequential Logic using Procedural Coding

 To model sequential logic, a procedure block must be sensitive to
positive edge or negative edge of clock. To model asynchronous reset, procedure block
must be sensitive to both clock and reset. All the assignments to sequential logic should
be made through nonblocking assignments.

 Sometimes it's tempting to have multiple edge triggering variables in
the sensitive list: this is fine for simulation. But for synthesis this does not make sense,
as in real life, flip-flop can have only one clock, one reset and one preset (i.e. posedge
clk or posedge reset or posedge preset).

 One common mistake the new beginner makes is using clock as the
enable input to flip-flop. This is fine for simulation, but for synthesis, this is not right.

 Example - Bad coding - Using two clocks

 1 module wrong_seq();
 2

http://www.asic-world.com/code/verilog_tutorial/avoid_latch_init.v

 Verilog Programming Guide

178

 3 reg q;

 4 reg clk1, clk2, d1, d2;
 5

 6 always @ (posedge clk1 or posedge clk2)

 7 if (clk1) begin

 8 q <= d1;

 9 end else if (clk2) begin

 10 q <= d2;

 11 end
 12

 13 initial begin

 14 $monitor ("CLK1 = %b CLK2 = %b D1 = %b D2 %b Q = %b",
 15 clk1, clk2, d1, d2, q);

 16 clk1 = 0;

 17 clk2 = 0;

 18 d1 = 0;

 19 d2 = 1;

 20 #10 $finish;

 21 end
 22

 23 always

 24 #1 clk1 = ~clk1;
 25

 26 always

 27 #1.9 clk2 = ~clk2;
 28

 29 endmodule

You could download file wrong_seq.v here

 Example - D Flip-flop with async reset and async preset

 1 module dff_async_reset_async_preset();
 2

 3 reg clk,reset,preset,d;

 4 reg q;
 5

 6 always @ (posedge clk or posedge reset or posedge preset)

 7 if (reset) begin

 8 q <= 0;

 9 end else if (preset) begin

 10 q <= 1;

 11 end else begin

 12 q <= d;

http://www.asic-world.com/code/verilog_tutorial/wrong_seq.v

 Verilog Programming Guide

179

 13 end
 14

 15 // Testbench code here

 16 initial begin

 17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b",
 18 clk,reset,preset,d,q);

 19 clk = 0;

 20 #1 reset = 0;

 21 preset = 0;

 22 d = 0;

 23 #1 reset = 1;

 24 #2 reset = 0;

 25 #2 preset = 1;

 26 #2 preset = 0;

 27 repeat (4) begin

 28 #2 d = ~d;

 29 end

 30 #2 $finish;

 31 end
 32

 33 always

 34 #1 clk = ~clk;
 35

 36 endmodule

You could download file dff_async_reset_async_preset.v here

 Example - D Flip-flop with sync reset and sync preset

 1 module dff_sync_reset_sync_preset();
 2

 3 reg clk,reset,preset,d;

 4 reg q;
 5

 6 always @ (posedge clk)

 7 if (reset) begin

 8 q <= 0;

 9 end else if (preset) begin

 10 q <= 1;

 11 end else begin

 12 q <= d;

 13 end
 14

 15 // Testbench code here

http://www.asic-world.com/code/verilog_tutorial/dff_async_reset_async_preset.v

 Verilog Programming Guide

180

 16 initial begin

 17 $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b",
 18 clk,reset,preset,d,q);

 19 clk = 0;

 20 #1 reset = 0;

 21 preset = 0;

 22 d = 0;

 23 #1 reset = 1;

 24 #2 reset = 0;

 25 #2 preset = 1;

 26 #2 preset = 0;

 27 repeat (4) begin

 28 #2 d = ~d;

 29 end

 30 #2 $finish;

 31 end
 32

 33 always

 34 #1 clk = ~clk;
 35

 36 endmodule

You could download file dff_sync_reset_sync_preset.v here

 A procedure can't trigger itself

 One cannot trigger the block with a variable that block assigns value
or drives.

 1 module trigger_itself();
 2

 3 reg clk;
 4

 5 always @ (clk)

 6 #5 clk = ! clk;
 7

 8 // Testbench code here

 9 initial begin

 10 $monitor("TIME = %d CLK = %b",$time,clk);

 11 clk = 0;

 12 #500 $display("TIME = %d CLK = %b",$time,clk);

 13 $finish;

 14 end

http://www.asic-world.com/code/verilog_tutorial/dff_sync_reset_sync_preset.v

 Verilog Programming Guide

181

 15

 16 endmodule

You could download file trigger_itself.v here

 Procedural Block Concurrency

 If we have multiple always blocks inside one module, then all the
blocks (i.e. all the always blocks and initial blocks) will start executing at time 0 and will
continue to execute concurrently. Sometimes this leads to race conditions, if coding is
not done properly.

 1 module multiple_blocks ();

 2 reg a,b;

 3 reg c,d;

 4 reg clk,reset;

 5 // Combo Logic

 6 always @ (c)

 7 begin

 8 a = c;

 9 end

 10 // Seq Logic

 11 always @ (posedge clk)

 12 if (reset) begin

 13 b <= 0;

 14 end else begin

 15 b <= a & d;

 16 end
 17

 18 // Testbench code here

 19 initial begin

 20 $monitor("TIME = %d CLK = %b C = %b D = %b A = %b B = %b",

 21 $time, clk,c,d,a,b);

 22 clk = 0;

 23 reset = 0;

 24 c = 0;

 25 d = 0;

 26 #2 reset = 1;

 27 #2 reset = 0;

 28 #2 c = 1;

 29 #2 d = 1;

 30 #2 c = 0;

http://www.asic-world.com/code/verilog_tutorial/trigger_itself.v

 Verilog Programming Guide

182

 31 #5 $finish;

 32 end

 33 // Clock generator

 34 always

 35 #1 clk = ~clk;
 36

 37 endmodule

You could download file multiple_blocks.v here

 Race condition

 1 module race_condition();

 2 reg b;
 3

 4 initial begin

 5 b = 0;

 6 end
 7

 8 initial begin

 9 b = 1;

 10 end
 11

 12 endmodule

You could download file race_condition.v here

 In the code above it is difficult to say the value of b, as both blocks
are supposed to execute at same time. In Verilog, if care is not taken, a race condition
is something that occurs very often.

 Named Blocks

 Blocks can be named by adding : block_name after the keyword
begin. Named blocks can be disabled using the 'disable' statement.

http://www.asic-world.com/code/verilog_tutorial/multiple_blocks.v
http://www.asic-world.com/code/verilog_tutorial/race_condition.v

 Verilog Programming Guide

183

 Example - Named Blocks

 1 // This code find the lowest bit set

 2 module named_block_disable();
 3

 4 reg [31:0] bit_detect;

 5 reg [5:0] bit_position;

 6 integer i;
 7

 8 always @ (bit_detect)

 9 begin : BIT_DETECT

 10 for (i = 0; i < 32 ; i = i + 1) begin

 11 // If bit is set, latch the bit position

 12 // Disable the execution of the block

 13 if (bit_detect[i] == 1) begin

 14 bit_position = i;

 15 disable BIT_DETECT;

 16 end else begin

 17 bit_position = 32;

 18 end

 19 end

 20 end
 21

 22 // Testbench code here

 23 initial begin

 24 $monitor(" INPUT = %b MIN_POSITION = %d", bit_detect, bit_position);

 25 #1 bit_detect = 32'h1000_1000;

 26 #1 bit_detect = 32'h1100_0000;

 27 #1 bit_detect = 32'h1000_1010;

 28 #10 $finish;

 29 end
 30

 31 endmodule

You could download file named_block_disable.v here

 In the example above, BIT_DETECT is the named block and it is
disabled whenever the bit position is detected.

http://www.asic-world.com/code/verilog_tutorial/named_block_disable.v

 Verilog Programming Guide

184

 Procedural blocks and timing controls.

• Delay controls.
• Edge-Sensitive Event controls.
• Level-Sensitive Event controls-Wait statements.
• Named Events.

 Delay Controls

 Delays the execution of a procedural statement by specific simulation
time.

 #< time > < statement >;

 Example - clk_gen

 1 module clk_gen ();
 2

 3 reg clk, reset;
 4

 5 initial begin

 6 $monitor ("TIME = %g RESET = %b CLOCK = %b", $time, reset, clk);

 7 clk = 0;

 8 reset = 0;

 9 #2 reset = 1;

 10 #5 reset = 0;

 11 #10 $finish;

 12 end
 13

 14 always

 15 #1 clk = ! clk;
 16

 17 endmodule

 Verilog Programming Guide

185

You could download file clk_gen.v here

 Simulation Output

 TIME = 0 RESET = 0 CLOCK = 0
 TIME = 1 RESET = 0 CLOCK = 1
 TIME = 2 RESET = 1 CLOCK = 0
 TIME = 3 RESET = 1 CLOCK = 1
 TIME = 4 RESET = 1 CLOCK = 0
 TIME = 5 RESET = 1 CLOCK = 1
 TIME = 6 RESET = 1 CLOCK = 0
 TIME = 7 RESET = 0 CLOCK = 1
 TIME = 8 RESET = 0 CLOCK = 0
 TIME = 9 RESET = 0 CLOCK = 1
 TIME = 10 RESET = 0 CLOCK = 0
 TIME = 11 RESET = 0 CLOCK = 1
 TIME = 12 RESET = 0 CLOCK = 0
 TIME = 13 RESET = 0 CLOCK = 1
 TIME = 14 RESET = 0 CLOCK = 0
 TIME = 15 RESET = 0 CLOCK = 1
 TIME = 16 RESET = 0 CLOCK = 0

