
                                         
Verilog Programming Guide 

 

 
1 

 

 

 

INTRODUCTION 
  

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware description 
language is a language used to describe a digital system: for example, a network switch, 
a microprocessor or a memory or a simple flip-flop. This just means that, by using a HDL, 
one can describe any (digital) hardware at any level. 

     

    

     

   

  1 // D flip-flop Code 

  2 module d_ff ( d, clk, q, q_bar); 

  3 input d ,clk; 

  4 output q, q_bar; 

  5 wire d ,clk; 

  6 reg q, q_bar; 
  7      

  8 always @ (posedge clk) 

  9 begin 

 10   q <= d; 

 11   q_bar <=  ! d; 



                                         
Verilog Programming Guide 

 

 
2 

 

 12 end 
 13  

 14 endmodule 

You could download file d_ff.v here 

     

One can describe a simple Flip flop as that in the above figure, as well as a complicated 
design having 1 million gates. Verilog is one of the HDL languages available in the 
industry for hardware designing. It allows us to design a Digital design at Behavior Level, 
Register Transfer Level (RTL), Gate level and at switch level. Verilog allows hardware 
designers to express their designs with behavioral constructs, deferring the details of 
implementation to a later stage in the final design. 

This Verilog Guide is designed to get the user familiar with simulating user code, 
testbenches, and test modules. We will use ModelSim software. It is free to download and 
provides an extensive set of tools for simulating designs. So, lets get started… 

     

////////////////////////////////Lesson #1///////////////////////////////////// 

 

 
In this first lesson, let’s set up the ModelSim environment and simulate a simple 
flip flop. 

First, set up your file system to allow easy access to updating and modifying 
your files. There are many ways to set up your file system, the following is the 
one that works best for me. 

Go to the xx_Project_xx_DVD-> Verilog Getting Started->Tutorials_HDL. Copy 
the Lesson 1 Folder over to our local drive from the DVD. In this folder you will 
notice a top level project folder. 

http://www.asic-world.com/code/verilog_tutorial/d_ff.v


                                         
Verilog Programming Guide 

 

 
3 

 

 
The project level folder is called “Lesson_1_Flip_Flop”. Under this project level 
folder are various revisions of the project (The DVD will only include one 
revision, the user is expected to save further revisions of the project files). 
Multiple revisions allow you to keep copies of previously working projects and 
refer to them later when the currently edited source code no longer compiles. 

Under the this top level folder, the project is organized with the following 
folders: 



                                         
Verilog Programming Guide 

 

 
4 

 

• EPT_10M04_AF_S2_Top – This folder contains all the Altera project level files such 

as pin, sdc, configuration, programming object files etc. 

• ModelSim – This folder contains all the compiled object files for ModelSims use. It 

also includes the *.do files. These ‘do’ files are the make files for ModelSim. They 

tell the compiler which source files to compile and allow compile time options. 

• Sim – This folder contains special source files that have non-synthesizeable 

constructs in them. 

• Src – This folder contains all your source files. Only synthesizeable code should go 

into this folder. 

• Test – This folder contains source code for the models which are used to model 

behavior of devices that are not part of the FPGA. These source files can contain 

non-synthesizable code. 

• Testbench --  This folder contains the main testbench source code. The testbench 

controls the operation of the user source code, test models and simulation code. It 

provides the main stimulus such as the clock and reset. 

In the src folder, create a file named “EPT_10M04_AF_S2_Top.v”. Then open 
this file in an editor, I prefer to use NotePad++. Add in the D flip-flop code and 
add comments to describe the file and the parts of the file. 



                                         
Verilog Programming Guide 

 

 
5 

 

 
Next, setup the Testbench file to provide a stimulus for our user code. The 
Testbench file provides all the hardware external devices that the FPGA needs 
to operate the user code. These include the oscillator, reset, push buttons, 
communications, etc… Open the Testbench folder and notice the two files in it. 

 



                                         
Verilog Programming Guide 

 

 
6 

 

• tb_define.v contains pre-defined parameters for the testbench execution 

• tb_ept_10m04_top.v contains declarations, stimulus, tasks and leif modules to 

exercise the user code. 

 
Inside the tb_ept_10m04_top.v file, we see ‘module’ declaration along with the 
name of test bench. The parameter declarations are listed to allow certain 
registers to have constant values. We will discuss parameters and the details of 
the Verilog files later in the tutorial. For now, we will focus on getting started 
and performing our first simulation. Scroll down the testbench file and locate 
the “Instantiate DUT” section. 



                                         
Verilog Programming Guide 

 

 
7 

 

 



                                         
Verilog Programming Guide 

 

 
8 

 

You can see that the testbench uses the name of the module declared in 
‘EPT_10M04_AF_S2_Top.v’. This is called the leif instantiation. When ModelSim 
starts the compilation process, it will search the directory path for the module 
‘EPT_10M04_AF_S2_Top’. This instantiation must include the inputs and 
outputs declared in the module. In this case: 

• ‘d’ – Input into the D flip flop 

• ‘clk’ – Input into the D flip flop 

• ‘q’ – Output from the D flip flop 

• ‘q_bar’ – Output from the D flip flop 

Using the leif instantiation module, we have now connected the testbench with 
the user code. When ModelSim starts the simulation process, testbench will 
control the stimulus to the inputs and accept the outputs from the user code. 

To add stimulus, we use Verilog code. To add a clock, we use the ‘forever’ key 
word. 

 
The parameter ‘CYCLE_50’ is defined in the tb_define.v file. We add the ‘#’ 
character at the beginning of the line to inform the compiler to “add the 
following” as a delay in simulator steps. During simulation, the simulator will 
start a timer that halts this signal (and only this signal) and waits for the timer 
to expire. After the delay has expired, the signal is set equal to its complement 
state. Then, because of the ‘forever’ keyword, the process starts over, delay, 
then set signal to its complement. The result is a clock at 50MHz. We will go 
through the details of all these details later in the tutorial. 



                                         
Verilog Programming Guide 

 

 
9 

 

 
Next, add the stimulus for ‘d’ input. We do this using the ‘initial’ block. 

Everything between the ‘begin’ ‘end’ keywords is executed once per simulation. 



                                         
Verilog Programming Guide 

 

 
10 

 

 
You can see here that the stimulus ‘d’ is set to 1’b1 after a delay of of 100 * 
CYCLE. Where ‘CYCLE’ is defined in the tb_define.v file. Then, after another 
delay, the ‘d’ is set to 1’b0. Finally, a delay of 50*CYCLE is added then the ‘d’ is 
set to 1’b1. The result is a toggle from high to low to high on the ‘d’ signal. 

Next, get the ModelSim loaded up on your laptop/PC. Follow the install guide on 
how to install the ModelSim application. 



                                         
Verilog Programming Guide 

 

 
11 

 

Then, open the 
application and Go to File->Change Directory 



                                         
Verilog Programming Guide 

 

 
12 

 

 
At the dialog box, locate the ModelSim folder under the 

EPT_10M04_AF_S2_TOP project. 

 
Select the ModelSim folder. Next, we will compile each module individually. 
Click on the ‘Compile’ menu item. Select the ‘Compile’ tab. 



                                         
Verilog Programming Guide 

 

 
13 

 

 
In the ‘Compile Source Files’ window, select the ‘src’ folder. 



                                         
Verilog Programming Guide 

 

 
14 

 

 
Select the ‘EPT_10M04)AF_S2_Top.v’ file. 



                                         
Verilog Programming Guide 

 

 
15 

 

 
Click the ‘Compile’ button. 



                                         
Verilog Programming Guide 

 

 
16 

 

 
You will receive the ‘Create Library’ message box. Select Yes. 

 
After the file is compiled, the log will indicate the status of compilation. 

 



                                         
Verilog Programming Guide 

 

 
17 

 

 
Next, repeat the compile steps for the 

• tb_define.v 

• tb_ept_10m04_top.v 

 



                                         
Verilog Programming Guide 

 

 
18 

 

 
Note, you will not get receive the message box asking to create the 
‘work’ folder this time. After the compilation has completed, we are ready to run 
the Simulation. The simulation enviroment is controlled by the *.do files. The 
*.do files act as makefiles to control which files get simulated and add compile 
options. There are two *.do files needed for our simulation. They are found in 
the ModelSim folder. 

 
• Sim_ept10m04_top.do – Contains the files and compile options. 

• Wave_ept_10m04_top.do – Contains the display flags for the ‘Waveforms’ window. 

When we look inside the sim_ept_10m04_top.do file we see the two files to 
simulate. 

 
There are also simulate options that use the ‘+define’ keyword. At the endof the 
file we see the ‘do wave_ept_10m04_top.do’ instruction. This will add the 
display flags to the ‘Waveforms’ window. 



                                         
Verilog Programming Guide 

 

 
19 

 

Start the simulation by typing do sim_ept_10m04_top.do into the command 
window. 

 
When the simulator completes its run, the Wave window appears. 

 
Zoom into the first 10 microseconds of the simulation usin the Zoom buttons. 

 



                                         
Verilog Programming Guide 

 

 
20 

 

 
Now we see the ‘d’ stimulus toggling and the ‘q’ output following the input. 
Zoom in even farther. 



                                         
Verilog Programming Guide 

 

 
21 

 

 



                                         
Verilog Programming Guide 

 

 
22 

 

We can see after first delay that ‘d’ signal is asserted high. Before this assertion 
the signal is not defined in the simulation, so technically it is a Don’t Care 
(indicated by the red ‘floating’ line). Once the ‘d’ is asserted, the delay is added 
by the simulator. After this delay the ‘d’ signal is de-asserted. Then, another 
dealy and the ‘d’ is asserted high. 

Now that we know what the simulator is doing, we can exam the user code, the 
D Flip Flop. 

 

The D Flip Flop provides a registered output. This means that the input ‘d’ will 
be applied to the output ‘q’ but only after one rising edge of the clock. Because 
the output ‘q’ is synchronous to the clock, it is called a synchronous register. 
We can really see what this means when we zoom in even closer in the 
simulation. 



                                         
Verilog Programming Guide 

 

 
23 

 

 



                                         
Verilog Programming Guide 

 

 
24 

 

Examining the user code, we can see this synchronous behavior occuring 
because of the always statement. 

 

The always keyword is used to cause a process to occur when an event 
happens. The event is what is in the paranthesis. In this case, the event is the 
rising edge of the ‘clk’ signal). Verilog uses the ‘posedge’ keyword to describe 
rising edge and ‘clk’ is our input clock from the testbench. So, what the Verilog 
code is telling us is that whenever we get a rising edge on the clock, the output 
‘q’ is equal to ‘d’. Also the ‘q_bar’ output is set to the complement of ‘d’. This is 
exactly what the simluation is showing us. 

We will cover the details of the Verilog keywords, description of synchronous 
code and combinatorial code later in this tutorial. This first lesson was 
designed to get you started with using ModelSim. 

   

VERILOG ABSTRACTION LEVELS 

     

   Verilog Abstraction Levels 

Verilog supports designing at many different levels of abstraction. Three of them are very 
important: 

     

• Behavioral level 
• Register-Transfer Level 
• Gate Level 



                                         
Verilog Programming Guide 

 

 
25 

 

     

 Behavioral level 

Behavioral verilog deals with the logic or behavior of a system. It handles complex logic 
implementation and which is why in industry all implement the behavioral models of the 
system called as RTL. 

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself 
is sequential, that means it consists of a set of instructions that are executed one after the 
other. Functions, Tasks and Always blocks are the main elements. There is no regard to 
the structural realization of the design. 

     

 Register-Transfer Level 

Designs using the Register-Transfer Level specify the characteristics of a circuit by 
operations and the transfer of data between the registers. An explicit clock is used. RTL 
design contains exact timing bounds: operations are scheduled to occur at certain times. 
Modern RTL code definition is "Any code that is synthesizable is called RTL code". 

RTL is an acronym for register transfer level. This implies that your Verilog code describes how 
data is transformed as it is passed from register to register. The transforming of the data is 

performed by the combinational logic that exists between the registers. Don't worry! RTL code 
also applies to pure combinational logic - you don't have to use registers. To show you what we 
mean by RTL code, let's consider a simple example. 

module AOI (input A, B, C, D, output F); 

  assign F = ~((A & B) | (C & D)); 

endmodule 

The AOI gate that we have used as an example so far has actually been written in RTL form. 
This means that continuous assignments are a valid way of describing designs for input to RTL 
synthesis tools. What other code techniques can we use? How about: 

  1 module MUX2 (input SEL, A, B, output F); 



                                         
Verilog Programming Guide 

 

 
26 

 

  2 input SEL, A, B; 
  3 output F; 
  4  
  5      INV G1 (SEL, SELB); 
  6      AOI G2 (SELB, A, SEL, B, FB); 
  7      INV G3 (.A(FB), .F(F)); 

  8 endmodule 

 

   

 Gate Level 

Modeling done at this level is usually called gate level modeling as it involves gates and 
has a one to one relation between a hardware schematic and the Verilog code. Verilog 
supports a few basic logic gates known as primitives as they can be instantiated like 
modules since they are already predefined.  

Within the logic level the characteristics of a system are described by logical links and 
their timing properties. All signals are discrete signals. They can only have definite logical 
values (`0', `1', `X', `Z`). The usable operations are predefined logic primitives (AND, OR, 
NOT etc gates).  