 Waveform

 Edge sensitive Event Controls

 Delays execution of the next statement until the specified transition
on a signal.

http://www.asic-world.com/code/verilog_tutorial/clk_gen.v

 Verilog Programming Guide

186

 syntax : @ (< posedge >|< negedge > signal) < statement >;

 Example - Edge Wait

 1 module edge_wait_example();
 2

 3 reg enable, clk, trigger;
 4

 5 always @ (posedge enable)

 6 begin

 7 trigger = 0;

 8 // Wait for 5 clock cycles

 9 repeat (5) begin

 10 @ (posedge clk) ;

 11 end

 12 trigger = 1;

 13 end
 14

 15 //Testbench code here

 16 initial begin

 17 $monitor ("TIME : %g CLK : %b ENABLE : %b TRIGGER : %b",

 18 $time, clk,enable,trigger);

 19 clk = 0;

 20 enable = 0;

 21 #5 enable = 1;

 22 #1 enable = 0;

 23 #10 enable = 1;

 24 #1 enable = 0;

 Verilog Programming Guide

187

 25 #10 $finish;

 26 end
 27

 28 always

 29 #1 clk = ~clk;
 30

 31 endmodule

You could download file edge_wait_example.v here

 Simulator Output

 TIME : 0 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 1 CLK : 1 ENABLE : 0 TRIGGER : x
 TIME : 2 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 3 CLK : 1 ENABLE : 0 TRIGGER : x
 TIME : 4 CLK : 0 ENABLE : 0 TRIGGER : x
 TIME : 5 CLK : 1 ENABLE : 1 TRIGGER : 0
 TIME : 6 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 7 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 8 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 9 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 10 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 11 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 12 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 13 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 14 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 15 CLK : 1 ENABLE : 0 TRIGGER : 1
 TIME : 16 CLK : 0 ENABLE : 1 TRIGGER : 0
 TIME : 17 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 18 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 19 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 20 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 21 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 22 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 23 CLK : 1 ENABLE : 0 TRIGGER : 0
 TIME : 24 CLK : 0 ENABLE : 0 TRIGGER : 0
 TIME : 25 CLK : 1 ENABLE : 0 TRIGGER : 1
 TIME : 26 CLK : 0 ENABLE : 0 TRIGGER : 1

 Level-Sensitive Even Controls (Wait statements)

http://www.asic-world.com/code/verilog_tutorial/edge_wait_example.v

 Verilog Programming Guide

188

 Delays execution of the next statement until < expression > evaluates
to true

 syntax : wait (< expression >) < statement >;

 Example - Level Wait

 1 module wait_example();
 2

 3 reg mem_read, data_ready;

 4 reg [7:0] data_bus, data;
 5

 6 always @ (mem_read or data_bus or data_ready)

 7 begin

 8 data = 0;

 9 while (mem_read == 1'b1) begin

 10 // #1 is very important to avoid infinite loop

 11 wait (data_ready == 1) #1 data = data_bus;

 12 end

 13 end
 14

 15 // Testbench Code here

 16 initial begin

 17 $monitor ("TIME = %g READ = %b READY = %b DATA = %b",

 18 $time, mem_read, data_ready, data);

 19 data_bus = 0;

 20 mem_read = 0;

 21 data_ready = 0;

 22 #10 data_bus = 8'hDE;

 23 #10 mem_read = 1;

 24 #20 data_ready = 1;

 25 #1 mem_read = 1;

 26 #1 data_ready = 0;

 27 #10 data_bus = 8'hAD;

 28 #10 mem_read = 1;

 29 #20 data_ready = 1;

 30 #1 mem_read = 1;

 Verilog Programming Guide

189

 31 #1 data_ready = 0;

 32 #10 $finish;

 33 end
 34

 35 endmodule

You could download file wait_example.v here

 Simulator Output

 TIME = 0 READ = 0 READY = 0 DATA = 00000000
 TIME = 20 READ = 1 READY = 0 DATA = 00000000
 TIME = 40 READ = 1 READY = 1 DATA = 00000000
 TIME = 41 READ = 1 READY = 1 DATA = 11011110
 TIME = 42 READ = 1 READY = 0 DATA = 11011110
 TIME = 82 READ = 1 READY = 1 DATA = 11011110
 TIME = 83 READ = 1 READY = 1 DATA = 10101101
 TIME = 84 READ = 1 READY = 0 DATA = 10101101

 Intra-Assignment Timing Controls

 Intra-assignment controls always evaluate the right side expression
immediately and assign the result after the delay or event control.

 In non-intra-assignment controls (delay or event control on the left
side), the right side expression is evaluated after the delay or event control.

 Example - Intra-Assignment

 1 module intra_assign();
 2

 3 reg a, b;

http://www.asic-world.com/code/verilog_tutorial/wait_example.v

 Verilog Programming Guide

190

 4

 5 initial begin

 6 $monitor("TIME = %g A = %b B = %b",$time, a , b);

 7 a = 1;

 8 b = 0;

 9 a = #10 0;

 10 b = a;

 11 #20 $display("TIME = %g A = %b B = %b",$time, a , b);

 12 $finish;

 13 end
 14

 15 endmodule

You could download file intra_assign.v here

 Simulation Output

 TIME = 0 A = 1 B = 0
 TIME = 10 A = 0 B = 0
 TIME = 30 A = 0 B = 0

 Waveform

 Modeling Combo Logic with Continuous Assignments

 Whenever any signal changes on the right hand side, the entire right-
hand side is re-evaluated and the result is assigned to the left hand side.

http://www.asic-world.com/code/verilog_tutorial/intra_assign.v

 Verilog Programming Guide

191

 Example - Tri-state Buffer

 1 module tri_buf_using_assign();

 2 reg data_in, enable;

 3 wire pad;
 4

 5 assign pad = (enable) ? data_in : 1'bz;
 6

 7 initial begin

 8 $monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",

 9 $time, enable, data_in, pad);

 10 #1 enable = 0;

 11 #1 data_in = 1;

 12 #1 enable = 1;

 13 #1 data_in = 0;

 14 #1 enable = 0;

 15 #1 $finish;

 16 end
 17

 18 endmodule

You could download file tri_buf_using_assign.v here

 Simulation Output

 TIME = 0 ENABLE = x DATA : x PAD x
 TIME = 1 ENABLE = 0 DATA : x PAD z
 TIME = 2 ENABLE = 0 DATA : 1 PAD z
 TIME = 3 ENABLE = 1 DATA : 1 PAD 1
 TIME = 4 ENABLE = 1 DATA : 0 PAD 0
 TIME = 5 ENABLE = 0 DATA : 0 PAD z

 Waveform

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign.v

 Verilog Programming Guide

192

 Example - Mux

 1 module mux_using_assign();

 2 reg data_in_0, data_in_1;

 3 wire data_out;

 4 reg sel;
 5

 6 assign data_out = (sel) ? data_in_1 : data_in_0;
 7

 8 // Testbench code here

 9 initial begin

 10 $monitor("TIME = %g SEL = %b DATA0 = %b DATA1 = %b OUT = %b",

 11 $time,sel,data_in_0,data_in_1,data_out);

 12 data_in_0 = 0;

 13 data_in_1 = 0;

 14 sel = 0;

 15 #10 sel = 1;

 16 #10 $finish;

 17 end
 18

 19 // Toggel data_in_0 at #1

 20 always

 21 #1 data_in_0 = ~data_in_0;
 22

 23 // Toggel data_in_1 at #2

 24 always

 25 #2 data_in_1 = ~data_in_1;
 26

 27 endmodule

You could download file mux_using_assign.v here

 Simulation Output

http://www.asic-world.com/code/verilog_tutorial/mux_using_assign.v

 Verilog Programming Guide

193

 TIME = 0 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 1 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 2 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
 TIME = 3 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 4 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 5 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 6 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0
 TIME = 7 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 8 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 9 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1
 TIME = 10 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 11 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 12 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 13 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
 TIME = 14 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 15 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1
 TIME = 16 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0
 TIME = 17 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0
 TIME = 18 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1
 TIME = 19 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1

 Waveform

 Task

 Tasks are used in all programming languages, generally known as
procedures or subroutines. The lines of code are enclosed in task....end task brackets.
Data is passed to the task, the processing done, and the result returned. They have to

 Verilog Programming Guide

194

be specifically called, with data ins and outs, rather than just wired in to the general
netlist. Included in the main body of code, they can be called many times, reducing code
repetition.

• tasks are defined in the module in which they are used. It is
possible to define a task in a separate file and use the compile directive 'include
to include the task in the file which instantiates the task.

• tasks can include timing delays, like posedge, negedge, # delay and wait.
• tasks can have any number of inputs and outputs.
• The variables declared within the task are local to that task. The order of

declaration within the task defines how the variables passed to the task by the
caller are used.

• tasks can take, drive and source global variables, when no local variables are
used. When local variables are used, basically output is assigned only at the end
of task execution.

• tasks can call another task or function.
• tasks can be used for modeling both combinational and sequential logic.
• A task must be specifically called with a statement, it cannot be used within an

expression as a function can.

 Syntax

• A task begins with keyword task and ends with keyword endtask
• Inputs and outputs are declared after the keyword task.
• Local variables are declared after input and output declaration.

 Example - Simple Task

 1 module simple_task();
 2

 3 task convert;

 Verilog Programming Guide

195

 4 input [7:0] temp_in;

 5 output [7:0] temp_out;

 6 begin

 7 temp_out = (9/5) *(temp_in + 32)

 8 end

 9 endtask
 10

 11 endmodule

You could download file simple_task.v here

 Example - Task using Global Variables

 1 module task_global();
 2

 3 reg [7:0] temp_out;

 4 reg [7:0] temp_in;
 5

 6 task convert;

 7 begin

 8 temp_out = (9/5) *(temp_in + 32);

 9 end

 10 endtask
 11

 12 endmodule

You could download file task_global.v here

 Calling a Task

 Let's assume that the task in example 1 is stored in a file called
mytask.v. Advantage of coding a task in a separate file, is that it can be used in multiple
modules.

http://www.asic-world.com/code/verilog_tutorial/simple_task.v
http://www.asic-world.com/code/verilog_tutorial/task_global.v

 Verilog Programming Guide

196

 1 module task_calling (temp_a, temp_b, temp_c, temp_d);

 2 input [7:0] temp_a, temp_c;

 3 output [7:0] temp_b, temp_d;

 4 reg [7:0] temp_b, temp_d;

 5 `include "mytask.v"
 6

 7 always @ (temp_a)

 8 begin

 9 convert (temp_a, temp_b);

 10 end
 11

 12 always @ (temp_c)

 13 begin

 14 convert (temp_c, temp_d);

 15 end
 16

 17 endmodule

You could download file task_calling.v here

 Example - CPU Write / Read Task

 Below is the waveform used for writing into memory and reading from
memory. We make the assumption that there is a need to use this interface from
multiple agents. So we write the read/write as tasks.

 1 module bus_wr_rd_task();
 2

http://www.asic-world.com/code/verilog_tutorial/task_calling.v

 Verilog Programming Guide

197

 3 reg clk,rd,wr,ce;

 4 reg [7:0] addr,data_wr,data_rd;

 5 reg [7:0] read_data;
 6

 7 initial begin

 8 clk = 0;

 9 read_data = 0;

 10 rd = 0;

 11 wr = 0;

 12 ce = 0;

 13 addr = 0;

 14 data_wr = 0;

 15 data_rd = 0;

 16 // Call the write and read tasks here

 17 #1 cpu_write(8'h11,8'hAA);

 18 #1 cpu_read(8'h11,read_data);

 19 #1 cpu_write(8'h12,8'hAB);

 20 #1 cpu_read(8'h12,read_data);

 21 #1 cpu_write(8'h13,8'h0A);

 22 #1 cpu_read(8'h13,read_data);

 23 #100 $finish;

 24 end

 25 // Clock Generator

 26 always

 27 #1 clk = ~clk;

 28 // CPU Read Task

 29 task cpu_read;

 30 input [7:0] address;

 31 output [7:0] data;

 32 begin

 33 $display ("%g CPU Read task with address : %h", $time, address);

 34 $display ("%g -> Driving CE, RD and ADDRESS on to bus", $time);

 35 @ (posedge clk);

 36 addr = address;

 37 ce = 1;

 38 rd = 1;

 39 @ (negedge clk);

 40 data = data_rd;

 41 @ (posedge clk);

 42 addr = 0;

 43 ce = 0;

 44 rd = 0;

 45 $display ("%g CPU Read data : %h", $time, data);

 46 $display ("======================");

 47 end

 48 endtask

 49 // CU Write Task

 50 task cpu_write;

 Verilog Programming Guide

198

 51 input [7:0] address;

 52 input [7:0] data;

 53 begin

 54 $display ("%g CPU Write task with address : %h Data : %h",

 55 $time, address,data);

 56 $display ("%g -> Driving CE, WR, WR data and ADDRESS on to bus",

 57 $time);

 58 @ (posedge clk);

 59 addr = address;

 60 ce = 1;

 61 wr = 1;

 62 data_wr = data;

 63 @ (posedge clk);

 64 addr = 0;

 65 ce = 0;

 66 wr = 0;

 67 $display ("======================");

 68 end

 69 endtask
 70

 71 // Memory model for checking tasks

 72 reg [7:0] mem [0:255];
 73

 74 always @ (addr or ce or rd or wr or data_wr)

 75 if (ce) begin

 76 if (wr) begin

 77 mem[addr] = data_wr;

 78 end

 79 if (rd) begin

 80 data_rd = mem[addr];

 81 end

 82 end
 83

 84 endmodule

You could download file bus_wr_rd_task.v here

 Simulation Output

 1 CPU Write task with address : 11 Data : aa
 1 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 4 CPU Read task with address : 11
 4 -> Driving CE, RD and ADDRESS on to bus
 7 CPU Read data : aa

http://www.asic-world.com/code/verilog_tutorial/bus_wr_rd_task.v

 Verilog Programming Guide

199

 ======================
 8 CPU Write task with address : 12 Data : ab
 8 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 12 CPU Read task with address : 12
 12 -> Driving CE, RD and ADDRESS on to bus
 15 CPU Read data : ab
 ======================
 16 CPU Write task with address : 13 Data : 0a
 16 -> Driving CE, WR, WR data and ADDRESS on to bus
 ======================
 20 CPU Read task with address : 13
 20 -> Driving CE, RD and ADDRESS on to bus
 23 CPU Read data : 0a
 ======================

 Function

 A Verilog HDL function is the same as a task, with very little
differences, like function cannot drive more than one output, can not contain delays.

• functions are defined in the module in which they are used. It is
possible to define functions in separate files and use compile directive 'include to
include the function in the file which instantiates the task.

• functions can not include timing delays, like posedge, negedge, # delay, which
means that functions should be executed in "zero" time delay.

• functions can have any number of inputs but only one output.
• The variables declared within the function are local to that function. The order of

declaration within the function defines how the variables passed to the function
by the caller are used.

• functions can take, drive, and source global variables, when no local variables
are used. When local variables are used, basically output is assigned only at the
end of function execution.

• functions can be used for modeling combinational logic.
• functions can call other functions, but can not call tasks.

 Syntax

 Verilog Programming Guide

200

• A function begins with keyword function and ends with
keyword endfunction

• inputs are declared after the keyword function.

 Example - Simple Function

 1 module simple_function();
 2

 3 function myfunction;

 4 input a, b, c, d;

 5 begin

 6 myfunction = ((a+b) + (c-d));

 7 end

 8 endfunction
 9

 10 endmodule

You could download file simple_function.v here

 Example - Calling a Function

 1 module function_calling(a, b, c, d, e, f);
 2

 3 input a, b, c, d, e ;

 4 output f;

 5 wire f;

 6 `include "myfunction.v"
 7

 8 assign f = (myfunction (a,b,c,d)) ? e :0;
 9

 10 endmodule

You could download file function_calling.v here

http://www.asic-world.com/code/verilog_tutorial/simple_function.v
http://www.asic-world.com/code/verilog_tutorial/function_calling.v

 Verilog Programming Guide

201

 Introduction

 There are tasks and functions that are used to generate input and
output during simulation. Their names begin with a dollar sign ($). The synthesis tools
parse and ignore system functions, and hence can be included even in synthesizable
models.

 $display, $strobe, $monitor

 These commands have the same syntax, and display text on the
screen during simulation. They are much less convenient than waveform display tools
like GTKWave. or Undertow or Debussy. $display and $strobe display once every time
they are executed, whereas $monitor displays every time one of its parameters
changes. The difference between $display and $strobe is that $strobe displays the
parameters at the very end of the current simulation time unit rather than exactly when it
is executed. The format string is like that in C/C++, and may contain format characters.
Format characters include %d (decimal), %h (hexadecimal), %b (binary), %c
(character), %s (string) and %t (time), %m (hierarchy level). %5d, %5b etc. would give
exactly 5 spaces for the number instead of the space needed. Append b, h, o to the task
name to change default format to binary, octal or hexadecimal.

 Syntax

• $display ("format_string", par_1, par_2, ...);
• $strobe ("format_string", par_1, par_2, ...);
• $monitor ("format_string", par_1, par_2, ...);
• $displayb (as above but defaults to binary..);
• $strobeh (as above but defaults to hex..);
• $monitoro (as above but defaults to octal..);

 $time, $stime, $realtime

 Verilog Programming Guide

202

 These return the current simulation time as a 64-bit integer, a 32-bit
integer, and a real number, respectively.

 $reset, $stop, $finish

 $reset resets the simulation back to time 0; $stop halts the simulator
and puts it in interactive mode where the user can enter commands; $finish exits the
simulator back to the operating system.

 $scope, $showscope

 $scope(hierarchy_name) sets the current hierarchical scope to
hierarchy_name. $showscopes(n) lists all modules, tasks and block names in (and
below, if n is set to 1) the current scope.

 $random

 $random generates a random integer every time it is called. If the
sequence is to be repeatable, the first time one invokes random giving it a numerical
argument (a seed). Otherwise the seed is derived from the computer clock.

 $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall

 These can dump variable changes to a simulation viewer like
Debussy. The dump files are capable of dumping all the variables in a simulation. This
is convenient for debugging, but can be very slow.

 Verilog Programming Guide

203

 Syntax

• $dumpfile("filename.vcd")
• $dumpvar dumps all variables in the design.
• $dumpvar(1, top) dumps all the variables in module top and below, but not

modules instantiated in top.
• $dumpvar(2, top) dumps all the variables in module top and 1 level below.
• $dumpvar(n, top) dumps all the variables in module top and n-1 levels below.
• $dumpvar(0, top) dumps all the variables in module top and all level below.
• $dumpon initiates the dump.
• $dumpoff stop dumping.