  1 module gates ( 
  2 input a, b, 
  3 output c, d, e); 
  4  
  5      and(c, a, b);  // c is the output, a and b are inputs 
  6      or(d, a, b); // d is the output, a and b are inputs 
  7      xor( e, a, b)  // e is the output, a and b are inputs 

  8 endmodule 

 

 



                                         
Verilog Programming Guide 

 

 
27 

 

MODULES, PORTS, DATA TYPES AND 

OPERATORS 
 Modules 

Since Verilog is a HDL (hardware description language - one used for the conceptual 
design of integrated circuits), it also needs to have these things. In Verilog, we call our 
"black boxes" module. This is a reserved word within the program used to refer to things 
with inputs, outputs, and internal logic workings; they're the rough equivalents of functions 
with returns in other programming languages. 

Module instances are also examples of synthesizable RTL statements. However, one of 
the reasons to use synthesis technology is to be able to describe the design at a higher 
level of abstraction than using a collection of module instances or low-level binary 
operators in a continuous assignment. We would like to be able to describe what the 
design does and leave the consideration of how the design is implemented up to the 
synthesis tool. This is a first step (and a pretty big conceptual one) on the road to high-
level design. We are going to use a feature of the Verilog language that allows us to 
specify the functionality of a design (the ‘what') that can be interpreted by a synthesis 
tool.     

     

 In Verilog, after we have declared the module name and port names, we can define the 
direction of each port. The code for this is shown below. 

     

   

  1 module arbiter ( 

  2 // Two slashes make a comment line. 

  3 clock      , // clock 

  4 reset      , // Active high, syn reset 

  5 req_0      , // Request 0 

  6 req_1      , // Request 1 

  7 gnt_0      , // Grant 0 

  8 gnt_1        // Grant 1 



                                         
Verilog Programming Guide 

 

 
28 

 

  9 ); 

 10 //-------------Input Ports----------------------------- 

 11 // Note : all commands are semicolon-delimited 

 12 input           clock               ; 

 13 input           reset               ; 

 14 input           req_0               ; 

 15 input           req_1               ; 

 16 //-------------Output Ports---------------------------- 

 17 output          gnt_0               ; 

 18 output          gnt_1               ; 

 19 //-------------Internal Signals---------------------------- 

 20 reg            count_1              ; 

 21 reg            stop_1               ; 
 22  

 23 //-------------Add User Code---------------------------- 

 24    … 

 25 endmodule 
 

You could download file one_day1.v here 

 Types of Ports 

Port Description 

Input The design module can only receive values from outside using its input  ports 

Output The design module can only send values to the outside using its output  ports 

Inout The design module can either send or receive values using its inout  ports 

Ports are by default considered as nets of type wire . 

Syntax 

input  [net_type] [range] list_of_names;  // Input port 

http://www.asic-world.com/code/verilog_tutorial/one_day1.v


                                         
Verilog Programming Guide 

 

 
29 

 

inout  [net_type] [range] list_of_names;  // Input & Output port 
output [net_type] [range] list_of_names;  // Output port driven by a 
wire 

output [var_type] [range] list_of_names;  // Output port driven by a 
variable 

Example 

In the code shown below, there are three input  ports, one output  port and one inout  port. 

  1 module my_design ( 
  2  

  3 input wire      clk, 

  4 input           en, 

  5 input           rw, 

  6 inout [15:0]    data, 

  7 output          int_1 ); 
  8  

  9 // Design behavior as Verilog code 
 10  
 11  

 12 endmodule 

 

It is illegal to use the same name for multiple ports. 

input  aport;         // First declaration - valid 
input  aport;         // Error - already declared 

output aport;         // Error - already declared 



                                         
Verilog Programming Guide 

 

 
30 

 

    

   

Bi-Directional Ports Example - 

     

  inout read_enable; // port named read_enable is bi-directional 

     

How to define vector signals (signals composed of sequences of more than one bit)? 
Verilog provides a simple way to define these as well. 

     

Vector Signals Example - 

     

  inout [7:0] address; //port "address" is bidirectional 

     

Note the [7:0] means we're using the little-endian convention - you start with 0 at the 
rightmost bit to begin the vector, then move to the left. If we had done [0:7], we would be 
using the big-endian convention and moving from left to right. Endianness is a purely 
arbitrary way of deciding which way your data will "read," but does differ between 
systems, so using the right endianness consistently is important. As an analogy, think of 
some languages (English) that are written left-to-right (big-endian) versus others (Arabic) 
written right-to-left (little-endian). Knowing which way the language flows is crucial to 
being able to read it, but the direction of flow itself was arbitrarily set years back. 

     

  Summary 



                                         
Verilog Programming Guide 

 

 
31 

 

     

• We learnt how a block/module is defined in Verilog. 
• We learnt how to define ports and port directions. 
• We learnt how to declare vector/scalar ports. 

     

Data Types 

Verilog Language has two primary data types: 

     

• Nets - represent structural connections between components. 
• Registers - represent variables used to store data. 

     

Every signal has a data type associated with it: 

     

• Explicitly declared with a declaration in your Verilog code. 
• Implicitly declared with no declaration when used to connect structural building 

blocks in your code. Implicit declaration is always a net type "wire" and is one bit 
with 

     

     

 Types of Nets 
 
Each net type has a functionality that is used to model different types of hardware (such as 
PMOS, NMOS, CMOS, etc) 

     



                                         
Verilog Programming Guide 

 

 
32 

 

Net Data Type Functionality 

wire, tri Interconnecting wire - no special resolution function 

wor, trior Wired outputs OR together (models ECL) 

wand, triand Wired outputs AND together (models open-collector) 

tri0, tri1 Net pulls-down or pulls-up when not driven 

supply0, supply1 Net has a constant logic 0 or logic 1 (supply strength) 

trireg Retains last value, when driven by z (tristate). 

Summary 

     

• Wire data type is used for connecting two points. 
• Reg data type is used for storing values. 

 Register Data Types 

     

• Registers store the last value assigned to them until another assignment 
statement changes their value. 

• Registers represent data storage constructs. 
• You can create regs arrays called memories. 
• register data types are used as variables in procedural blocks. 
• A register data type is required if a signal is assigned a value within a procedural 

block 
• Procedural blocks begin with keyword initial and always. 

     

Data Types Functionality 



                                         
Verilog Programming Guide 

 

 
33 

 

reg Unsigned variable 

integer Signed variable - 32 bits 

time Unsigned integer - 64 bits 

real Double precision floating point variable 

 

     

Note : Of all register types, reg is the one which is most widely used 

    

 Operators 

Operators are the same things here as they are in other programming languages. They 
take two values and compare (or otherwise operate on) them to yield a third result - 
common examples are addition, equals, logical-and... To make life easier for us, nearly all 
operators (at least the ones in the list below) are exactly the same as their counterparts in 
the C programming language. 

 Arithmetic Operators 

    

• Binary: +, -, *, /, % (the modulus operator) 

• Unary: +, - (This is used to specify the sign) 

• Integer division truncates any fractional part 

• The result of a modulus operation takes the sign of the first operand 

• If any operand bit value is the unknown value x, then the entire result value is x 

• Register data types are used as unsigned values (Negative numbers are stored in two's 

complement form) 



                                         
Verilog Programming Guide 

 

 
34 

 

   

  

  
 Example 

   

  

   

  1 module arithmetic_operators(); 
  2  

  3 initial begin 

  4   $display (" 5  +  10 = %d", 5  + 10); 

  5   $display (" 5  -  10 = %d", 5  - 10); 

  6   $display (" 10 -  5  = %d", 10 - 5); 

  7   $display (" 10 *  5  = %d", 10 * 5); 

  8   $display (" 10 /  5  = %d", 10 / 5); 

  9   $display (" 10 /  -5 = %d", 10 / -5); 

 10   $display (" 10 %s  3  = %d","%", 10 % 3); 

 11   $display (" +5       = %d", +5); 

 12   $display (" -5       = %d", -5); 

 13    #10  $finish; 

 14 end 
 15  

 16 endmodule 

You could download file arithmetic_operators.v here 

   

  

 5  +  10 =  15 
  5  -  10 =  -5 
  10 -  5  =   5 
  10 *  5  =  50 
  10 /  5  =  2 
  10 /  -5 = -2 
  10 %  3  =   1 
  +5       =  5 
  -5       =  -5 

 

http://www.asic-world.com/code/verilog_tutorial/arithmetic_operators.v


                                         
Verilog Programming Guide 

 

 
35 

 

   

  

 Relational Operators 

   

Operator Description 

a < b a less than b 

a > b a greater than b 

a <= b a less than or equal to b 

a >= b a greater than or equal to b 

 

   

  

• The result is a scalar value (example a < b) 
• 0 if the relation is false (a is bigger then b) 
• 1 if the relation is true ( a is smaller then b) 
• x if any of the operands has unknown x bits (if a or b contains X) 

   

  

Note: If any operand is x or z, then the result of that test is treated as false (0) 

   

 Example 

   

  



                                         
Verilog Programming Guide 

 

 
36 

 

   

  1 module relational_operators(); 
  2  

  3 initial begin 

  4   $display (" 5     <=  10 = %b", (5     <= 10)); 

  5   $display (" 5     >=  10 = %b", (5     >= 10)); 

  6   $display (" 1'bx  <=  10 = %b", (1'bx  <= 10)); 

  7   $display (" 1'bz  <=  10 = %b", (1'bz  <= 10));   

  8    #10  $finish; 

  9 end 
 10  

 11 endmodule 

You could download file relational_operators.v here 

   

  

  5     <=  10 = 1 
  5     >=  10 = 0 
  1'bx  <=  10 = x 
  1'bz  <=  10 = x 

 

   

 Equality Operators 

There are two types of Equality operators. Case Equality and Logical Equality. 

   

  

Operator Description 

a === b a equal to b, including x and z (Case equality) 

a !== b a not equal to b, including x and z (Case inequality) 

a == b a equal to b, result may be unknown (logical equality) 

http://www.asic-world.com/code/verilog_tutorial/relational_operators.v


                                         
Verilog Programming Guide 

 

 
37 

 

a != b a not equal to b, result may be unknown (logical equality) 

  

• Operands are compared bit by bit, with zero filling if the two operands do not 
have the same length 

• Result is 0 (false) or 1 (true) 
• For the == and != operators, the result is x, if either operand contains an x or a z 
• For the === and !== operators, bits with x and z are included in the comparison 

and must match for the result to be true 

   

  

Note : The result is always 0 or 1. 

 Example 

   

   

  1 module equality_operators(); 
  2  

  3 initial begin 

  4   // Case Equality 

  5   $display (" 4'bx001 ===  4'bx001 = %b", (4'bx001 ===  4'bx001)); 

  6   $display (" 4'bx0x1 ===  4'bx001 = %b", (4'bx0x1 ===  4'bx001)); 

  7   $display (" 4'bz0x1 ===  4'bz0x1 = %b", (4'bz0x1 ===  4'bz0x1)); 

  8   $display (" 4'bz0x1 ===  4'bz001 = %b", (4'bz0x1 ===  4'bz001)); 

  9   // Case Inequality 

 10   $display (" 4'bx0x1 !==  4'bx001 = %b", (4'bx0x1  ! ==  4'bx001)); 

 11   $display (" 4'bz0x1 !==  4'bz001 = %b", (4'bz0x1  ! ==  4'bz001));   

 12   // Logical Equality 

 13   $display (" 5       ==   10      = %b", (5       ==   10)); 

 14   $display (" 5       ==   5       = %b", (5       ==   5)); 

 15   // Logical Inequality 

 16   $display (" 5       !=   5       = %b", (5        ! =   5)); 

 17   $display (" 5       !=   6       = %b", (5        ! =   6)); 

 18    #10  $finish; 

 19 end 



                                         
Verilog Programming Guide 

 

 
38 

 

 20  

 21 endmodule 

You could download file equality_operators.v here 

   

  

 4'bx001 ===  4'bx001 = 1 
  4'bx0x1 ===  4'bx001 = 0 
  4'bz0x1 ===  4'bz0x1 = 1 
  4'bz0x1 ===  4'bz001 = 0 
  4'bx0x1 !==  4'bx001 = 1 
  4'bz0x1 !==  4'bz001 = 1 
  5       ==   10      = 0 
  5       ==   5       = 1 
  5       !=   5       = 0 
  5       !=   6       = 1 

 

  
 Logical Operators 

  

Operator Description 

! logic negation 

&& logical and 

|| logical or 

  

• Expressions connected by && and || are evaluated from left to right 
• Evaluation stops as soon as the result is known 
• The result is a scalar value: 

o 0 if the relation is false 
o 1 if the relation is true 
o x if any of the operands has x (unknown) bits 

http://www.asic-world.com/code/verilog_tutorial/equality_operators.v


                                         
Verilog Programming Guide 

 

 
39 

 

   

  

 Example 

   

  

   

  1 module logical_operators(); 
  2  

  3 initial begin 

  4   // Logical AND 

  5   $display ("1'b1 && 1'b1 = %b", (1'b1 && 1'b1)); 

  6   $display ("1'b1 && 1'b0 = %b", (1'b1 && 1'b0)); 

  7   $display ("1'b1 && 1'bx = %b", (1'b1 && 1'bx)); 

  8   // Logical OR 

  9   $display ("1'b1 || 1'b0 = %b", (1'b1 || 1'b0)); 

 10   $display ("1'b0 || 1'b0 = %b", (1'b0 || 1'b0)); 

 11   $display ("1'b0 || 1'bx = %b", (1'b0 || 1'bx)); 

 12   // Logical Negation 

 13   $display ("! 1'b1       = %b", ( !   1'b1)); 

 14   $display ("! 1'b0       = %b", ( !   1'b0)); 

 15    #10  $finish; 

 16 end 
 17  

 18 endmodule 

You could download file logical_operators.v here 

   

  

 1'b1 && 1'b1 = 1 
 1'b1 && 1'b0 = 0 
 1'b1 && 1'bx = x 
 1'b1 || 1'b0 = 1 
 1'b0 || 1'b0 = 0 
 1'b0 || 1'bx = x 
 ! 1'b1       = 0 
 ! 1'b0       = 1 

 

http://www.asic-world.com/code/verilog_tutorial/logical_operators.v


                                         
Verilog Programming Guide 

 

 
40 

 

   

  

 Bit-wise Operators 

Bitwise operators perform a bit wise operation on two operands. They take each bit in one 
operand and perform the operation with the corresponding bit in the other operand. If one 
operand is shorter than the other, it will be extended on the left side with zeroes to match 
the length of the longer operand. 