 $fopen, $fdisplay, $fstrobe $fmonitor and $fwrite

 These commands write more selectively to files.

• $fopen opens an output file and gives the open file a handle for use
by the other commands.

• $fclose closes the file and lets other programs access it.
• $fdisplay and $fwrite write formatted data to a file whenever they are executed.

They are the same except $fdisplay inserts a new line after every execution and
$write does not.

• $strobe also writes to a file when executed, but it waits until all other operations
in the time step are complete before writing. Thus initial #1 a=1; b=0;
$fstrobe(hand1, a,b); b=1; will write write 1 1 for a and b.

• $monitor writes to a file whenever any of its arguments changes.

 Syntax

• handle1=$fopen("filenam1.suffix")
• handle2=$fopen("filenam2.suffix")
• $fstrobe(handle1, format, variable list) //strobe data into filenam1.suffix

 Verilog Programming Guide

204

• $fdisplay(handle2, format, variable list) //write data into filenam2.suffix
• $fwrite(handle2, format, variable list) //write data into filenam2.suffix all on one

line. Put in the format string where a new line is desired.

 Writing a testbench is as complex as writing the RTL code itself. These days
ASICs are getting more and more complex and thus verifying these complex ASIC has
become a challenge. Typically 60-70% of time needed for any ASIC is spent on
verification/validation/testing. Even though the above facts are well known to most ASIC
engineers, still engineers think that there is no glory in verification.

 I have picked up some examples from the VLSI classes that I used to teach
during 1999-2001, when I was in Chennai. Please feel free to give your feedback on
how to improve the tutorial below.

 Before you Start

 For writing testbenches it is important to have the design specification of
"design under test" or simply DUT. Specs need to be understood clearly and a test plan,
which basically documents the test bench architecture and the test scenarios (test
cases) in detail, needs to be made.

 Example - Counter

 Let's assume that we have to verify a simple 4-bit up counter, which increments
its count whenever enable is high, and resets to zero when reset is asserted high. Reset
is synchronous to clock.

 Code for Counter

 Verilog Programming Guide

205

 1 //---

 2 // Design Name : counter

 3 // File Name : counter.v

 4 // Function : 4 bit up counter

 5 // Coder : Deepak

 6 //---

 7 module counter (clk, reset, enable, count);

 8 input clk, reset, enable;

 9 output [3:0] count;

 10 reg [3:0] count;
 11

 12 always @ (posedge clk)

 13 if (reset == 1'b1) begin

 14 count <= 0;

 15 end else if (enable == 1'b1) begin

 16 count <= count + 1;

 17 end
 18

 19 endmodule

You could download file counter.v here

 Test Plan

 We will write a self-checking test bench, but we will do this in steps to help you
understand the concept of writing automated test benches. Our testbench environment
will look something like the figure below.

http://www.asic-world.com/code/verilog_tutorial/counter.v

 Verilog Programming Guide

206

 DUT is instantiated in the testbench, and the testbench will contain a clock
generator, reset generator, enable logic generator and compare logic, which basically
calculates the expected count value of counter and compares it with the output of
counter.

 Test Cases

• Reset Test : We can start with reset de-asserted, followed by
asserting reset for few clock ticks and deasserting the reset, See if counter sets
its output to zero.

• Enable Test : Assert/deassert enable after reset is applied.
• Random Assert/deassert of enable and reset.

 We can add some more test cases; but we are not here to test the counter,
rather to learn how to write test benches.

 Writing a TestBench

 First step of any testbench creation is building a dummy template
which basically declares inputs to DUT as reg and outputs from DUT as wire, then
instantiates the DUT as shown in the code below. Note that there is no port list for the
test bench.

 Verilog Programming Guide

207

 Test Bench

 1 module counter_tb;

 2 reg clk, reset, enable;

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 endmodule

You could download file counter_tb1.v here

 Next step would be to add clock generator logic: this is straight
forward, as we know how to generate a clock. Before we add a clock generator we need
to drive all the inputs to DUT to some known state as shown in the code below.

 Test Bench with Clock generator

 1 module counter_tb;

 2 reg clk, reset, enable;

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 initial

http://www.asic-world.com/code/verilog_tutorial/counter_tb1.v

 Verilog Programming Guide

208

 13 begin

 14 clk = 0;

 15 reset = 0;

 16 enable = 0;

 17 end
 18

 19 always

 20 #5 clk = ! clk;
 21

 22 endmodule

You could download file counter_tb2.v here

 An initial block in Verilog is executed only once, thus simulator sets
the value of clk, reset and enable to 0; by looking at the counter code (of course you will
be referring to the DUT specs) could be found that driving 0 makes all these signals
disabled.

 There are many ways to generate a clock: one could use a forever
loop inside an initial block as an alternative to the above code. You could a add
parameter or use `define to control the clock frequency. You may write a complex clock
generator, where we could introduce PPM (Parts per million, clock width drift), then
control the duty cycle. All the above depends on the specs of the DUT and the creativity
of a "Test Bench Designer".

 At this point, you would like to test if the testbench is generating the
clock correctly: well you can compile it with any Verilog simulator. You need to give
command line options as shown below.

 C:\www.asic-world.com\veridos counter.v counter_tb.v

 Of course it is a very good idea to keep file names the same as the
module name. Ok, coming back to compiling, you will see that the simulator does print
anything on screen, or dump any waveform. Thus we need to add support for all the
above as shown in the code below.

http://www.asic-world.com/code/verilog_tutorial/counter_tb2.v

 Verilog Programming Guide

209

 Test Bench continues...

 1 module counter_tb;

 2 reg clk, reset, enable;

 3 wire [3:0] count;
 4

 5 counter U0 (

 6 .clk (clk),

 7 .reset (reset),

 8 .enable (enable),

 9 .count (count)

 10);

 11

 12 initial begin

 13 clk = 0;

 14 reset = 0;

 15 enable = 0;

 16 end
 17

 18 always

 19 #5 clk = ! clk;
 20

 21 initial begin

 22 $dumpfile ("counter.vcd");

 23 $dumpvars;

 24 end
 25

 26 initial begin

 27 $display("\t\ttime,\tclk,\treset,\tenable,\tcount");

 28 $monitor("%d,\t%b,\t%b,\t%b,\t%d",$time, clk,reset,enable,count);

 29 end
 30

 31 initial

 32 #100 $finish;
 33

 34 //Rest of testbench code after this line
 35

 36 endmodule

You could download file counter_tb3.v here

http://www.asic-world.com/code/verilog_tutorial/counter_tb3.v

 Verilog Programming Guide

210

 $dumpfile is used for specifying the file that the simulator will use to
store the waveform, that can be used later using a waveform viewer. (Please refer to
the tools section for freeware versions of viewers.) $dumpvars basically instructs the
Verilog compiler to start dumping all the signals to "counter.vcd".

 $display is used for printing text or variables to stdout (screen), \t is
for inserting tabs. The syntax is the same as for printf C language. $monitor in the
second line is a bit different: $monitor keeps track of changes to the variables that are in
the list (clk, reset, enable, count). Whenever any of them changes, it prints their value,
in the respective radix specified.

 $finish is used for terminating the simulation after #100 time units
(note: all the initial, always blocks start execution at time 0).

 Now that we have written the basic skeleton, let's compile and see
what we have just coded. Output of the simulator is shown below.

 C:\www.asic-world.com>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Version 2.1.4 Fri Jan 17 21:33:25 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993-97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v
 The size of this model is [2%, 5%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top-level modules:

 Verilog Programming Guide

211

 counter_tb

 time clk, reset, enable, count
 0, 0, 0, 0, x
 5, 1, 0, 0, x
 10, 0, 0, 0, x
 15, 1, 0, 0, x
 20, 0, 0, 0, x
 25, 1, 0, 0, x
 30, 0, 0, 0, x
 35, 1, 0, 0, x
 40, 0, 0, 0, x
 45, 1, 0, 0, x
 50, 0, 0, 0, x
 55, 1, 0, 0, x
 60, 0, 0, 0, x
 65, 1, 0, 0, x
 70, 0, 0, 0, x
 75, 1, 0, 0, x
 80, 0, 0, 0, x
 85, 1, 0, 0, x
 90, 0, 0, 0, x
 95, 1, 0, 0, x

 Exiting VeriWell for Win32 at time 100
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0 Load time = 0.0 Simulation time = 0.1

 Normal exit
 Thank you for using VeriWell for Win32

Adding Reset Logic

 Once we have the basic logic to allow us to see what our testbench is
doing, we can next add the reset logic. If we look at the testcases, we see that we had
added a constraint that it should be possible to activate reset anytime during simulation.
To achieve this we have many approaches, but I am going to teach something that will
go long way. There is something called 'events' in Verilog: events can be triggered, and
also monitored, to see if an event has occurred.

 Let's code our reset logic in such a way that it waits for the trigger
event "reset_trigger": when this event happens, reset logic asserts reset at negative
edge of clock and de-asserts on next negative edge as shown in the code below. Also

 Verilog Programming Guide

212

after de-asserting the reset, reset logic triggers another event called
"reset_done_trigger". This trigger event can then be used somewhere else in the
testbench to sync up.

 Code of reset logic

 1 event reset_trigger;

 2 event reset_done_trigger;
 3

 4 initial begin

 5 forever begin

 6 @ (reset_trigger);

 7 @ (negedge clk);

 8 reset = 1;

 9 @ (negedge clk);

 10 reset = 0;

 11 -> reset_done_trigger;

 12 end

 13 end

You could download file counter_tb4.v here

 Adding test case logic

 Moving forward, let's add logic to generate the test cases, ok we have

three testcases as in the first part of this tutorial. Let's list them again.

• Reset Test : We can start with reset de-asserted, followed by
asserting reset for few clock ticks and de-asserting the reset, See if counter sets
its output to zero.

• Enable Test : Assert/de-assert enable after reset is applied.

http://www.asic-world.com/code/verilog_tutorial/counter_tb4.v

 Verilog Programming Guide

213

• Random Assert/de-assert of enable and reset.

 Repeating it again: "There are many ways" to code a test case, it all
depends on the creativity of the Test bench designer. Let's take a simple approach and
then slowly build upon it.

 Test Case 1 - Asserting/ De-asserting reset

 In this test case, we will just trigger the event reset_trigger after 10
simulation units.

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

 4 end

You could download file counter_tb5.v here

 Test Case 2 - Assert/ De-assert enable after reset is applied.

 In this test case, we will trigger the reset logic and wait for the reset
logic to complete its operation, before we start driving the enable signal to logic 1.

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

 4 @ (reset_done_trigger);

 5 @ (negedge clk);

 6 enable = 1;

 7 repeat (10) begin

 8 @ (negedge clk);

 9 end

 10 enable = 0;

 11 end

http://www.asic-world.com/code/verilog_tutorial/counter_tb5.v

 Verilog Programming Guide

214

You could download file counter_tb6.v here

 Test Case 3 - Assert/De-assert enable and reset randomly.

 In this testcase we assert the reset, and then randomly drive values
on to enable and reset signal.

 1 initial

 2 begin : TEST_CASE

 3 #10 -> reset_trigger;

 4 @ (reset_done_trigger);

 5 fork

 6 repeat (10) begin

 7 @ (negedge clk);

 8 enable = $random;

 9 end

 10 repeat (10) begin

 11 @ (negedge clk);

 12 reset = $random;

 13 end

 14 join

 15 end

You could download file counter_tb7.v here

 Well you might ask, do all this three test case exist in same file? Well,
the answer is no. If we try to have all three test cases on one file, then we end up
having race conditions due to three initial blocks driving reset and enable signal. So
normally, once test bench coding is done, test cases are coded separately and included
in testbench with `include directives as shown below. (There are better ways to do this,
but you have to think how you want to do it).

 If you look closely at all the three test cases, you will find that even
though test case execution is not complete, simulation terminates. To have better
control, what we can do is adding an event like "terminate_sim" and execute $finish only
when this event is triggered. We can trigger this event at the end of test case execution.
The code for $finish now could look as shown below.

http://www.asic-world.com/code/verilog_tutorial/counter_tb6.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb7.v

 Verilog Programming Guide

215

 1 event terminate_sim;

 2 initial begin

 3 @ (terminate_sim);

 4 #5 $finish;

 5 end

You could download file counter_tb8.v here

 The modified test case #2 would be like:

 1 initial

 2 begin: TEST_CASE

 3 #10 -> reset_trigger;

 4 @ (reset_done_trigger);

 5 @ (negedge clk);

 6 enable = 1;

 7 repeat (10) begin

 8 @ (negedge clk);

 9 end

 10 enable = 0;

 11 #5 -> terminate_sim;

 12 end
 13

You could download file counter_tb9.v here

 Second problem with the approach that we have taken till now is that
we need to manually check the waveform and also the simulator output on the screen to
see if the DUT is working correctly. Part IV shows how to automate this.

Adding compare Logic

http://www.asic-world.com/code/verilog_tutorial/counter_tb8.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb9.v

 Verilog Programming Guide

216

 To make any testbench self checking/automated, first we need to
develop a model that mimics the DUT in functionality. In our example, it's going to be
very easy, but at times if the DUT is complex, then to mimic it will be very complex and
will require a lot of innovative techniques to make self-checking work.

 1 reg [3:0] count_compare;
 2

 3 always @ (posedge clk)

 4 if (reset == 1'b1) begin

 5 count_compare <= 0;

 6 end else if (enable == 1'b1) begin

 7 count_compare <= count_compare + 1;

 8 end

You could download file counter_tb10.v here

 Once we have the logic to mimic the DUT functionality, we need to add
the checker logic, which at any given point keeps checking the expected value with the
actual value. Whenever there is any error, it prints out the expected and actual value,
and also terminates the simulation by triggering the event "terminate_sim".

 1 always @ (posedge clk)

 2 if (count_compare ! = count) begin

 3 $display ("DUT Error at time %d", $time);

 4 $display (" Expected value %d, Got Value %d", count_compare, count);

 5 #5 -> terminate_sim;

 6 end

You could download file counter_tb11.v here

 Now that we have the all the logic in place, we can remove $display
and $monitor, as our testbench have become fully automatic, and we don't require to
manually verify the DUT input and output. Try changing the count_compare =
count_compare +2, and see how compare logic works. This is just another way to see if
our testbench is stable.

http://www.asic-world.com/code/verilog_tutorial/counter_tb10.v
http://www.asic-world.com/code/verilog_tutorial/counter_tb11.v

 Verilog Programming Guide

217

 We could add some fancy printing as shown in the figure below to
make our test environment more friendly.

 C:\Download\work>veridos counter.v counter_tb.v
 VeriWell for Win32 HDL Sat Jan 18 20:10:35 2003

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993-97 Wellspring Solutions, Inc.
 All rights reserved

 Memory Available: 0
 Entering Phase I...
 Compiling source file : counter.v
 Compiling source file : counter_tb.v
 The size of this model is [5%, 6%] of the capacity of the free version

 Entering Phase II...
 Entering Phase III...
 No errors in compilation
 Top-level modules:
 counter_tb

 ##
 Applying reset
 Came out of Reset
 Terminating simulation
 Simulation Result : PASSED
 ###
 Exiting VeriWell for Win32 at time 96
 0 Errors, 0 Warnings, Memory Used: 0
 Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

 Normal exit
 Thank you for using VeriWell for Win32

 I know, you would like to see the test bench code that I used to
generate the above output, well you can find it here and counter code here.

http://www.asic-world.com/code/verilog_tutorial/counter_tb.v
http://www.asic-world.com/code/verilog_tutorial/counter.v

 Verilog Programming Guide

218

 There are a lot of things that I have not covered; maybe when I find
time, I may add some more details on this subject.

 As to books, I am yet to find a good book on writing test benches.

 Memory Modeling

 To help modeling of memory, Verilog provides support for two
dimensions arrays. Behavioral models of memories are modeled by declaring an array
of register variables; any word in the array may be accessed using an index into the
array. A temporary variable is required to access a discrete bit within the array.

 Syntax

 reg [wordsize:0] array_name [0:arraysize]

 Examples

 Declaration

 reg [7:0] my_memory [0:255];

 Here [7:0] is the memory width and [0:255] is the memory depth with
the following parameters:

• Width : 8 bits, little endian
• Depth : 256, address 0 corresponds to location 0 in the array.

 Verilog Programming Guide

219

 Storing Values

 my_memory[address] = data_in;

 Reading Values

 data_out = my_memory[address];

 Bit Read

 Sometimes there may be need to read just one bit. Unfortunately
Verilog does not allow to read or write only one bit: the workaround for such a problem
is as shown below.

 data_out = my_memory[address];

 data_out_it_0 = data_out[0];

 Initializing Memories

 A memory array may be initialized by reading memory pattern file from
disk and storing it on the memory array. To do this, we use system tasks $readmemb
and $readmemh. $readmemb is used for binary representation of memory content and
$readmemh for hex representation.

 Verilog Programming Guide

220

 Syntax

 $readmemh("file_name",mem_array,start_addr,stop_addr);

 Note : start_addr and stop_addr are optional.

 Example - Simple memory

 1 module memory();

 2 reg [7:0] my_memory [0:255];
 3

 4 initial begin

 5 $readmemh("memory.list", my_memory);

 6 end

 7 endmodule

You could download file memory.v here

 Example - Memory.list file

 1 //Comments are allowed

 2 1100_1100 // This is first address i.e 8'h00

 3 1010_1010 // This is second address i.e 8'h01

 4 @ 55 // Jump to new address 8'h55

 5 0101_1010 // This is address 8'h55

 6 0110_1001 // This is address 8'h56

You could download file memory.list here

 $readmemh system task can also be used for reading testbench
vectors. I will cover this in detail in the test bench section ... when I find time.

http://www.asic-world.com/code/verilog_tutorial/memory.v
http://www.asic-world.com/code/verilog_tutorial/memory.list

 Verilog Programming Guide

221

 Refer to the examples section for more details on different types of
memories.

 Introduction to FSM

 State machines or FSM are the heart of any digital design; of course
a counter is a simple form of FSM. When I was learning Verilog, I used to wonder "How
do I code FSM in Verilog" and "What is the best way to code it". I will try to answer the
first part of the question below and second part of the question can be found in the
tidbits section.

 State machine Types

 There are two types of state machines as classified by the types of
outputs generated from each. The first is the Moore State Machine where the outputs
are only a function of the present state, the second is the Mealy State Machine where
one or more of the outputs are a function of the present state and one or more of the
inputs.

 Mealy Model

 Moore Model

 Verilog Programming Guide

222

 State machines can also be classified according to the state encoding
used. Encoding style is also a critical factor which decides speed and gate complexity of
the FSM. Binary, gray, one hot, one cold, and almost one hot are the different types of
encoding styles used in coding FSM states.

 Modeling State machines.