   

  

Operator Description 

~ negation 

& and 

| inclusive or 

^ exclusive or 

^~ or ~^ exclusive nor (equivalence) 

  

• Computations include unknown bits, in the following way: 
o ~x = x 
o 0&x = 0 
o 1&x = x&x = x 
o 1|x = 1 
o 0|x = x|x = x 
o 0^x = 1^x = x^x = x 
o 0^~x = 1^~x = x^~x = x 

• When operands are of unequal bit length, the shorter operand is zero-filled in the 
most significant bit positions. 



                                         
Verilog Programming Guide 

 

 
41 

 

   

  

 Example 

   

   

  1 module bitwise_operators(); 
  2  

  3 initial begin 

     4   // Bit Wise Negation 

  5   $display (" ~4'b0001           = %b", (~4'b0001)); 

  6   $display (" ~4'bx001           = %b", (~4'bx001)); 

  7   $display (" ~4'bz001           = %b", (~4'bz001)); 

  8   // Bit Wise AND 

  9   $display (" 4'b0001 &  4'b1001 = %b", (4'b0001 &  4'b1001)); 

 10   $display (" 4'b1001 &  4'bx001 = %b", (4'b1001 &  4'bx001)); 

 11   $display (" 4'b1001 &  4'bz001 = %b", (4'b1001 &  4'bz001)); 

 12   // Bit Wise OR 

 13   $display (" 4'b0001 |  4'b1001 = %b", (4'b0001 |  4'b1001)); 

 14   $display (" 4'b0001 |  4'bx001 = %b", (4'b0001 |  4'bx001)); 

 15   $display (" 4'b0001 |  4'bz001 = %b", (4'b0001 |  4'bz001)); 

 16   // Bit Wise XOR 

 17   $display (" 4'b0001 ^  4'b1001 = %b", (4'b0001 ^  4'b1001)); 

 18   $display (" 4'b0001 ^  4'bx001 = %b", (4'b0001 ^  4'bx001)); 

 19   $display (" 4'b0001 ^  4'bz001 = %b", (4'b0001 ^  4'bz001)); 

 20   // Bit Wise XNOR 

 21   $display (" 4'b0001 ~^ 4'b1001 = %b", (4'b0001 ~^ 4'b1001)); 

 22   $display (" 4'b0001 ~^ 4'bx001 = %b", (4'b0001 ~^ 4'bx001)); 

 23   $display (" 4'b0001 ~^ 4'bz001 = %b", (4'b0001 ~^ 4'bz001)); 

 24    #10  $finish; 

 25 end 
 26  

 27 endmodule 

You could download file bitwise_operators.v here 

   

  

  ~4'b0001           = 1110 
  ~4'bx001           = x110 

http://www.asic-world.com/code/verilog_tutorial/bitwise_operators.v


                                         
Verilog Programming Guide 

 

 
42 

 

  ~4'bz001           = x110 
  4'b0001 &  4'b1001 = 0001 
  4'b1001 &  4'bx001 = x001 
  4'b1001 &  4'bz001 = x001 
  4'b0001 |  4'b1001 = 1001 
  4'b0001 |  4'bx001 = x001 
  4'b0001 |  4'bz001 = x001 
  4'b0001 ^  4'b1001 = 1000 
  4'b0001 ^  4'bx001 = x000 
  4'b0001 ^  4'bz001 = x000 
  4'b0001 ~^ 4'b1001 = 0111 
  4'b0001 ~^ 4'bx001 = x111 
  4'b0001 ~^ 4'bz001 = x111 

 

   
  
Reduction Operators 

     

Operator Description 

& and 

~& nand 

| or 

~| nor 

^ xor 

^~ or ~^ xnor 

 

     

• Reduction operators are unary. 



                                         
Verilog Programming Guide 

 

 
43 

 

• They perform a bit-wise operation on a single operand to produce a single bit 
result. 

• Reduction unary NAND and NOR operators operate as AND and OR 
respectively, but with their outputs negated. 

o Unknown bits are treated as described before. 

     

 Example 

     

   

  1 module reduction_operators(); 
  2  

  3 initial begin 

  4   // Bit Wise AND reduction 

  5   $display (" &  4'b1001 = %b", (&  4'b1001)); 

  6   $display (" &  4'bx111 = %b", (&  4'bx111)); 

  7   $display (" &  4'bz111 = %b", (&  4'bz111)); 

  8   // Bit Wise NAND reduction 

  9   $display (" ~& 4'b1001 = %b", (~& 4'b1001)); 

 10   $display (" ~& 4'bx001 = %b", (~& 4'bx001)); 

 11   $display (" ~& 4'bz001 = %b", (~& 4'bz001)); 

 12   // Bit Wise OR reduction 

 13   $display (" |  4'b1001 = %b", (|  4'b1001)); 

 14   $display (" |  4'bx000 = %b", (|  4'bx000)); 

 15   $display (" |  4'bz000 = %b", (|  4'bz000)); 

 16   // Bit Wise NOR reduction 

 17   $display (" ~| 4'b1001 = %b", (~| 4'b1001)); 

 18   $display (" ~| 4'bx001 = %b", (~| 4'bx001)); 

 19   $display (" ~| 4'bz001 = %b", (~| 4'bz001)); 

 20   // Bit Wise XOR reduction 

 21   $display (" ^  4'b1001 = %b", (^  4'b1001)); 

 22   $display (" ^  4'bx001 = %b", (^  4'bx001)); 

 23   $display (" ^  4'bz001 = %b", (^  4'bz001)); 

 24   // Bit Wise XNOR 

 25   $display (" ~^ 4'b1001 = %b", (~^ 4'b1001)); 

 26   $display (" ~^ 4'bx001 = %b", (~^ 4'bx001)); 

 27   $display (" ~^ 4'bz001 = %b", (~^ 4'bz001)); 

 28    #10  $finish; 



                                         
Verilog Programming Guide 

 

 
44 

 

 29 end 
 30  

 31 endmodule 

You could download file reduction_operators.v here 

     

  &  4'b1001 = 0 
  &  4'bx111 = x 
  &  4'bz111 = x 
  ~& 4'b1001 = 1 
  ~& 4'bx001 = 1 
  ~& 4'bz001 = 1 
  |  4'b1001 = 1 
  |  4'bx000 = x 
  |  4'bz000 = x 
  ~| 4'b1001 = 0 
  ~| 4'bx001 = 0 
  ~| 4'bz001 = 0 
  ^  4'b1001 = 0 
  ^  4'bx001 = x 
  ^  4'bz001 = x 
  ~^ 4'b1001 = 1 
  ~^ 4'bx001 = x 
  ~^ 4'bz001 = x 

 

     

 Shift Operators 

     

Operator Description 

<< left shift 

>> right shift 

 

     

http://www.asic-world.com/code/verilog_tutorial/reduction_operators.v


                                         
Verilog Programming Guide 

 

 
45 

 

• The left operand is shifted by the number of bit positions given by the right 
operand. 

• The vacated bit positions are filled with zeroes. 

     

 Example 

     

   

  1 module shift_operators(); 
  2  

  3 initial begin 

  4   // Left Shift 

  5   $display (" 4'b1001 << 1 = %b", (4'b1001 << 1)); 

  6   $display (" 4'b10x1 << 1 = %b", (4'b10x1 << 1)); 

  7   $display (" 4'b10z1 << 1 = %b", (4'b10z1 << 1)); 

  8   // Right Shift 

  9   $display (" 4'b1001 >> 1 = %b", (4'b1001 >> 1)); 

 10   $display (" 4'b10x1 >> 1 = %b", (4'b10x1 >> 1)); 

 11   $display (" 4'b10z1 >> 1 = %b", (4'b10z1 >> 1)); 

 12    #10  $finish; 

 13 end 
 14  

 15 endmodule 

You could download file shift_operators.v here 

     

 4'b1001 << 1 = 0010 
  4'b10x1 << 1 = 0x10 
  4'b10z1 << 1 = 0z10 
  4'b1001 >> 1 = 0100 
  4'b10x1 >> 1 = 010x 
  4'b10z1 >> 1 = 010z 

 

     

   Concatenation Operator 

http://www.asic-world.com/code/verilog_tutorial/shift_operators.v


                                         
Verilog Programming Guide 

 

 
46 

 

     

• Concatenations are expressed using the brace characters { and }, with commas 
separating the expressions within. 

o Example: + {a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers, the 
results has 24 bits 

• Unsized constant numbers are not allowed in concatenations. 

     

   

     

 Example 

     

   

 1 module concatenation_operator(); 
 2  

 3 initial begin 

 4   // concatenation 

 5   $display (" {4'b1001,4'b10x1}  = %b", {4'b1001,4'b10x1}); 

 6    #10  $finish; 

 7 end 
 8  

 9 endmodule 

You could download file concatenation_operator.v here 

     

    {4'b1001,4'b10x1}  = 100110x1 
 

     

 Replication Operator 

http://www.asic-world.com/code/verilog_tutorial/concatenation_operator.v


                                         
Verilog Programming Guide 

 

 
47 

 

Replication operator is used to replicate a group of bits n times. Say you have a 4 bit 
variable and you want to replicate it 4 times to get a 16 bit variable: then we can use the 
replication operator. 

     

Operator Description 

{n{m}} Replicate value m, n times 

    

• Repetition multipliers (must be constants) can be used: 
o {3{a}} // this is equivalent to {a, a, a} 

• Nested concatenations and replication operator are possible: 
o {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d} 

     

 Example 

     

   

  1 module replication_operator(); 
  2  

  3 initial begin 

  4   // replication 

  5   $display (" {4{4'b1001}}      = %b", {4{4'b1001}}); 

  6   // replication and concatenation 

  7   $display (" {4{4'b1001,1'bz}} = %b", {4{4'b1001,1'bz}}); 

  8    #10  $finish; 

  9 end 
 10  

 11 endmodule 

You could download file replication_operator.v here 

     

    {4{4'b1001}       = 1001100110011001 

http://www.asic-world.com/code/verilog_tutorial/replication_operator.v


                                         
Verilog Programming Guide 

 

 
48 

 

  {4{4'b1001,1'bz}  = 1001z1001z1001z1001z 
 

     

   Conditional Operators 

     

• The conditional operator has the following C-like format: 
o cond_expr ? true_expr : false_expr 

• The true_expr or the false_expr is evaluated and used as a result depending on 
what cond_expr evaluates to (true or false). 

     

 Example 

     

   

  1 module conditional_operator(); 
  2  

  3 wire out; 

  4 reg enable,data; 

  5 // Tri state buffer 

  6 assign out = (enable) ? data : 1'bz; 
  7  

  8 initial begin 

  9   $display ("time\t enable data out"); 

 10   $monitor ("%g\t %b      %b    %b",$time,enable,data,out); 

 11   enable = 0; 

 12   data = 0; 

 13    #1  data = 1; 

 14    #1  data = 0; 

 15    #1  enable = 1; 

 16    #1  data = 1; 

 17    #1  data = 0; 

 18    #1  enable = 0; 

 19    #10  $finish; 

 20 end  



                                         
Verilog Programming Guide 

 

 
49 

 

 21  

 22 endmodule 

You could download file conditional_operator.v here 

     

 time  enable data out 
 0  0      0    z 
 1  0      1    z 
 2  0      0    z 
 3  1      0    0 
 4  1      1    1 
 5  1      0    0 
 6  0      0    z 

 

     

 Operator Precedence 

     

Operator Symbols 

Unary, Multiply, Divide, Modulus !, ~, *, /, % 

Add, Subtract, Shift +, - , <<, >> 

Relation, Equality <,>,<=,>=,==,!=,===,!== 

Reduction &, !&,^,^~,|,~| 

Logic &&, || 

Conditional ? : 

 

    

http://www.asic-world.com/code/verilog_tutorial/conditional_operator.v


                                         
Verilog Programming Guide 

 

 
50 

 

Operator Type Operator Symbol Operation Performed 

Arithmetic * Multiply 

 / Division 

 + Add 

 - Subtract 

 % Modulus 

 + Unary plus 

 - Unary minus 

Logical ! Logical negation 

 && Logical and 

 || Logical or 

Relational > Greater than 

 < Less than 

 >= Greater than or equal 

 <= Less than or equal 

Equality == Equality 

 != inequality 

Reduction ~ Bitwise negation 

 ~& nand 



                                         
Verilog Programming Guide 

 

 
51 

 

 | or 

 ~| nor 

 ^ xor 

 ^~ xnor 

 ~^ xnor 

Shift >> Right shift 

 << Left shift 

Concatenation { } Concatenation 

Conditional ? conditional 

 

     

 

//////////////////////////////////////Lesson #2/////////////////////////////////// 

 

 
In this lesson, we will use the operators in Verilog code. 
First, let’s open the Lesson 2 and explore the operators code. Go to the 
xx_Project_xx_DVD-> Verilog Getting Started->Tutorials_HDL. Locate the 
Lesson_2_Operators folder in the DVD.  