 One thing that need to be kept in mind when coding FSM is that
combinational logic and sequence logic should be in two different always blocks. In the
above two figures, next state logic is always the combinational logic. State Registers
and Output logic are sequential logic. It is very important that any asynchronous signal
to the next state logic be synchronized before being fed to the FSM. Always try to keep
FSM in a separate Verilog file.

 Using constants declaration like parameter or `define to define states
of the FSM makes code more readable and easy to manage.

 Example - Arbiter

 Verilog Programming Guide

223

 We will be using the arbiter FSM to study FSM coding styles in
Verilog.

 Verilog Code

 FSM code should have three sections:

• Encoding style.
• Combinational part.
• Sequential part.

 Encoding Style

 There are many encoding styles around, some of which are:

• Binary Encoding
• One Hot Encoding
• One Cold Encoding
• Almost One Hot Encoding
• Almost One Cold Encoding

 Verilog Programming Guide

224

• Gray Encoding

 Of all the above types we normally use one hot and binary encoding.

 One Hot Encoding

 1 parameter [4:0] IDLE = 5'b0_0001;

 2 parameter [4:0] GNT0 = 5'b0_0010;

 3 parameter [4:0] GNT1 = 5'b0_0100;

 4 parameter [4:0] GNT2 = 5'b0_1000;

 5 parameter [4:0] GNT3 = 5'b1_0000;

You could download file fsm_one_hot_params.v here

 Binary Encoding

 1 parameter [2:0] IDLE = 3'b000;

 2 parameter [2:0] GNT0 = 3'b001;

 3 parameter [2:0] GNT1 = 3'b010;

 4 parameter [2:0] GNT2 = 3'b011;

 5 parameter [2:0] GNT3 = 3'b100;

You could download file fsm_binary_params.v here

 Gray Encoding

 1 parameter [2:0] IDLE = 3'b000;

 2 parameter [2:0] GNT0 = 3'b001;

 3 parameter [2:0] GNT1 = 3'b011;

 4 parameter [2:0] GNT2 = 3'b010;

http://www.asic-world.com/code/verilog_tutorial/fsm_one_hot_params.v
http://www.asic-world.com/code/verilog_tutorial/fsm_binary_params.v

 Verilog Programming Guide

225

 5 parameter [2:0] GNT3 = 3'b110;

You could download file fsm_gray_params.v here

Combinational Section

 This section can be modeled using functions, assign statements or
using always blocks with a case statement. For the time being let's see the always block
version

 1 always @ (state or req_0 or req_1 or req_2 or req_3)

 2 begin

 3 next_state = 0;

 4 case(state)

 5 IDLE : if (req_0 == 1'b1) begin

 6 next_state = GNT0;

 7 end else if (req_1 == 1'b1) begin
 8 next_state= GNT1;

 9 end else if (req_2 == 1'b1) begin
 10 next_state= GNT2;

 11 end else if (req_3 == 1'b1) begin
 12 next_state= GNT3;

 13 end else begin

 14 next_state = IDLE;

 15 end

 16 GNT0 : if (req_0 == 1'b0) begin

 17 next_state = IDLE;

 18 end else begin

 19 next_state = GNT0;

 20 end

 21 GNT1 : if (req_1 == 1'b0) begin

 22 next_state = IDLE;

 23 end else begin

 24 next_state = GNT1;

 25 end

 26 GNT2 : if (req_2 == 1'b0) begin

 27 next_state = IDLE;

 28 end else begin

 29 next_state = GNT2;

 30 end

 31 GNT3 : if (req_3 == 1'b0) begin

http://www.asic-world.com/code/verilog_tutorial/fsm_gray_params.v

 Verilog Programming Guide

226

 32 next_state = IDLE;

 33 end else begin

 34 next_state = GNT3;

 35 end

 36 default : next_state = IDLE;

 37 endcase

 38 end

You could download file fsm_combo.v here

 Sequential Section

 This section has to be modeled using only edge sensitive logic such
as always block with posedge or negedge of clock.

 1 always @ (posedge clock)

 2 begin : OUTPUT_LOGIC

 3 if (reset == 1'b1) begin

 4 gnt_0 <= #1 1'b0;

 5 gnt_1 <= #1 1'b0;

 6 gnt_2 <= #1 1'b0;

 7 gnt_3 <= #1 1'b0;

 8 state <= #1 IDLE;

 9 end else begin

 10 state <= #1 next_state;

 11 case(state)

 12 IDLE : begin

 13 gnt_0 <= #1 1'b0;

 14 gnt_1 <= #1 1'b0;

 15 gnt_2 <= #1 1'b0;

 16 gnt_3 <= #1 1'b0;

 17 end

 18 GNT0 : begin

 19 gnt_0 <= #1 1'b1;

 20 end

 21 GNT1 : begin

 22 gnt_1 <= #1 1'b1;

 23 end

http://www.asic-world.com/code/verilog_tutorial/fsm_combo.v

 Verilog Programming Guide

227

 24 GNT2 : begin

 25 gnt_2 <= #1 1'b1;

 26 end

 27 GNT3 : begin

 28 gnt_3 <= #1 1'b1;

 29 end

 30 default : begin

 31 state <= #1 IDLE;

 32 end

 33 endcase

 34 end

 35 end

You could download file fsm_seq.v here

 Full Code using binary encoding

 1 module fsm_full(

 2 clock , // Clock

 3 reset , // Active high reset

 4 req_0 , // Active high request from agent 0

 5 req_1 , // Active high request from agent 1

 6 req_2 , // Active high request from agent 2

 7 req_3 , // Active high request from agent 3

 8 gnt_0 , // Active high grant to agent 0

 9 gnt_1 , // Active high grant to agent 1

 10 gnt_2 , // Active high grant to agent 2

 11 gnt_3 // Active high grant to agent 3
 12);

 13 // Port declaration here

 14 input clock ; // Clock

 15 input reset ; // Active high reset

 16 input req_0 ; // Active high request from agent 0

 17 input req_1 ; // Active high request from agent 1

 18 input req_2 ; // Active high request from agent 2

 19 input req_3 ; // Active high request from agent 3

 20 output gnt_0 ; // Active high grant to agent 0

 21 output gnt_1 ; // Active high grant to agent 1

 22 output gnt_2 ; // Active high grant to agent 2

 23 output gnt_3 ; // Active high grant to agent
 24

 25 // Internal Variables

 26 reg gnt_0 ; // Active high grant to agent 0

http://www.asic-world.com/code/verilog_tutorial/fsm_seq.v

 Verilog Programming Guide

228

 27 reg gnt_1 ; // Active high grant to agent 1

 28 reg gnt_2 ; // Active high grant to agent 2

 29 reg gnt_3 ; // Active high grant to agent
 30

 31 parameter [2:0] IDLE = 3'b000;

 32 parameter [2:0] GNT0 = 3'b001;

 33 parameter [2:0] GNT1 = 3'b010;

 34 parameter [2:0] GNT2 = 3'b011;

 35 parameter [2:0] GNT3 = 3'b100;
 36

 37 reg [2:0] state, next_state;
 38

 39 always @ (state or req_0 or req_1 or req_2 or req_3)

 40 begin

 41 next_state = 0;

 42 case(state)

 43 IDLE : if (req_0 == 1'b1) begin

 44 next_state = GNT0;

 45 end else if (req_1 == 1'b1) begin
 46 next_state= GNT1;

 47 end else if (req_2 == 1'b1) begin
 48 next_state= GNT2;

 49 end else if (req_3 == 1'b1) begin
 50 next_state= GNT3;

 51 end else begin

 52 next_state = IDLE;

 53 end

 54 GNT0 : if (req_0 == 1'b0) begin

 55 next_state = IDLE;

 56 end else begin

 57 next_state = GNT0;

 58 end

 59 GNT1 : if (req_1 == 1'b0) begin

 60 next_state = IDLE;

 61 end else begin

 62 next_state = GNT1;

 63 end

 64 GNT2 : if (req_2 == 1'b0) begin

 65 next_state = IDLE;

 66 end else begin

 67 next_state = GNT2;

 68 end

 69 GNT3 : if (req_3 == 1'b0) begin

 70 next_state = IDLE;

 71 end else begin

 72 next_state = GNT3;

 73 end

 74 default : next_state = IDLE;

 Verilog Programming Guide

229

 75 endcase

 76 end
 77

 78 always @ (posedge clock)

 79 begin : OUTPUT_LOGIC

 80 if (reset) begin

 81 gnt_0 <= #1 1'b0;

 82 gnt_1 <= #1 1'b0;

 83 gnt_2 <= #1 1'b0;

 84 gnt_3 <= #1 1'b0;

 85 state <= #1 IDLE;

 86 end else begin

 87 state <= #1 next_state;

 88 case(state)

 89 IDLE : begin

 90 gnt_0 <= #1 1'b0;

 91 gnt_1 <= #1 1'b0;

 92 gnt_2 <= #1 1'b0;

 93 gnt_3 <= #1 1'b0;

 94 end

 95 GNT0 : begin

 96 gnt_0 <= #1 1'b1;

 97 end

 98 GNT1 : begin

 99 gnt_1 <= #1 1'b1;

 100 end

 101 GNT2 : begin

 102 gnt_2 <= #1 1'b1;

 103 end

 104 GNT3 : begin

 105 gnt_3 <= #1 1'b1;

 106 end

 107 default : begin

 108 state <= #1 IDLE;

 109 end

 110 endcase

 111 end

 112 end
 113

 114 endmodule

You could download file fsm_full.v here

 Testbench

http://www.asic-world.com/code/verilog_tutorial/fsm_full.v

 Verilog Programming Guide

230

 1 `include "fsm_full.v"
 2

 3 module fsm_full_tb();