                                         
Verilog Programming Guide 

 

 
52 

 

Go through the initial steps as outlined in Lesson 1. Those initial steps open 
ModelSim, Change Directory to the ModelSim Folder, Compile the source file, 
then start the simulation using the “do sim_ept_10m04_top.do” 

 

 

Open the Top Level file in the “src’ folder. Examine the standalone module that 
will perform the selected operation. 

 

 
Next, open and view the test bench to exercise each operator and display the 

results. 



                                         
Verilog Programming Guide 

 

 
53 

 

 
 

 

 
The top level module is created following the syntax rules of Verilog. Use the 
keyword “module” followed by the name of the module. Then, add an opening 

parenthesis and define the inputs and outputs. This tutorial will cover in greater 
detail the keywords “module”, “input”, and “output”, signals, registers and 

assignment statements later on. For now, just follow the coding. This module 
simply takes in two operands, performs an operation then outputs the results. 

This lesson is designed to get you familiar with how operators work and how to 
use them. This lesson specifically takes in two operands of eight bits each and 
the output is eight bits. The reason for this is in the future you will write code 
that manipulates both multi-bit registers and single bit signals. The operators 

will act differently on registers and signals. So, you will need to understand this 
and how to use operators. 

 



                                         
Verilog Programming Guide 

 

 
54 

 

Lets look at the code, 

 

 
The first four operators “+, -, *, /” work on the entire eight registers in total. If we 
look at the test bench, we will see that we can access the inputs by placing an 

eight value on the inputs at the start of the simulation. Then, use the “$display” 
keyword to display the outputs on the log window. 



                                         
Verilog Programming Guide 

 

 
55 

 

 

 

 

 
You can see the testbench “$display” manipulates the operands by simply 
using the “%h” syntax. This similar to the C language. When you want to 

display a number to the log screen add the “%h” inside a string. Then close the 
string and place the name of the register inside the paranthesis. Run the 



                                         
Verilog Programming Guide 

 

 
56 

 

ModelSim simulation using the *.do file by following the steps in Lesson #1. 
The output on the log screen looks like the following: 

 

 

 
You can see the result of the operation in the log window after running the 

simulation. Note that the first four operators work on the entire eight bits of the 
input registers. 

The “Logical Operators” only operate on single bit signals. When we use an 
eight bit register, the operator has to be assigned to each individual bit in 

separate assignments. 



                                         
Verilog Programming Guide 

 

 
57 

 

 

 
The result of the logical operator on an eight bit register show the number as a 

complete eight bit number: 

 



                                         
Verilog Programming Guide 

 

 
58 

 

 

 
The rest of the operators operate on the entire eight registers. This is an 

important distinction that you must handle appropriately when writing your 
code. The results of the other operators: 



                                         
Verilog Programming Guide 

 

 
59 

 

 

 
Feel free to explore the operators by changing the initial values of these 

numbers and seeing the results after running the simulation.

 

 

   

   

   

     



                                         
Verilog Programming Guide 

 

 
60 

 

   

   

     

   

 

   

CONTROL STATEMENTS 

Control statements in Verilog include: if, else, repeat, while, for, case - it's Verilog that 
looks exactly like C. Even though the functionality appears to be the same as in C, Verilog 
is an HDL, so the descriptions should translate to hardware. This means you've got to be 
careful when using control statements (otherwise your designs might not be 
implementable in hardware). 

     

If-else 

If-else statements check a condition to decide whether or not to execute a portion of 
code. If a condition is satisfied, the code is executed. Else, it runs this other portion of 
code. 

     

   

  1 // begin and end act like curly braces in C/C++. 

  2 if (enable == 1'b1) begin 

  3   data = 10; // Decimal assigned 

  4   address = 16'hDEAD; // Hexadecimal 

  5   wr_enable = 1'b1; // Binary   



                                         
Verilog Programming Guide 

 

 
61 

 

  6 end else begin 

  7   data = 32'b0; 

  8   wr_enable = 1'b0; 

  9   address = address + 1;   

 10 end 

You could download file one_day2.v here 

     

One could use any operator in the condition checking, as in the case of C language. If 
needed we can have nested if else statements; statements without else are also ok, but 
they have their own problem, when modeling combinational logic, in case they result in a 
Latch (this is not always true). 

     

 Case 

Case statements are used where we have one variable which needs to be checked for 
multiple values. like an address decoder, where the input is an address and it needs to be 
checked for all the values that it can take. Instead of using multiple nested if-else 
statements, one for each value we're looking for, we use a single case statement: this is 
similar to switch statements in languages like C++. 

     

Case statements begin with the reserved word case and end with the reserved 
word endcase (Verilog does not use brackets to delimit blocks of code). The cases, 
followed with a colon and the statements you wish executed, are listed within these two 
delimiters. It's also a good idea to have a default case. Just like with a finite state 
machine (FSM), if the Verilog machine enters into a non-covered statement, the machine 
hangs. Defaulting the statement with a return to idle keeps us safe. 

     

   

 1 case(address) 

 2   0 : memory_cell_0 = 16’hffe0; 

 3   1 : memory_cell_1 = 16’hac81; 

http://www.asic-world.com/code/verilog_tutorial/one_day2.v


                                         
Verilog Programming Guide 

 

 
62 

 

 4   2 : memory_cell_2 = 16’h3f76; 

 5   default : memory_cell_1 = 16’h0000; 

 6 endcase 

You could download file one_day3.v here 

     

   

     

Note: One thing that is common to if-else and case statement is that, if you don't cover all 
the cases (don't have 'else' in If-else or 'default' in Case), and you are trying to write a 
combinational statement, the synthesis tool will infer Latch. 

     

 While 

A while statement executes the code within it repeatedly if the condition it is assigned to 
check returns true. While loops are not synthesizable in hardware and not normally used 
for models in real life, but they are used in test benches. As with other statement blocks, 
they are delimited by begin and end. 

     

   

 1 while (free_time) begin 

 2  $display ("Continue with webpage development"); 

 3 end 

You could download file one_day4.v here 

     

As long as free_time variable is set, code within the begin and end will be executed. i.e 
print "Continue with web development". Let's looks at a stranger example, which uses 
most of Verilog constructs. Well, you heard it right. Verilog has fewer reserved words than 
VHDL, and in this few, we use even lesser for actual coding. So good of Verilog... so 
right. 

http://www.asic-world.com/code/verilog_tutorial/one_day3.v
http://www.asic-world.com/code/verilog_tutorial/one_day4.v


                                         
Verilog Programming Guide 

 

 
63 

 

     

   

  1 module counter (clk,rst,enable,count); 

  2 input clk, rst, enable; 

  3 output [3:0] count; 

  4 reg [3:0] count; 
  5                  

  6 always @ (posedge clk or posedge rst) 

  7 if (rst) begin 

  8   count <= 0; 

  9 end else begin : COUNT 

 10   while (enable) begin 

 11     count <= count + 1; 

 12     disable COUNT; 

 13   end 

 14 end 
 15  

 16 endmodule 

You could download file one_day5.v here 

     

The example above uses most of the constructs of Verilog. You'll notice a new block 
called always - this illustrates one of the key features of Verilog. Most software 
languages, as we mentioned before, execute sequentially - that is, statement by 
statement. Verilog programs, on the other hand, often have many statements executing in 
parallel. All blocks marked always will run - simultaneously - when one or more of the 
conditions listed within it is fulfilled. 

     

In the example above, the always block will run when either rst or clk reaches a positive 
edge - that is, when their value has risen from 0 to 1. You can have two or 
more always blocks in a program going at the same time (not shown here, but commonly 
used). 

     

http://www.asic-world.com/code/verilog_tutorial/one_day5.v


                                         
Verilog Programming Guide 

 

 
64 

 

We can disable a block of code, by using the reserve word disable. In the above example, 
after each counter increment, the COUNT block of code (not shown here) is disabled. 

    

 For loop 

For loops in Verilog are almost exactly like for loops in C or C++. The only difference is 
that the ++ and -- operators are not supported in Verilog. Instead of writing i++ as you 
would in C, you need to write out its full operational equivalent, i = i + 1. 

     

   

 1   for (i = 0; i < 16; i = i +1) begin 

 2       $display ("Current value of i is %d", i); 

 3    end 

You could download file one_day6.v here 

     

This code will print the numbers from 0 to 15 in order. Be careful when using for loops for 
register transfer logic (RTL) and make sure your code is actually sanely implementable in 
hardware... and that your loop is not infinite. The for keyword is synthesizable in 
hardware. 

     

 Repeat 

Repeat is similar to the for loop we just covered. Instead of explicitly specifying a 
variable and incrementing it when we declare the for loop, we tell the program how 
many times to run through the code, and no variables are incremented (unless we want 
them to be, like in this example). 

     

   

 1 repeat (16) begin 

http://www.asic-world.com/code/verilog_tutorial/one_day6.v


                                         
Verilog Programming Guide 

 

 
65 

 

 2   $display ("Current value of i is %d", i); 

 3   i = i + 1; 

 4 end 

You could download file one_day7.v here 

     

The output is exactly the same as in the previous for-loop program example. It is relatively 
rare to use a repeat (or for-loop) in actual hardware implementation. However, the repeat 
keyword is synthesizable in hardware. 

     

Summary 

     

• While, if-else, case(switch) statements are the same as in C language. 
• If-else and case statements require all the cases to be covered for combinational 

logic. 
• For-loop is the same as in C, but no ++ and -- operators. 
• Repeat is the same as the for-loop but without the incrementing variable. 

////////////////////////////////Lesson #3///////////////////////////////////////// 

 

 
In this lesson, let’s explore the Verilog control statements. The control 
statements are a big contributor to a lot of Verilog code out there in the world. 
The control statements encompass both synthesizable and non-synthesizable 
Verilog code.  

Go to the xx_Project_xx_DVD-> Verilog Getting Started->Tutorials_HDL. Copy 
the top level Lesson 3 folder to the users local drive. Go through the initial 
steps as outlined in Lesson 1. Those initial steps open ModelSim, Change 

http://www.asic-world.com/code/verilog_tutorial/one_day7.v


                                         
Verilog Programming Guide 

 

 
66 

 

Directory to the ModelSim Folder, Compile the source file, then start the 
simulation using the “do sim_ept_10m04_top.do” 

 

 
This lesson will introduce the user to Verilog Control Statements. It provides a 
Testbench and user code. The Testbench will exercise each control and display 
the results to the log window of ModelSim. The user code is organized as a 
module with only synthesizable code that mimics the project that will go into an 
FPGA. The user code includes  non-synthesizable code that can only be used in 
a testbench. There are three files used in Lesson 3. 

• EPT_10M04_AF_S2_Top.v 

• tb_ept_10m04_top.v 

• tb_define.v 

The user code: 

 

 



                                         
Verilog Programming Guide 

 

 
67 

 

 
 

 

The Testbench code contains the stimulus for the user code: 

 

 



                                         
Verilog Programming Guide 

 

 
68 

 

 
 
 

The If – Else control statement user code takes in an eight bit count value from 
the Testbench and compares it to a maximum count value. If the incoming value 
is lesser than the max count, it returns a value of zero. If the incoming value is 
greater than max count, it returns the incoming value. This shows how the “if” a 
value is equal to zero, “then” execute a statement, “else” execute a different 
statement. 

 

 



                                         
Verilog Programming Guide 

 

 
69 

 

 
 

 

The Testbench produces a count by using the “+” operator and adding a ‘1’ to 
the current count value. The resulting incremented count is transmitted to the 
IF ELSE Block in the user code. 

 

 

 



                                         
Verilog Programming Guide 

 

 
70 

 

 

 

Here, the Testbench uses the ‘while’ statement to cause the Testbench to 
compare the control and if it is true, execute the statements in the loop. When 
the statements have completed, the control is again compared to a value. If 
true, the loop continues. This cycle continues until the while control is false. 
The user code is comparing the each incremented count to the max value. 
When the count is greater than the max count, the result is transmitted to the 
Testbench and compared to the while control. At this point the while control will 
be false and the loop is exited. The next statement to execute is the 
“$display(“If Else Statement reached……”). The result on the log window of the 
ModelSim is: 

 

 



                                         
Verilog Programming Guide 

 

 
71 

 

 
 

 

The Case Control Statement uses the case->select statement->execute 
statement. 
case(‘control’) 
1: ‘statement’; 
2: ‘statement’: 
. 
. 
Endcase 

 

 



                                         
Verilog Programming Guide 

 

 
72 

 

 

 
 

 

The Testbench transmits an eight bit count value to the user code. This count 
value determines which statement is selected. Then the statement is executed.  

 

 

 



                                         
Verilog Programming Guide 

 

 
73 

 

 

 

The Testbench uses the ‘repeat’ control statement to cause the statements 
between begin/end to execute ten times. Each iteration through the repeat cycle 
causes the ‘case_input_register’ to increment by one. This value is transmitted 
to the user code and selects a statement to execute based on the case control. 
The result on the log window of ModelSim is: 

 

 



                                         
Verilog Programming Guide 

 

 
74 

 

 
 

 



                                         
Verilog Programming Guide 

 

 
75 

 

The while statement is not synthesizable. So, it will be implemented in the 
Testbench while the user code will perform an incremented count and produce 
a non-zero result when the count reaches maximum count. 

 

 

 
 

 

The while loop takes the value it receives from result of the user code while 
block and compares it to the control of the while statement. If it is zero, the 
statements in the Testbench while loop execute. This continues as the user 
code increments the counter based on the clock supplied by the Test bench. In 
this case it is 50 MHz. When the counter reaches the max value, the user code 
transmits this value. The Testbech while loop compares this to zero and 
determines the while control is false and exits the loop. The result in the log 
window of ModelSIm: 

 

 



                                         
Verilog Programming Guide 

 

 
76 

 

 
 

 

The For Loop is used to execute statements within a pre-set range. Usually the 
for loop repeats the same statement with a slight modification based on the 
index counter of the for loop. 

 

 

  



                                         
Verilog Programming Guide 

 

 
77 

 

VARIABLE ASSIGNMENT 

In digital there are two types of elements, combinational and sequential. Of course we 
know this. But the question is "How do we model this in Verilog ?". Well Verilog provides 
two ways to model the combinational logic and only one way to model sequential logic. 

     

• Combinational elements can be modeled using assign and always statements. 
• Sequential elements can be modeled using only always statement. 
• There is a third block, which is used in test benches only: it is called Initial 

statement. 

     

 Initial Blocks 

An initial block, as the name suggests, is executed only once when simulation starts. This 
is useful in writing test benches. If we have multiple initial blocks, then all of them are 
executed at the beginning of simulation. 

     

Example 

   

 1 initial begin 

 2       clk = 0; 

 3       reset = 0; 

 4       req_0 = 0; 

 5       req_1 = 0; 

 6 end 

You could download file one_day8.v here 

     

http://www.asic-world.com/code/verilog_tutorial/one_day8.v


                                         
Verilog Programming Guide 

 

 
78 

 

In the above example, at the beginning of simulation, (i.e. when time = 0), all the variables 
inside the begin and end block are driven zero. 

 

 
Always Blocks 

 

As the name suggests, an always block executes always, unlike initial blocks which 
execute only once (at the beginning of simulation). A second difference is that an 
always block should have a sensitive list or a delay associated with it. 

     

The sensitive list is the one which tells the always block when to execute the block of 
code, as shown in the figure below. The @ symbol after reserved word ' always', 
indicates that the block will be triggered "at" the condition in parenthesis after symbol 
@. 

 An always block indicates a set of procedural instructions that happen in the order they 
are written. The reg data type can hold on to its value while the rest of the always block 
is completed, while the 'wire' data type (the default one) does not. Reg is what has to be 
used in every always block, even though that particular block is short and ends 
immediately. Assign is used for wire types and can be thought of as connecting physical 
wires between pieces of hardware, or a path for a signal to travel.  

  

One important note about always block: it can not drive wire data type, but can drive reg 
and integer data types. 

     

   

 1 always  @ (a or b or sel) 

 2 begin 

 3   y = 0; 

 4   if (sel == 0) begin 

 5     y = a; 



                                         
Verilog Programming Guide 

 

 
79 

 

 6   end else begin 

 7     y = b; 

 8   end 

 9 end 

You could download file one_day9.v here 

     

The above example is a 2:1 mux, with input a and b; sel is the select input and y is the 
mux output. In any combinational logic, output changes whenever input changes. This 
theory when applied to always blocks means that the code inside always blocks needs 
to be executed whenever the input variables (or output controlling variables) change. 
These variables are the ones included in the sensitive list, namely a, b and sel. 

     

There are two types of sensitive list: level sensitive (for combinational circuits) and edge 
sensitive (for flip-flops). The code below is the same 2:1 Mux but the output y is now a 
flip-flop output. 

     

   

 1 always  @ (posedge clk ) 

 2 if (reset == 0) begin 

 3   y <= 0; 

 4 end else if (sel == 0) begin 

 5   y <= a; 

 6 end else begin 

 7   y <= b; 

 8 end 

You could download file one_day10.v here 

     

We normally have to reset flip-flops, thus every time the clock makes the transition from 
0 to 1 (posedge), we check if reset is asserted (synchronous reset), then we go on with 
normal logic. If we look closely we see that in the case of combinational logic we had "=" 
for assignment, and for the sequential block we had the "<=" operator. Well, "=" is 

http://www.asic-world.com/code/verilog_tutorial/one_day9.v
http://www.asic-world.com/code/verilog_tutorial/one_day10.v


                                         
Verilog Programming Guide 

 

 
80 

 

blocking assignment and "<=" is nonblocking assignment. "=" executes code 
sequentially inside a begin / end, whereas nonblocking "<=" executes in parallel. 

     

We can have an always block without sensitive list, in this case we need to have a delay 
as shown in the code below. 

     

   

 1 always  begin 

 2    #5  clk = ~clk; 

 3 end 

You could download file one_day11.v here 

     

#5 in front of the statement delays its execution by 5 time units. 

     

 Assign Statement 

     

An assign statement is used for modeling only combinational logic and it is executed 
continuously. So the assign statement is called 'continuous assignment statement' as 
there is no sensitive list. 

     

   

 1 assign out = (enable) ? data : 1'bz; 

You could download file one_day12.v here 

     

http://www.asic-world.com/code/verilog_tutorial/one_day11.v
http://www.asic-world.com/code/verilog_tutorial/one_day12.v


                                         
Verilog Programming Guide 

 

 
81 

 

The above example is a tri-state buffer. When enable is 1, data is driven to out, else out 
is pulled to high-impedance. We can have nested conditional operators to construct 
mux, decoders and encoders. 

     

   

 1 assign out = data; 

You could download file one_day13.v here 
 

The assignment statement starts with the keyword assign followed by the signal name 
which can be either a single signal or a concatenation of different signal nets. The driver 
strength and delay  are optional and are mostly used for dataflow modeling than 
synthesizing into real hardware. The expression or signal on the right hand side is 
evaluated and assigned to the net or expression of nets on the left hand side. 

 assign <net_expression> = [drive_strength] [delay] <expression of 
different signals or constant value> 

Rules: 

• LHS should always be a scalar or vector net or a concatenation of scalar or 

vector nets and never a scalar or vector register. 

• RHS can contain scalar or vector registers and function calls. 

• Whenever any operand on the RHS changes in value, LHS will be updated 

with the new value. 

• Assign statements are also called continuous assignments and are always 

active.  

   

     

 Task and Function 

Often times we find certain pieces of code to be repetitive and called multiple times 
within the RTL. They mostly do not consume time and might involve complex 
calculations that need to be done with different values. In such cases, we can declare a 

http://www.asic-world.com/code/verilog_tutorial/one_day13.v


                                         
Verilog Programming Guide 

 

 
82 

 

‘function’ and place the repetitive code inside the function and allow it to return the 
result. This will reduce the amount of lines in the RTL drastically since all you need to 
do now is to do a function call and pass data on which the computation needs to be 
performed. In fact, this is very similar to the functions in C. 

 The purpose of a function is to return the value that is to be used in an expression. A 
function definition always start with the keyword ‘function’ followed by the return type, 
name and a port list enclosed in parantheses. Verilog knows that a function definition is 
over when it finds the ‘endfunction’ keyword. Note that a  function shall have at least 
one input declared and the return type will be void if the function does not return 
anything. 

 

Syntax 

function [automatic] [return_type] name ([port_list]); 
 [statements] 
endfunction 
 

The keyword ‘automatic’ will make the function reentrant and items declared within the 
task are dynamically allocated rather than shared between different invocations of the 
task. This will be useful for recursive functions and when the same function is exectued 
concurrently by N processes when forked.    

  Code below is used for calculating even parity. 

     

   

  1 function parity; 

  2 input [31:0] data; 

  3 integer i; 

  4 begin 

  5   parity = 0; 

  6   for (i= 0; i < 32; i = i + 1) begin 



                                         
Verilog Programming Guide 

 

 
83 

 

  7     parity = parity ^ data[i]; 

  8   end 

  9 end 

 10 endfunction 

You could download file one_day14.v here 

     

Functions and tasks have the same syntax; one difference is that tasks can have 
delays, whereas functions can not have any delay. This means that function can be 
used for modeling combinational logic. 

Function rules 

• A function cannot contain any time-controlled statements like #, @, wait, posedge, negedge 

• A function cannot start a task because it may consume simulation time, but can call other 

functions 

• A function should have atleast one input 

• A function cannot have non-blocking assignments or force-release or assign-deassign 

• A function cannot have any triggers 

• A function cannot have an output or inout 

     

A second difference is that functions can return a value, whereas tasks can not. 

////////////////////////////////Lesson #4///////////////////////////////////////// 

 

 
In this lesson, let’s explore the Verilog Blocks, Tasks and Functions. These 
items are fundamental when writing test benches. Blocks, Tasks and Functions 
encompass both synthesizable and non-synthesizable Verilog code.  

Go to the xx_Project_xx_DVD-> Verilog Getting Started->Tutorials_HDL and 
copy the Lesson 4 HDL folder to the users local drive. Go through the initial 

http://www.asic-world.com/code/verilog_tutorial/one_day14.v


                                         
Verilog Programming Guide 

 

 
84 

 

steps as outlined in Lesson 1. Those initial steps open ModelSim, Change 
Directory to the ModelSim Folder, Compile the source file, then start the 
simulation using the “do sim_ept_10m04_top.do” 

 
 

 

This lesson will introduce the user to Verilog Blocks, Tasks and Functions. It 
provides a Testbench and user code. The Testbench will exercise each item and 
display the results to the log window of ModelSim. The user code is organized 
as a module it includes  non-synthesizable code that can only be used in a 
testbench. There are three files used in Lesson 4. 

• EPT_10M04_AF_S2_Top.v 

• tb_ept_10m04_top.v 

• tb_define.v 

The user code: 

 

 



                                         
Verilog Programming Guide 

 

 
85 

 

 
 

 



                                         
Verilog Programming Guide 

 

 
86 

 

The Testbench code contains the stimulus for the user code: 

 

 

 
 



                                         
Verilog Programming Guide 

 

 
87 

 

 

 

Initial Block 

 

The Initial statement starts at line 180 in the tb_ept_10m04_top.  

 

 

 
The Initial block is started at the beginning of a simulation at time 0 unit. This 
block will be executed only once during the entire simulation. Execution of an 
initial block finishes once all the statements within the block are executed. In 
the case of Lesson 4, the initial block is used to give a value to registers, in_a 
and in_b at the beginning of simulation. The registers are set to: 

• in_a = 1 

• in_b = 0 

There are other Initial blocks in the Lesson 4 testbench. However, these are 
needed to provide registers and signals with valid settings. We will cover these 
other testbench Initial Blocks in future Lessons.  



                                         
Verilog Programming Guide 

 

 
88 

 

 

Always Combinational Block 

The Always Block are used to describe events that should happen under certain 
conditions. The Lesson 4 Always Block is explored using the various 
instantiations on line 92 of the EPT_10M04_AF_S2_Top.v file. 

 

 



                                         
Verilog Programming Guide 

 

 
89 

 

 
The first Always Block is a Combinational method. This block uses a Sensitivity 
List immediately following the statement “always”. The sensitive list is the one 
which tells the always block when to execute the block of code.  

 

Here, the Project Top uses the ‘while’ statement to cause the Always 
Combinational Block to compare the signals in the Sensitivity List and if true, 
execute the statements in the loop. When the statements have completed, the 
control is again compared to a value. If true, the statements are executed again. 



                                         
Verilog Programming Guide 

 

 
90 

 

This cycle continues until the while control is false. This comparison 
continually happens until the end of simulation. The output looks like the 
following:  

 

 

 
 

Run the simulation as per the instructions outlined in Lesson 1. In the 
command window of the ModelSim, type ‘do sim_ept_10m04_top.do’ 

 



                                         
Verilog Programming Guide 

 

 
91 

 

 

The Combinational Block uses Always->Sensitivity List True->execute 
statement. 
                                       if(SELECT == 1) 
                                          Y_COMB = IN_A 
                                       else 
                                          Y_COMB = IN_B 
 

From the Simulation, we can see that Y_COMB oscillates from low to high with 
the input SELECT. The user can experiment with this simulation and change the 
polarity of IN_A and IN_B. Run the simulation again and check the results for 
the change. 
 
 
 

Always Synchronous Block 

The Synchronous Always Block starts on line 103 of the 
EPT_10M04_AF_S2_Top.v file. 

 



                                         
Verilog Programming Guide 

 

 
92 

 

 

 
 
 
The Synchronous Always Block is different from the Combinational Always 
Block in that the Synchronous executes the statements only when the clock 
signal asserts. In hardware, the FPGA will have a clock signal from a separate 
oscillator. This clock signal is added to an FPGA pin. This clock pin  will be 
used internal in the FPGA to provide the clock for synchronous code. The 
Always Block will add the clock signal to the Sensitivity List.  

 

                      always@(posedge CLK) 
                      begin 
                         … 
                         … 
                     end 

The Always Synchronous block above execute the statements in the begin/end 
frame only when the signal, CLK, is rising. Run the simulation to see what the 
synchronous always block does. 

 

 
Starting at the leftmost part of the simulation, the RST_N is asserted low. So, 
Y_SYNC is set low. Once the RST_N asserts high, the always statements 
execute when the CLK signal goes high.  



                                         
Verilog Programming Guide 

 

 
93 

 

 

In this case, SELECT = 0 so, Y_SYNC = IN_A= 1. Notice that Y_SYNC changes to 
to equal IN_A only after the clock has completed the rising edge. You can see 
from the simulation that SELECT goes from 1 to 0, but the Y_SYNC does not 
change value until after CLK = 1. This is fundamental of synchronous operation. 
After five CLK cycles, the SELECT = 1.  

 

When SELECT = 1, Y_SYNC = IN_B=0. Again, notice that Y_SYNC does not 
change immediately. It only changes after the rising edge of CLK.  

Next the user is encouraged to experiment with the Always Blocks. Change the 
polarity of the SELECT and re-run the simulation. Notice how the results 
change. 

Always Block No Sensitivity List 

The Always Block with no Sensitivity List starts on line 119 of the 
EPT_10M04_AF_S2_Top.v file. 