 4 reg clock , reset ;

 5 reg req_0 , req_1 , req_2 , req_3;

 6 wire gnt_0 , gnt_1 , gnt_2 , gnt_3 ;
 7

 8 initial begin

 9 $display("Time\t R0 R1 R2 R3 G0 G1 G2 G3");

 10 $monitor("%g\t %b %b %b %b %b %b %b %b",

 11 $time, req_0, req_1, req_2, req_3, gnt_0, gnt_1, gnt_2, gnt_3);

 12 clock = 0;

 13 reset = 0;

 14 req_0 = 0;

 15 req_1 = 0;

 16 req_2 = 0;

 17 req_3 = 0;

 18 #10 reset = 1;

 19 #10 reset = 0;

 20 #10 req_0 = 1;

 21 #20 req_0 = 0;

 22 #10 req_1 = 1;

 23 #20 req_1 = 0;

 24 #10 req_2 = 1;

 25 #20 req_2 = 0;

 26 #10 req_3 = 1;

 27 #20 req_3 = 0;

 28 #10 $finish;

 29 end
 30

 31 always

 32 #2 clock = ~clock;
 33

 34

 35 fsm_full U_fsm_full(

 36 clock , // Clock

 37 reset , // Active high reset

 38 req_0 , // Active high request from agent 0

 39 req_1 , // Active high request from agent 1

 40 req_2 , // Active high request from agent 2

 41 req_3 , // Active high request from agent 3

 42 gnt_0 , // Active high grant to agent 0

 43 gnt_1 , // Active high grant to agent 1

 44 gnt_2 , // Active high grant to agent 2

 45 gnt_3 // Active high grant to agent 3
 46);

 47

 48

 49

 Verilog Programming Guide

231

 50 endmodule

You could download file fsm_full_tb.v here

 Simulator Output

 Time R0 R1 R2 R3 G0 G1 G2 G3
 0 0 0 0 0 x x x x
 7 0 0 0 0 0 0 0 0
 30 1 0 0 0 0 0 0 0
 35 1 0 0 0 1 0 0 0
 50 0 0 0 0 1 0 0 0
 55 0 0 0 0 0 0 0 0
 60 0 1 0 0 0 0 0 0
 67 0 1 0 0 0 1 0 0
 80 0 0 0 0 0 1 0 0
 87 0 0 0 0 0 0 0 0
 90 0 0 1 0 0 0 0 0
 95 0 0 1 0 0 0 1 0
 110 0 0 0 0 0 0 1 0
 115 0 0 0 0 0 0 0 0
 120 0 0 0 1 0 0 0 0
 127 0 0 0 1 0 0 0 1
 140 0 0 0 0 0 0 0 1
 147 0 0 0 0 0 0 0 0

 Introduction

 Let's assume that we have a design which requires us to have counters
of various width, but with the same functionality. Maybe we can assume that we have a
design which requires lots of instants of different depth and width of RAMs of similar
functionality. Normally what we do is creating counters of different widths and then use
them. The same rule applies to the RAM we talked about.

 But Verilog provides a powerful way to overcome this problem: it provides
us with something called parameter; these parameters are like constants local to that
particular module.

http://www.asic-world.com/code/verilog_tutorial/fsm_full_tb.v

 Verilog Programming Guide

232

 We can override the default values, either using defparam or by passing
a new set of parameters during instantiation. We call this parameter overriding.

 Parameters

 A parameter is defined by Verilog as a constant value declared within the
module structure. The value can be used to define a set of attributes for the module
which can characterize its behavior as well as its physical representation.

• Defined inside a module.
• Local scope.
• Maybe overridden at instantiation time.

o If multiple parameters are defined, they must be overridden in the order
they were defined. If an overriding value is not specified, the default
parameter declaration values are used.

• Maybe changed using the defparam statement.

 Parameter Override using defparam

 1 module secret_number;

 2 parameter my_secret = 0;
 3

 4 initial begin

 5 $display("My secret number is %d", my_secret);

 6 end
 7

 8 endmodule
 9

 10 module defparam_example();
 11

 12 defparam U0.my_secret = 11;

 Verilog Programming Guide

233

 13 defparam U1.my_secret = 22;
 14

 15 secret_number U0();

 16 secret_number U1();

 17

 18 endmodule

You could download file defparam_example.v here

 Parameter Override during instantiating.

 1 module secret_number;

 2 parameter my_secret = 0;
 3

 4 initial begin

 5 $display("My secret number in module is %d", my_secret);

 6 end
 7

 8 endmodule
 9

 10 module param_overide_instance_example();
 11

 12 secret_number #(11) U0();

 13 secret_number #(22) U1();

 14

 15 endmodule

You could download file param_overide_instance_example.v here

 Passing more than one parameter

 1 module ram_sp_sr_sw (

 2 clk , // Clock Input

 3 address , // Address Input

 4 data , // Data bi-directional

 5 cs , // Chip Select

 6 we , // Write Enable/Read Enable

 7 oe // Output Enable

http://www.asic-world.com/code/verilog_tutorial/defparam_example.v
http://www.asic-world.com/code/verilog_tutorial/param_overide_instance_example.v

 Verilog Programming Guide

234

 8);

 9

 10 parameter DATA_WIDTH = 8 ;

 11 parameter ADDR_WIDTH = 8 ;

 12 parameter RAM_DEPTH = 1 << ADDR_WIDTH;

 13 // Actual code of RAM here
 14

 15 endmodule

You could download file param_more_then_one.v here

 When instantiating more than the one parameter, parameter values
should be passed in the order they are declared in the sub module.

 1 module ram_controller ();//Some ports
 2

 3 // Controller Code
 4

 5 ram_sp_sr_sw #(16,8,256) ram(clk,address,data,cs,we,oe);

 6

 7 endmodule

You could download file param_more_then_one1.v here

 Verilog 2001

 In Verilog 2001, the code above will work, but the new feature makes the
code more readable and error free.

 1 module ram_controller ();//Some ports
 2

 3 ram_sp_sr_sw #(

 4 .DATA_WIDTH(16),

 5 .ADDR_WIDTH(8),

 6 .RAM_DEPTH(256)) ram(clk,address,data,cs,we,oe);

 7

 8 endmodule

You could download file param_more_then_one2.v here

http://www.asic-world.com/code/verilog_tutorial/param_more_then_one.v
http://www.asic-world.com/code/verilog_tutorial/param_more_then_one1.v
http://www.asic-world.com/code/verilog_tutorial/param_more_then_one2.v

 Verilog Programming Guide

235

 Was this copied from VHDL?

 What is logic synthesis ?

 Logic synthesis is the process of converting a high-level description of
design into an optimized gate-level representation. Logic synthesis uses a standard cell
library which have simple cells, such as basic logic gates like and, or, and nor, or macro
cells, such as adder, muxes, memory, and flip-flops. Standard cells put together are
called technology library. Normally the technology library is known by the transistor size
(0.18u, 90nm).

 A circuit description is written in Hardware Description Language (HDL)
such as Verilog. The designer should first understand the architectural description. Then
he should consider design constraints such as timing, area, testability, and power.

 We will see a typical design flow with a large example in the last chapter
of Verilog tutorial.

 Verilog Programming Guide

236

 Life before HDL (Logic synthesis)

 As you must have experienced in college, everything (all the digital
circuits) is designed manually. Draw K-maps, optimize the logic, draw the schematic.
This is how engineers used to design digital logic circuits in early days. Well this works
fine as long as the design is a few hundred gates.

 Impact of HDL and Logic synthesis.

 High-level design is less prone to human error because designs are
described at a higher level of abstraction. High-level design is done without significant
concern about design constraints. Conversion from high-level design to gates is done
by synthesis tools, using various algorithms to optimize the design as a whole. This
removes the problem with varied designer styles for the different blocks in the design
and suboptimal designs. Logic synthesis tools allow technology independent design.
Design reuse is possible for technology-independent descriptions.

 What do we discuss here ?

 When it comes to Verilog, the synthesis flow is the same as for the rest of
the languages. What we try to look in next few pages is how particular code gets
translated to gates. As you must have wondered while reading earlier chapters, how
could this be represented in Hardware ? An example would be "delays". There is no
way we could synthesize delays, but of course we can add delay to particular signals by
adding buffers. But then this becomes too dependent on synthesis target technology.
(More on this in the VLSI section).

 First we will look at the constructs that are not supported by synthesis
tools; the table below shows the constructs that are not supported by the synthesis tool.

 Verilog Programming Guide

237

 Constructs Not Supported in Synthesis

 Construct Type Notes

initial Used only in test benches.

events Events make more sense for syncing test bench components.

real Real data type not supported.

time Time data type not supported.

force and release Force and release of data types not supported.

assign and deassign assign and deassign of reg data types is not supported. But assign on wire

data type is supported.

fork join Use nonblocking assignments to get same effect.

primitives Only gate level primitives are supported.

table UDP and tables are not supported.

 Example of Non-Synthesizable Verilog construct.

 Any code that contains the above constructs are not synthesizable, but
within synthesizable constructs, bad coding could cause synthesis issues. I have seen
codes where engineers code a flip-flop with both posedge of clock and negedge of clock
in sensitivity list.

 Then we have another common type of code, where one reg variable is
driven from more than one always block. Well it will surely cause synthesis error.