                                         
Verilog Programming Guide 

 

 
94 

 

 

The Sensitivity List of the Always Block has several variations. One such 
variation is the Always block without Sensitivity List. This block will execute the 
statements on each simulation time cycle. Remember, this is in deference to the 
Always Block with Sensitivity List in that the statements are only executed once 
the events in the Sensitivity List occur. In this exercise, we add a delay of ‘#100’ 
which means delay the next statement for 100 simulations cycles. The results of 
y_nosense = !y_nonsense is alternating high and low. The delay causes the 
oscillation to run slower.  Run the simulation to see what the no sensitivity 
always block does. 

 

 
Earlier, we set up CLK to equal 50MHz. The 50MHz clock uses a delay of #10 
simulation cycles to produce the 50MHz period. The period of our delay #100 is 
equal to 10 cycles of the 50MHz clock. You can see the Always Block with no 
Sensitivity List is executing at each simulation cycle. The user is encouraged to 
experiment with this simulation by changing the value of the delay and re-
running the simulation. Notice what the changes are. 

 

Assignment Statements 



                                         
Verilog Programming Guide 

 

 
95 

 

The Always Block with no Sensitivity List starts on line 119 of the 
EPT_10M04_AF_S2_Top.v file. 

 

The Assignment Statements are used for combinatorial and register logic. So 
the assign statement is called 'continuous assignment statement' as there is no 
sensitive list. The value can either be a constant or an expression comprising a 
group of signals. Please note the signal on the LHS must be declared as a wire. 
It can never be declared as a register. 

 

Because the assignment is continuous, OUT_1 above will simply follow any 
signal applied to the IN_1. Run the simulation to verify this. 

 

For OUT_2, this syntax is legal and produces a reliable output. This is called an 
inline if-then-else statement.  

• If ENABLE = 1, then OUT_2 = data_2 (assign OUT_2 = ENABLE ? data_2 : 1’bz) 

• Else if ENABLE =0, then OUT_2 = 1’bz (assign OUT_2 = ENABLE ? data_2 : 1’bz) 

The 1’bz output indicates the tri-state condition. Remember that signals can 
have one of four states, high, low, don’t care and tri-state. Run the simulation to 
see the results. 



                                         
Verilog Programming Guide 

 

 
96 

 

 

Notice that the blue line in ModelSim indicates the tri-state condition of 1’bz. 
From the inline if-then-else, when ENABLE = 0, OUT_2 = 1’bz. When ENABLE = 
1, the first part of the inline if-then-else executes and the OUT_2 = data_2 = 1. 
The user is encouraged to experiment with the simulation and change the 
polarity of the signals and re-run the simulation to examine the results. 

 
 

  



                                         
Verilog Programming Guide 

 

 
97 

 

Functions 

The Functions starts on line 139 of the EPT_10M04_AF_S2_Top.v file. Functions 
are declared with the “function” keyword. This keyword starts the function, and 
it ends with the keyword “endfunction”. The function can return only one signal 
or vector, but can have multiple inputs. The function in Lesson 4 calculates the 
parity of a 32 bit word. This is useful for ensuring digital communications 
between two devices was successful. It is also a perfect example of the use of 
functions. This calculation would be repeated for each 32 bit word transferred. 
This might be performed thousands of times per transaction. The function is 
listed and called inside the top level project. The testbench provides a signal to 
start the calculation. For the parity function notice the signal inputs.  

 



                                         
Verilog Programming Guide 

 

 
98 

 

 

The OUT_3 signal is assigned the value of parity. Parity is declared as a ‘reg’.  

 

In the function call, the return value of the function is assigned to parity. This 
return must be of type ‘reg’. During the assignment above of OUT_3 to partiy, 
OUT_3 must be declared as ‘wire’. The function call on line 165 takes in one 
input signal. In this function, the input is a 32 bit vector. The function performs 
the action, then returns a signal and assigns it to parity. For this function, the 
return is a single bit. In the function call above for parity_3(), the output 
assigned signal, parity, is set to zero when RST_N asserts. This is not 



                                         
Verilog Programming Guide 

 

 
99 

 

necessary but the signal, parity, will show up as ‘Don’t Care’ in the simulation. 
This reset assertion will ensure that parity and anything using this signal will 
have a value during all simulation.   

The listing is shown on line 139. This is the real meat of the function, where is 
does its action.  

 

The function is declared with the ‘function’ keyword. Then the input is declared, 
which is a 32 bit vector. An internal ‘integer’ is declared to allow a counter to be 
used. The for loop always the ability to step through each bit of the 32 bit vector 
and perform the calculation. And of course ‘parity_3’ provides the output of the 
function. So, run the simulation using the do sim_ept_10m04_top.do and 
examine the results. 

 

The parity_3() function is called when SELECT_3 goes high. SELECT_3 is 
manipulated by the testbench. The parity_3() function uses a for loop to 
calculate the result of parity for the IN_3 32 bit word. It happens instantly in the 
simulation. So, the result, OUT_3 is available immediately. The user is 
encouraged to experiment with the parity_3() function. Go into the file, 



                                         
Verilog Programming Guide 

 

 
100 

 

tb_define.v and change the base number, FUNCTIONS_PARITY_DATA. Then, 
re-run the simulation and examine the results. 

 

 

Tasks 

The Tasks guide starts on line 170 of the EPT_10M04_AF_S2_Top.v file. Tasks 
are declared with the “task” keyword. This keyword starts the function, and it 
ends with the keyword “endtask”. 



                                         
Verilog Programming Guide 

 

 
101 

 

 

The task can have as many inputs and outputs as needed. The inputs and 
outputs can be signals or vectors or a mixture of both. The task will only 
execute when it is called. When all its statements have completed the task 
returns control back to the testbench.  

The task in Lesson 4 will compare two vectors and return the results. The 
Testbench provides the stimulus for this compare. And it uses the results 
returned from the task to display to the command window. 



                                         
Verilog Programming Guide 

 

 
102 

 

 

The testbench provides IN_A_4 and IN_B_4 which are 32 bit vectors to the 
compare_4() task.  

 

The numbers are provided in tb_define.v 



                                         
Verilog Programming Guide 

 

 
103 

 

   

Run the simulation using the do sim_ept_10m04_top.do in the command 
window. The top level code performs the compare every cycle of CLK. The 
compare_4() task uses a for loop to count and index, i, from 0 to 31 and 
compares each bit of the two 32 bit vectors. If the two bits are equal, the 
resulting 32 bit vector places a 1 in the indexed bit. If they are not equal a 0 is 
placed in the indexed bit. Using the two numbers provided in tb_define.v the 
results: 

  

The testbench reads the result vector and performs another compare to 
determine what should be displayed in the command window. 



                                         
Verilog Programming Guide 

 

 
104 

 

 

The user is encouraged to experiment with the compare_4() task. Change the 
numbers in the tb_define so that the numbers are equal. Re-run the simulation 
and notice how the results change. 

 

This is the end of Lesson 4 

 

 
 
 

 

 

TEST BENCHES 

    

The goal of this Verilog guide is to introduce the user to producing FPGA designs by 
simulating the design before committing to hardware. So, we can create a simple design 
such as the d flip flop and add it to the simulator and add the stimulus such as clocks 
and inputs. Run the simulation and examine the outputs. This is all fairly manageable 
with hand coding the stimulus. Let's look at a more complex design and the need to 
provide more complex stimulus and a method to examine the output. This is were Test 



                                         
Verilog Programming Guide 

 

 
105 

 

Bench comes in. Verilog was designed as a modeling language first. So, it has some 
very useful tools to make it easy to provide a complex stimulus and methods to easily 
examine outputs.  

 

Lexical Conventions 

The basic lexical conventions used by Verilog HDL are similar to those in the C 
programming language. Verilog HDL is a case-sensitive language. All keywords are in 
lowercase. 

     

 White Space 

White space can contain the characters for blanks, tabs, newlines, and form feeds. 
These characters are ignored except when they serve to separate other tokens. 
However, blanks and tabs are significant in strings. 

     

White space characters are : 

• Blank spaces 
• Tabs 
• Carriage returns 
• New-line 
• Form-feeds 

     

    

Bad Code : Never write code like this. 

   

 1 module addbit(a,b,ci,sum,co); 

 2 input a,b,ci;output sum co; 

 3 wire a,b,ci,sum,co;endmodule 



                                         
Verilog Programming Guide 

 

 
106 

 

You could download file bad_code.v here 

     

Good Code : Nice way to write code. 

   

  1       module addbit ( 
  2       a, 

  3       b, 

  4       ci, 

  5       sum, 

  6       co); 

  7       input           a; 

  8       input           b; 

  9       input           ci; 

 10       output         sum; 

 11       output         co; 

 12       wire            a; 

 13       wire            b; 

 14       wire            ci; 

 15       wire            sum; 

 16       wire            co; 
 17  

 18       endmodule 

You could download file good_code.v here 

     

 Comments 

There are two forms to introduce comments. 

     

• Single line comments begin with the token // and end with a carriage return 
• Multi line comments begin with the token /* and end with the token */ 

     

 Examples of Comments 

http://www.asic-world.com/code/verilog_tutorial/bad_code.v
http://www.asic-world.com/code/verilog_tutorial/good_code.v


                                         
Verilog Programming Guide 

 

 
107 

 

     

   

  1 /* This is a 
  2   Multi line comment 

  3   example */ 

  4 module addbit ( 
  5 a, 

  6 b, 

  7 ci, 

  8 sum, 

  9 co); 

 10  

 11 // Input Ports  Single line comment 

 12 input           a; 

 13 input           b; 

 14 input           ci; 

 15 // Output ports 

 16 output         sum; 

 17 output         co; 

 18 // Data Types       

 19 wire            a; 

 20 wire            b; 

 21 wire            ci; 

 22 wire            sum; 

 23 wire            co;  
 24  

 25 endmodule 

You could download file comment.v here 

     

 Case Sensitivity 

Verilog HDL is case sensitive 

     

• Lower case letters are unique from upper case letters 
• All Verilog keywords are lower case 

     

http://www.asic-world.com/code/verilog_tutorial/comment.v


                                         
Verilog Programming Guide 

 

 
108 

 

 Examples of Unique names 

     

   

 1 input                    // a Verilog Keyword 

 2 wire                     // a Verilog Keyword 

 3 WIRE                  // a unique name ( not a keyword) 

 4 Wire                    // a unique name (not a keyword) 

You could download file unique_names.v here 

     

NOTE : Never use Verilog keywords as unique names, even if the case is different. 

     

 Identifiers 

Identifiers are names used to give an object, such as a register or a function or a 
module, a name so that it can be referenced from other places in a description. 

     

• Identifiers must begin with an alphabetic character or the underscore character 
(a-z A-Z _ ) 

• Identifiers may contain alphabetic characters, numeric characters, the 
underscore, and the dollar sign (a-z A-Z 0-9 _ $ ) 

• Identifiers can be up to 1024 characters long. 

     

   Examples of legal identifiers 

  data_input mu 

  clk_input my$clk 

  i386 A 

http://www.asic-world.com/code/verilog_tutorial/unique_names.v


                                         
Verilog Programming Guide 

 

 
109 

 

    

 Escaped Identifiers 

Verilog HDL allows any character to be used in an identifier by escaping the identifier. 
Escaped identifiers provide a means of including any of the printable ASCII characters 
in an identifier (the decimal values 33 through 126, or 21 through 7E in hexadecimal). 

     

• Escaped identifiers begin with the back slash ( \ ) 
• Entire identifier is escaped by the back slash. 
• Escaped identifier is terminated by white space (Characters such as commas, 

parentheses, and semicolons become part of the escaped identifier unless 
preceded by a white space) 

• Terminate escaped identifiers with white space, otherwise characters that should 
follow the identifier are considered as part of it. 

     

 Examples of escape identifiers 

Verilog does not allow to identifier to start with a numeric character. So if you really want 
to use a identifier to start with a numeric value then use a escape character as shown 
below. 

     

   

  1 // There must be white space after the 

  2 // string which uses escape character 

  3 module \1dff ( 

  4 q,      // Q output 

  5 \q~ ,   // Q_out output 

  6 d,      // D input 

  7 cl$k,   // CLOCK input 

  8 \reset* // Reset input 
  9 ); 

 10  



                                         
Verilog Programming Guide 

 

 
110 

 

 11 input d, cl$k, \reset* ; 

 12 output q, \q~ ;   
 13  

 14 endmodule 

You could download file escape_id.v here 

     

 Numbers in Verilog 

You can specify constant numbers in decimal, hexadecimal, octal, or binary format. 
Negative numbers are represented in 2's complement form. When used in a number, 
the question mark (?) character is the Verilog alternative for the z character. The 
underscore character (_) is legal anywhere in a number except as the first character, 
where it is ignored. 

     

 Integer Numbers 

Verilog HDL allows integer numbers to be specified as 

     

• Sized or unsized numbers (Unsized size is 32 bits) 
• In a radix of binary, octal, decimal, or hexadecimal 
• Radix and hex digits (a,b,c,d,e,f) are case insensitive 
• Spaces are allowed between the size, radix and value 

  Syntax: <size>'<radix><value>; 

     

 Example of Integer Numbers 

     

Integer Stored as 

http://www.asic-world.com/code/verilog_tutorial/escape_id.v


                                         
Verilog Programming Guide 

 

 
111 

 

1 00000000000000000000000000000001 

8'hAA 10101010 

6'b10_0011 100011 

'hF 00000000000000000000000000001111 

 

Verilog expands <value> filling the specified <size> by working from right-to-left 

     

• When <size> is smaller than <value>, then leftmost bits of <value> are truncated 
• When <size> is larger than <value>, then leftmost bits are filled, based on the 

value of the leftmost bit in <value>. 
o Leftmost '0' or '1' are filled with '0' 
o Leftmost 'Z' are filled with 'Z' 
o Leftmost 'X' are filled with 'X' 

     

Note : X Stands for unknown and Z stands for high impedance, 1 for logic high or 1 and 
0 for logic low or 0. 

     

 Example of Integer Numbers 

     

Integer Stored as 

6'hCA 001010 

6'hA 001010 



                                         
Verilog Programming Guide 

 

 
112 

 

16'bZ ZZZZZZZZZZZZZZZZ 

8'bx xxxxxxxx 

 

     

 Real Numbers 

     

• Verilog supports real constants and variables 
• Verilog converts real numbers to integers by rounding 
• Real Numbers can not contain 'Z' and 'X' 
• Real numbers may be specified in either decimal or scientific notation 
• < value >.< value > 
• < mantissa >E< exponent > 
• Real numbers are rounded off to the nearest integer when assigning to an 

integer. 

     

 Example of Real Numbers 

     

Real Number Decimal notation 

1.2 1.2 

0.6 0.6 

3.5E6 3,500000.0 

 

     



                                         
Verilog Programming Guide 

 

 
113 

 

 Signed and Unsigned Numbers 

Verilog Supports both types of numbers, but with certain restrictions. Like in C language 
we don't have int and unint types to say if a number is signed integer or unsigned 
integer. 

     

Any number that does not have negative sign prefix is a positive number. Or indirect 
way would be "Unsigned". 

     

Negative numbers can be specified by putting a minus sign before the size for a 
constant number, thus they become signed numbers. Verilog internally represents 
negative numbers in 2's complement format. An optional signed specifier can be added 
for signed arithmetic. 

     

 Examples 

     

Number Description 

32'hDEAD_BEEF Unsigned or signed positive number 

-14'h1234 Signed negative number 

 

     

The example file below shows how Verilog treats signed and unsigned numbers. 

   

  1 module signed_number; 



                                         
Verilog Programming Guide 

 

 
114 

 

  2  

  3 reg [31:0]  a; 
  4  

  5 initial begin 

  6   a = 14'h1234; 

  7   $display ("Current Value of a = %h", a); 

  8   a = -14'h1234; 

  9   $display ("Current Value of a = %h", a); 

 10   a = 32'hDEAD_BEEF; 

 11   $display ("Current Value of a = %h", a); 

 12   a = -32'hDEAD_BEEF; 

 13   $display ("Current Value of a = %h", a); 

 14    #10  $finish; 

 15 end 
 16  

 17 endmodule     

You could download file signed_number.v here 

     

 Current Value of a = 00001234 
 Current Value of a = ffffedcc 
 Current Value of a = deadbeef 
 Current Value of a = 21524111 

 
 

 

 Strings 

A string is a sequence of characters enclosed by double quotes and all contained on a 
single line. Strings used as operands in expressions and assignments are treated as a 
sequence of eight-bit ASCII values, with one eight-bit ASCII value representing one 
character. To declare a variable to store a string, declare a register large enough to hold 
the maximum number of characters the variable will hold. Note that no extra bits are 
required to hold a termination character; Verilog does not store a string termination 
character. Strings can be manipulated using the standard operators. 

     

http://www.asic-world.com/code/verilog_tutorial/signed_number.v


                                         
Verilog Programming Guide 

 

 
115 

 

When a variable is larger than required to hold a value being assigned, Verilog pads the 
contents on the left with zeros after the assignment. This is consistent with the padding 
that occurs during assignment of non-string values. 

     

Certain characters can be used in strings only when preceded by an introductory character 
called an escape character. The following table lists these characters in the right-hand 
column together with the escape sequence that represents the character in the left-hand 
column. 

     

 Special Characters in Strings 

     

Character Description 

\n New line character 

\t Tab character 

\\ Backslash (\) character 

\" Double quote (") character 

\ddd A character specified in 1-3 octal digits (0 <= d <= 7) 

%% Percent (%) character 

 

     

 Example 

     



                                         
Verilog Programming Guide 

 

 
116 

 

   

  1 //----------------------------------------------------- 

  2 // Design Name : strings 

  3 // File Name   : strings.v 

  4 // Function    : This program shows how string 

  5 //               can be stored in reg 

  6 // Coder�      : Deepak Kumar Tala 

  7 //----------------------------------------------------- 

  8 module strings(); 

  9 // Declare a register variable that is 21 bytes 

 10 reg [8*21:0] string ; 
 11  

 12 initial begin 

 13   string = "This is sample string"; 

 14   $display ("%s \n", string); 

 15 end 
 16  

 17 endmodule 

You could download file strings.v here 

     

    

 Logic Values and signal Strengths 

The Verilog HDL has got four logic values 

     

Logic Value Description 

0 zero, low, false 

1 one, high, true 

z or Z high impedance, floating 

x or X unknown, uninitialized, contention 

http://www.asic-world.com/code/verilog_tutorial/strings.v


                                         
Verilog Programming Guide 

 

 
117 

 

 

   

Gate and Switch delays 

In real circuits, logic gates have delays associated with them. Verilog provides the 
mechanism to associate delays with gates. 

     

• Rise, Fall and Turn-off delays. 
• Minimal, Typical, and Maximum delays. 

     

In Verilog delays can be introduced with #'num' as in the examples below, where # is a 
special character to introduce delay, and 'num' is the number of ticks simulator should 
delay current statement execution. 

     

• #1 a = b : Delay by 1, i.e. execute after 1 tick 
• #2 not (a,b) : Delay by 2 all assignments made to a. 

     

Real transistors have resolution delays between the input and output. This is modeled in 
Verilog by specifying one or more delays for the rise, fall, turn-on and turn off time 
seperated by commas. 

     

Syntax: keyword #(delay{s}) unique_name (node specifications); 

     

Switch element Number Of Delays Specified delays 



                                         
Verilog Programming Guide 

 

 
118 

 

Switch 1 Rise, fall and turn-off times of equal length 

 2 Rise and fall times 

 3 Rise, fall and turn off 

(r)tranif0, (r)tranif1 1 both turn on and turn off 

 2 turn on, turn off 

(r)tran 0 None allowed 

 

     

   Rise Delay 

The rise delay is associated with a gate output transition to 1 from another value (0, x, z). 

     

   

     

 Fall Delay 

The fall delay is associated with a gate output transition to 0 from another value (1, x, z). 



                                         
Verilog Programming Guide 

 

 
119 

 

     

   

     

 Turn-off Delay 

The Turn-off delay is associated with a gate output transition to z from another value (0, 1, 
x). 

     

   Min Value 

The min value is the minimum delay value that the gate is expected to have. 

     

   Typ Value 

The typ value is the typical delay value that the gate is expected to have. 

     

   Max Value 



                                         
Verilog Programming Guide 

 

 
120 

 

The max value is the maximum delay value that the gate is expected to have. 

     

   

     

   Example 

  Below are some examples to show the usage of delays. 

     

 Example - Single Delay 

     

   

  1 module  buf_gate (); 

  2 reg in; 

  3 wire out; 
  4    

  5 buf #(5) (out,in); 
  6  

  7 initial begin 

  8   $monitor ("Time = %g in = %b out=%b", $time, in, out); 

  9   in = 0; 

 10    #10  in = 1; 

 11    #10  in = 0; 

 12    #10  $finish; 

 13 end 
 14      

 15 endmodule 

You could download file buf_gate.v here 

     

 Time = 0 in = 0 out=x 
 Time = 5 in = 0 out=0 

http://www.asic-world.com/code/verilog_tutorial/buf_gate.v


                                         
Verilog Programming Guide 

 

 
121 

 

 Time = 10 in = 1 out=0 
 Time = 15 in = 1 out=1 
 Time = 20 in = 0 out=1 
 Time = 25 in = 0 out=0 

 

     

   

     

 Example - Two Delays 

     

   

  1 module  buf_gate1 (); 

  2 reg in; 

  3 wire out; 
  4    

  5 buf #(2,3) (out,in); 
  6  

  7 initial begin 

  8   $monitor ("Time = %g in = %b out=%b", $time, in, out); 

  9   in = 0; 

 10    #10  in = 1; 

 11    #10  in = 0; 

 12    #10  $finish; 

 13 end 
 14      



                                         
Verilog Programming Guide 

 

 
122 

 

 15 endmodule 

You could download file buf_gate1.v here 

     

Time = 0 in = 0 out=x 
 Time = 3 in = 0 out=0 
 Time = 10 in = 1 out=0 
 Time = 12 in = 1 out=1 
 Time = 20 in = 0 out=1 
 Time = 23 in = 0 out=0 

 

     

   

     

 Example - All Delays 

     

   

  1 module delay(); 

  2  reg in;  

  3  wire rise_delay, fall_delay, all_delay;  
  4    

  5  initial begin  

  6   $monitor ( 

http://www.asic-world.com/code/verilog_tutorial/buf_gate1.v


                                         
Verilog Programming Guide 

 

 
123 

 

  7     "Time=%g in=%b rise_delay=%b fall_delay=%b all_delay=%b",  

  8     $time, in, rise_delay, fall_delay, all_delay); 

  9   in = 0;  

 10    #10  in = 1;  

 11    #10  in = 0;  

 12    #20  $finish;  

 13  end  
 14    

 15  buf #(1,0)U_rise (rise_delay,in);  

 16  buf #(0,1)U_fall (fall_delay,in);  

 17  buf  #1  U_all (all_delay,in);  
 18    

 19 endmodule   

You could download file delay.v here 

     

 Time = 0 in = 0 rise_delay = 0 fall_delay = x all_delay = x 
 Time = 1 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0 
 Time = 10 in = 1 rise_delay = 0 fall_delay = 1 all_delay = 0 
 Time = 11 in = 1 rise_delay = 1 fall_delay = 1 all_delay = 1 
 Time = 20 in = 0 rise_delay = 0 fall_delay = 1 all_delay = 1 
 Time = 21 in = 0 rise_delay = 0 fall_delay = 0 all_delay = 0 

 

     

   

     

 Example - Complex Example 

     

http://www.asic-world.com/code/verilog_tutorial/delay.v


                                         
Verilog Programming Guide 

 

 
124 

 

   

  1 module delay_example(); 
  2  

  3 wire out1,out2,out3,out4,out5,out6; 

  4 reg b,c; 
  5  

  6 // Delay for all transitions 

  7 or      #5                    u_or     (out1,b,c); 

  8 // Rise and fall delay 

  9 and    #(1,2)               u_and    (out2,b,c); 

 10 // Rise, fall and turn off delay 

 11 nor    #(1,2,3)             u_nor    (out3,b,c); 

 12 //One Delay, min, typ and max 

 13 nand   #(1:2:3)             u_nand   (out4,b,c); 

 14 //Two delays, min,typ and max 

 15 buf    #(1:4:8,4:5:6)       u_buf    (out5,b); 

 16 //Three delays, min, typ, and max 

 17 notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (out6,b,c); 
 18  

 19 //Testbench code 

 20 initial begin 

 21   $monitor ( 

 22   "Time=%g b=%b c=%b  out1=%b out2=%b out3=%b out4=%b out5=%b out6=%b",  

 23     $time, b, c , out1, out2, out3, out4, out5, out6);  

 24   b = 0; 

 25   c = 0; 

 26    #10  b = 1; 

 27    #10  c = 1; 

 28    #10  b = 0; 

 29    #10  $finish; 

 30 end  
 31  

 32 endmodule 

You could download file delay_example.v here 

     

Time = 0 b = 0 c=0  out1=x out2=x out3=x out4=x out5=x out6=x 
 Time = 1 b = 0 c=0  out1=x out2=x out3=1 out4=x out5=x out6=x 
 Time = 2 b = 0 c=0  out1=x out2=0 out3=1 out4=1 out5=x out6=z 
 Time = 5 b = 0 c=0  out1=0 out2=0 out3=1 out4=1 out5=0 out6=z 
 Time = 8 b = 0 c=0  out1=0 out2=0 out3=1 out4=1 out5=0 out6=z 
 Time = 10 b = 1 c=0  out1=0 out2=0 out3=1 out4=1 out5=0 out6=z 

http://www.asic-world.com/code/verilog_tutorial/delay_example.v


                                         
Verilog Programming Guide 

 

 
125 

 

 Time = 12 b = 1 c=0  out1=0 out2=0 out3=0 out4=1 out5=0 out6=z 
 Time = 14 b = 1 c=0  out1=0 out2=0 out3=0 out4=1 out5=1 out6=z 
 Time = 15 b = 1 c=0  out1=1 out2=0 out3=0 out4=1 out5=1 out6=z 
 Time = 20 b = 1 c=1  out1=1 out2=0 out3=0 out4=1 out5=1 out6=z 
 Time = 21 b = 1 c=1  out1=1 out2=1 out3=0 out4=1 out5=1 out6=z 
 Time = 22 b = 1 c=1  out1=1 out2=1 out3=0 out4=0 out5=1 out6=z 
 Time = 25 b = 1 c=1  out1=1 out2=1 out3=0 out4=0 out5=1 out6=0 
 Time = 30 b = 0 c=1  out1=1 out2=1 out3=0 out4=0 out5=1 out6=0 
 Time = 32 b = 0 c=1  out1=1 out2=0 out3=0 out4=1 out5=1 out6=1 
 Time = 35 b = 0 c=1  out1=1 out2=0 out3=0 out4=1 out5=0 out6=1 

 

     

     

 Blocking and Nonblocking assignment 

Blocking assignments are executed in the order they are coded, hence they are 
sequential. Since they block the execution of next statement, till the current statement is 
executed, they are called blocking assignments. Assignment are made with "=" symbol. 
Example a = b; 

     

Nonblocking assignments are executed in parallel. Since the execution of next statement 
is not blocked due to execution of current statement, they are called nonblocking 
statement. Assignments are made with "<=" symbol. Example a <= b; 

     

Note : Correct way to spell 'nonblocking' is 'nonblocking' and not 'non-blocking'. 