 Verilog Programming Guide

238

 Example - Initial Statement

 1 module synthesis_initial(
 2 clk,q,d);

 3 input clk,d;

 4 output q;

 5 reg q;
 6

 7 initial begin

 8 q <= 0;

 9 end
 10

 11 always @ (posedge clk)

 12 begin

 13 q <= d;

 14 end
 15

 16 endmodule

You could download file synthesis_initial.v here

 Delays

 a = #10 b; This code is useful only for simulation purpose.

 Synthesis tool normally ignores such constructs, and just assumes that
there is no #10 in above statement, thus treating above code as

 a = b;

http://www.asic-world.com/code/verilog_tutorial/synthesis_initial.v

 Verilog Programming Guide

239

 Comparison to X and Z are always ignored

 1 module synthesis_compare_xz (a,b);

 2 output a;

 3 input b;

 4 reg a;
 5

 6 always @ (b)

 7 begin

 8 if ((b == 1'bz) || (b == 1'bx)) begin

 9 a = 1;

 10 end else begin

 11 a = 0;

 12 end

 13 end
 14

 15 endmodule

You could download file synthesis_compare_xz.v here

 There seems to be a common problem with all the design engineers new
to hardware. They normally tend to compare variables with X and Z. In practice it is the
worst thing to do, so please avoid comparing with X and Z. Limit your design to two
states, 0 and 1. Use tri-state only at chip IO pads level. We will see this as an example
in the next few pages.

 Constructs Supported in Synthesis

 Verilog is such a simple language; you could easily write code which is
easy to understand and easy to map to gates. Code which uses if, case statements is
simple and cause little headaches with synthesis tools. But if you like fancy coding and
like to have some trouble, ok don't be scared, you could use them after you get some
experience with Verilog. Its great fun to use high level constructs, saves time.

 The most common way to model any logic is to use either assign
statements or always blocks. An assign statement can be used for modeling only

http://www.asic-world.com/code/verilog_tutorial/synthesis_compare_xz.v

 Verilog Programming Guide

240

combinational logic and always can be used for modeling both combinational and
sequential logic.

 Construct Type Keyword or
Description Notes

ports input, inout, output Use inout only at IO level.

parameters parameter This makes design more generic

module definition module

signals and variables wire, reg, tri Vectors are allowed

instantiation module instances / primitive gate instances E.g.- nand (out,a,b),

bad idea to code RTL this way.

function and tasks function , task Timing constructs ignored

procedural always, if, else, case, casex, casez initial is not supported

procedural blocks begin, end, named blocks, disable Disabling of named blocks allowed

data flow assign Delay information is ignored

named Blocks disable Disabling of named block supported.

loops for, while, forever While and forever loops must contain

@(posedge clk) or @(negedge clk)

 Operators and their Effect.

 One common problem that seems to occur is getting confused with logical
and reduction operators. So watch out.

 Verilog Programming Guide

241

 Operator Type Operator Symbol
 Operation Performed

Arithmetic * Multiply

 / Division

 + Add

 - Subtract

 % Modulus

 + Unary plus

 - Unary minus

Logical ! Logical negation

 && Logical AND

 || Logical OR

Relational > Greater than

 < Less than

 >= Greater than or equal

 <= Less than or equal

Equality == Equality

 != inequality

Reduction & Bitwise AND

 ~& Bitwise NAND

 | Bitwise OR

 ~| Bitwise NOR

 Verilog Programming Guide

242

 ^ Bitwise XOR

 ^~ ~^ Bitwise XNOR

Shift >> Right shift

 << Left shift

Concatenation { } Concatenation

Conditional ? conditional

 Logic Circuit Modeling

 From what we have learnt in digital design, we know that there could be
only two types of digital circuits. One is combinational circuits and the second is
sequential circuits. There are very few rules that need to be followed to get good
synthesis output and avoid surprises.

 Combinational Circuit Modeling using assign

 Combinational circuits modeling in Verilog can be done using assign and
always blocks. Writing simple combinational circuits in Verilog using assign statements
is very straightforward, like in the example below

 assign y = (a&b) | (c^d);

 Tri-state buffer

 Verilog Programming Guide

243

 1 module tri_buf (a,b,enable);

 2 input a;

 3 output b;

 4 input enable;

 5 wire a,enable;

 6 wire b;
 7

 8 assign b = (enable) ? a : 1'bz;
 9

 10 endmodule

You could download file tri_buf.v here

 Mux

 1 module mux_21 (a,b,sel,y);

http://www.asic-world.com/code/verilog_tutorial/tri_buf.v

 Verilog Programming Guide

244

 2 input a, b;

 3 output y;

 4 input sel;

 5 wire y;
 6

 7 assign y = (sel) ? b : a;
 8

 9 endmodule

You could download file mux_21.v here

 Simple Concatenation

 1 module bus_con (a,b);

 2 input [3:0] a, b;

 3 output [7:0] y;

 4 wire [7:0] y;
 5

 6 assign y = {a,b};
 7

 8 endmodule

You could download file bus_con.v here

 1 bit adder with carry

http://www.asic-world.com/code/verilog_tutorial/mux_21.v
http://www.asic-world.com/code/verilog_tutorial/bus_con.v

 Verilog Programming Guide

245

 1 module addbit (

 2 a , // first input

 3 b , // Second input

 4 ci , // Carry input

 5 sum , // sum output

 6 co // carry output
 7);

 8 //Input declaration

 9 input a;

 10 input b;

 11 input ci;

 12 //Ouput declaration

 13 output sum;

 14 output co;

 15 //Port Data types

 16 wire a;

 17 wire b;

 18 wire ci;

 19 wire sum;

 20 wire co;

 21 //Code starts here

 22 assign {co,sum} = a + b + ci;
 23

 24 endmodule // End of Module addbit

You could download file addbit.v here

 Multiply by 2

 1 module muliply (a,product);

 2 input [3:0] a;

 3 output [4:0] product;

 4 wire [4:0] product;
 5

 6 assign product = a << 1;
 7

 8 endmodule

You could download file multiply.v here

http://www.asic-world.com/code/verilog_tutorial/addbit.v
http://www.asic-world.com/code/verilog_tutorial/multiply.v

 Verilog Programming Guide

246

 3 is to 8 decoder

 1 module decoder (in,out);

 2 input [2:0] in;

 3 output [7:0] out;

 4 wire [7:0] out;

 5 assign out = (in == 3'b000) ? 8'b0000_0001 :

 6 (in == 3'b001) ? 8'b0000_0010 :

 7 (in == 3'b010) ? 8'b0000_0100 :

 8 (in == 3'b011) ? 8'b0000_1000 :

 9 (in == 3'b100) ? 8'b0001_0000 :

 10 (in == 3'b101) ? 8'b0010_0000 :

 11 (in == 3'b110) ? 8'b0100_0000 :

 12 (in == 3'b111) ? 8'b1000_0000 : 8'h00;
 13

 14 endmodule

You could download file decoder.v here

 Combinational Circuit Modeling using always

 While modeling using always statements, there is the chance of getting a
latch after synthesis if care is not taken. (No one seems to like latches in design, though
they are faster, and take lesser transistor. This is due to the fact that timing analysis
tools always have problems with latches; glitch at enable pin of latch is another
problem).

 One simple way to eliminate the latch with always statement is to always
drive 0 to the LHS variable in the beginning of always code as shown in the code below.

 3 is to 8 decoder using always

http://www.asic-world.com/code/verilog_tutorial/decoder.v

 Verilog Programming Guide

247

 1 module decoder_always (in,out);

 2 input [2:0] in;

 3 output [7:0] out;

 4 reg [7:0] out;
 5

 6 always @ (in)

 7 begin

 8 out = 0;

 9 case (in)

 10 3'b001 : out = 8'b0000_0001;

 11 3'b010 : out = 8'b0000_0010;

 12 3'b011 : out = 8'b0000_0100;

 13 3'b100 : out = 8'b0000_1000;

 14 3'b101 : out = 8'b0001_0000;

 15 3'b110 : out = 8'b0100_0000;

 16 3'b111 : out = 8'b1000_0000;

 17 endcase

 18 end
 19

 20 endmodule

You could download file decoder_always.v here

 Sequential Circuit Modeling

 Sequential logic circuits are modeled using edge sensitive elements in the
sensitive list of always blocks. Sequential logic can be modeled only using always
blocks. Normally we use nonblocking assignments for sequential circuits.

 Simple Flip-Flop

 1 module flif_flop (clk,reset, q, d);

 2 input clk, reset, d;

 3 output q;

 4 reg q;
 5

 6 always @ (posedge clk)

 7 begin

 8 if (reset == 1) begin

http://www.asic-world.com/code/verilog_tutorial/decoder_always.v

 Verilog Programming Guide

248

 9 q <= 0;

 10 end else begin

 11 q <= d;

 12 end

 13 end
 14

 15 endmodule

You could download file flip_flop.v here

 Verilog Coding Style

 If you look at the code above, you will see that I have imposed a coding
style that looks cool. Every company has got its own coding guidelines and tools like
linters to check for this coding guidelines. Below is a small list of guidelines.

• Use meaningful names for signals and variables
• Don't mix level and edge sensitive elements in the same always block
• Avoid mixing positive and negative edge-triggered flip-flops
• Use parentheses to optimize logic structure
• Use continuous assign statements for simple combo logic
• Use nonblocking for sequential and blocking for combo logic
• Don't mix blocking and nonblocking assignments in the same always block (even

if Design compiler supports them!!).
• Be careful with multiple assignments to the same variable
• Define if-else or case statements explicitly

 Note : Suggest if you want more details.

http://www.asic-world.com/code/verilog_tutorial/flip_flop.v