     

Example - blocking and nonblocking 

     

   



                                         
Verilog Programming Guide 

 

 
126 

 

  1 module blocking_nonblocking(); 
  2  

  3 reg a,b,c,d; 

  4 // Blocking Assignment 

  5 initial begin 

  6    #10  a = 0; 

  7    #11  a = 1; 

  8    #12  a = 0; 

  9    #13  a = 1; 

 10 end 
 11  

 12 initial begin 

 13    #10  b <= 0; 

 14    #11  b <= 1; 

 15    #12  b <= 0; 

 16    #13  b <= 1; 

 17 end 
 18  

 19 initial begin 

 20    c = #10 0; 

 21    c = #11 1; 

 22    c = #12 0; 

 23    c = #13 1; 

 24 end 
 25  

 26 initial begin 

 27    d <=  #10  0; 

 28    d <=  #11  1; 

 29    d <=  #12  0; 

 30    d <=  #13  1; 

 31 end 
 32  

 33 initial begin 

 34   $monitor("TIME = %g A = %b B = %b C = %b D = %b",$time, a, b, c, d); 

 35    #50  $finish; 

 36 end 
 37  

 38 endmodule 

You could download file blocking_nonblocking.v here 

     

Simulator Output 

http://www.asic-world.com/code/verilog_tutorial/blocking_nonblocking.v


                                         
Verilog Programming Guide 

 

 
127 

 

     

TIME = 0 A = x B = x C = x D = x 
 TIME = 10 A = 0 B = 0 C = 0 D = 0 
 TIME = 11 A = 0 B = 0 C = 0 D = 1 
 TIME = 12 A = 0 B = 0 C = 0 D = 0 
 TIME = 13 A = 0 B = 0 C = 0 D = 1 
 TIME = 21 A = 1 B = 1 C = 1 D = 1 
 TIME = 33 A = 0 B = 0 C = 0 D = 1 
 TIME = 46 A = 1 B = 1 C = 1 D = 1 

 

     

   Waveform 

     

 

  

     

 

     
 

The Conditional Statement if-else 

It's known fact that priority implementation takes more logic to implement than parallel 
implementation. So if you know the inputs are mutually exclusive, then you can code the 
logic in parallel if. 

   

  



                                         
Verilog Programming Guide 

 

 
128 

 

   

  1 module parallel_if(); 
  2  

  3 reg [3:0] counter; 

  4 wire clk,reset,enable, up_en, down_en; 
  5  

  6 always @ (posedge clk) 

  7 // If reset is asserted 

  8 if (reset == 1'b0) begin 

  9    counter <= 4'b0000;  

 10 end else begin 

 11   // If counter is enable and up count is mode 

 12   if (enable == 1'b1 && up_en == 1'b1) begin 

 13     counter <= counter + 1'b1; 

 14   end 

 15   // If counter is enable and down count is mode 

 16   if (enable == 1'b1 && down_en == 1'b1) begin 

 17     counter <= counter - 1'b1; 

 18   end  

 19 end   
 20  

 21 endmodule 

You could download file parallel_if.v here 

   

  

 The Case Statement 

The case statement compares an expression to a series of cases and executes the 
statement or statement group associated with the first matching case: 

   

  

• case statement supports single or multiple statements. 
• Group multiple statements using begin and end keywords. 

   

  

http://www.asic-world.com/code/verilog_tutorial/parallel_if.v


                                         
Verilog Programming Guide 

 

 
129 

 

 
 Syntax of a case statement look as shown below. 

 
 case () 

 
 < case1 > : < statement > 

 
 < case2 > : < statement > 

 
 ..... 

 
 default : < statement > 

 
 endcase 

   

  

 Normal Case 

   

 Example- case 

   

  

   

  1 module mux (a,b,c,d,sel,y);  

  2 input a, b, c, d;  

  3 input [1:0] sel;  

  4 output y;  
  5  



                                         
Verilog Programming Guide 

 

 
130 

 

  6 reg y; 
  7  

  8 always @ (a or b or c or d or sel)  

  9 case (sel)  

 10   0 : y = a;  

 11   1 : y = b;  

 12   2 : y = c;  

 13   3 : y = d;  

 14   default : $display("Error in SEL");  

 15 endcase  
 16      

 17 endmodule 

You could download file mux.v here 

   

  

 Example- case without default 

   

  

   

  1 module mux_without_default (a,b,c,d,sel,y); 

  2 input a, b, c, d;  

  3 input [1:0] sel;  

  4 output y;  
  5  

  6 reg y; 
  7  

  8 always @ (a or b or c or d or sel)  

  9 case (sel)  

 10   0 : y = a;  

 11   1 : y = b;  

 12   2 : y = c;  

 13   3 : y = d;  
 14   2'bxx,2'bx0,2'bx1,2'b0x,2'b1x, 

 15   2'bzz,2'bz0,2'bz1,2'b0z,2'b1z : $display("Error in SEL"); 

 16 endcase  
 17  

 18 endmodule 

You could download file mux_without_default.v here 

http://www.asic-world.com/code/verilog_tutorial/mux.v
http://www.asic-world.com/code/verilog_tutorial/mux_without_default.v


                                         
Verilog Programming Guide 

 

 
131 

 

   

  

The example above shows how to specify multiple case items as a single case item. 

   

  

The Verilog case statement does an identity comparison (like the === operator); one can 
use the case statement to check for logic x and z values as shown in the example below. 

   

  

 Example- case with x and z 

   

  

   

  1 module case_xz(enable); 

  2 input enable; 
  3  

  4 always @ (enable) 

  5 case(enable) 

  6   1'bz : $display ("enable is floating");  

  7   1'bx : $display ("enable is unknown");  

  8   default : $display ("enable is %b",enable);  

  9 endcase  
 10  

 11 endmodule 

You could download file case_xz.v here 

   

  

 The casez and casex statement 

Special versions of the case statement allow the x ad z logic values to be used as "don't 
care": 

http://www.asic-world.com/code/verilog_tutorial/case_xz.v


                                         
Verilog Programming Guide 

 

 
132 

 

   

  

• casez : Treats z as don't care. 
• casex : Treats x and z as don't care. 

   

  

 Example- casez 

   

  

   

  1 module casez_example(); 

  2 reg [3:0] opcode; 

  3 reg [1:0] a,b,c; 

  4 reg [1:0] out; 
  5  

  6 always @ (opcode or a or b or c) 

  7 casez(opcode) 

  8   4'b1zzx : begin // Don't care about lower 2:1 bit, bit 0 match with x 

  9               out = a;  

 10               $display("@%0dns 4'b1zzx is selected, opcode %b",$time,opcode); 

 11             end 

 12   4'b01?? : begin 

 13               out = b; // bit 1:0 is don't care 

 14               $display("@%0dns 4'b01?? is selected, opcode %b",$time,opcode); 

 15             end 

 16   4'b001? : begin  // bit 0 is don't care 

 17               out = c; 

 18               $display("@%0dns 4'b001? is selected, opcode %b",$time,opcode); 

 19             end 

 20   default : begin 

 21               $display("@%0dns default is selected, opcode %b",$time,opcode); 

 22             end 

 23 endcase 
 24  

 25 // Testbench code goes here 

 26 always  #2  a = $random; 



                                         
Verilog Programming Guide 

 

 
133 

 

 27 always  #2  b = $random; 

 28 always  #2  c = $random; 

 29  

 30 initial begin 

 31   opcode = 0; 

 32    #2  opcode = 4'b101x; 

 33    #2  opcode = 4'b0101; 

 34    #2  opcode = 4'b0010; 

 35    #2  opcode = 4'b0000; 

 36    #2  $finish; 

 37 end 
 38  

 39 endmodule 

You could download file casez_example.v here 

   

  

 Simulation Output - casez 

   

@0ns default is selected, opcode 0000 
 @2ns 4'b1zzx is selected, opcode 101x 
 @4ns 4'b01?? is selected, opcode 0101 
 @6ns 4'b001? is selected, opcode 0010 
 @8ns default is selected, opcode 0000 

 

   

 Example- casex 

   

   

  1 module casex_example(); 

  2 reg [3:0] opcode; 

  3 reg [1:0] a,b,c; 

  4 reg [1:0] out; 
  5  

  6 always @ (opcode or a or b or c) 

http://www.asic-world.com/code/verilog_tutorial/casez_example.v


                                         
Verilog Programming Guide 

 

 
134 

 

  7 casex(opcode) 

  8   4'b1zzx : begin // Don't care  2:0 bits 

  9               out = a;  

 10               $display("@%0dns 4'b1zzx is selected, opcode %b",$time,opcode); 

 11             end 

 12   4'b01?? : begin // bit 1:0 is don't care 

 13               out = b;  

 14               $display("@%0dns 4'b01?? is selected, opcode %b",$time,opcode); 

 15             end 

 16   4'b001? : begin // bit 0 is don't care 

 17               out = c; 

 18               $display("@%0dns 4'b001? is selected, opcode %b",$time,opcode); 

 19             end 

 20   default : begin 

 21               $display("@%0dns default is selected, opcode %b",$time,opcode); 

 22             end 

 23 endcase  
 24  

 25 // Testbench code goes here 

 26 always  #2  a = $random; 

 27 always  #2  b = $random; 

 28 always  #2  c = $random; 

 29  

 30 initial begin 

 31   opcode = 0; 

 32    #2  opcode = 4'b101x; 

 33    #2  opcode = 4'b0101; 

 34    #2  opcode = 4'b0010; 

 35    #2  opcode = 4'b0000; 

 36    #2  $finish; 

 37 end 
 38  

 39 endmodule 

You could download file casex_example.v here 

   

  

 Simulation Output - casex 

   

  

http://www.asic-world.com/code/verilog_tutorial/casex_example.v


                                         
Verilog Programming Guide 

 

 
135 

 

@0ns default is selected, opcode 0000 
 @2ns 4'b1zzx is selected, opcode 101x 
 @4ns 4'b01?? is selected, opcode 0101 
 @6ns 4'b001? is selected, opcode 0010 
 @8ns default is selected, opcode 0000 

 

   

  

 Example- Comparing case, casex, casez 

   

  

   

  1 module case_compare; 
  2  

  3 reg sel; 
  4  

  5 initial begin 

  6    #1  $display ("\n     Driving 0"); 

  7   sel = 0; 

  8    #1  $display ("\n     Driving 1"); 

  9   sel = 1; 

 10    #1  $display ("\n     Driving x"); 

 11   sel = 1'bx; 

 12    #1  $display ("\n     Driving z"); 

 13   sel = 1'bz; 

 14    #1  $finish; 

 15 end 
 16  

 17 always @ (sel) 

 18 case (sel) 

 19   1'b0 : $display("Normal : Logic 0 on sel"); 

 20   1'b1 : $display("Normal : Logic 1 on sel"); 

 21   1'bx : $display("Normal : Logic x on sel"); 

 22   1'bz : $display("Normal : Logic z on sel"); 

 23 endcase 
 24  

 25 always @ (sel) 

 26 casex (sel) 



                                         
Verilog Programming Guide 

 

 
136 

 

 27   1'b0 : $display("CASEX  : Logic 0 on sel"); 

 28   1'b1 : $display("CASEX  : Logic 1 on sel"); 

 29   1'bx : $display("CASEX  : Logic x on sel"); 

 30   1'bz : $display("CASEX  : Logic z on sel"); 

 31 endcase 
 32  

 33 always @ (sel) 

 34 casez (sel) 

 35   1'b0 : $display("CASEZ  : Logic 0 on sel"); 

 36   1'b1 : $display("CASEZ  : Logic 1 on sel"); 

 37   1'bx : $display("CASEZ  : Logic x on sel"); 

 38   1'bz : $display("CASEZ  : Logic z on sel"); 

 39 endcase 
 40  

 41 endmodule 

You could download file case_compare.v here 

   

  

Simulation Output 

   

  

Driving 0 
 Normal : Logic 0 on sel 
 CASEX  : Logic 0 on sel 
 CASEZ  : Logic 0 on sel 
  
      Driving 1 
 Normal : Logic 1 on sel 
 CASEX  : Logic 1 on sel 
 CASEZ  : Logic 1 on sel 
  
      Driving x 
 Normal : Logic x on sel 
 CASEX  : Logic 0 on sel 
 CASEZ  : Logic x on sel 
  
      Driving z 
 Normal : Logic z on sel 
 CASEX  : Logic 0 on sel 

http://www.asic-world.com/code/verilog_tutorial/case_compare.v


                                         
Verilog Programming Guide 

 

 
137 

 

 CASEZ  : Logic 0 on sel 
 

   
  
Looping Statements 

Looping statements appear inside procedural blocks only; Verilog has four looping 
statements like any other programming language. 

   

  

• forever 
• repeat 
• while 
• for 

   

  

 The forever statement 

The forever loop executes continually, the loop never ends. Normally we use forever 
statements in initial blocks. 

   

  

syntax : forever < statement > 

   

One should be very careful in using a forever statement: if no timing construct is present in 
the forever statement, simulation could hang. The code below is one such application, 
where a timing construct is included inside a forever statement. 

   

  



                                         
Verilog Programming Guide 

 

 
138 

 

 Example - Free running clock generator 

   

  

   

  1 module forever_example (); 
  2  

  3 reg clk; 
  4  

  5 initial begin 

  6    #1  clk = 0;  

  7   forever begin 

  8      #5  clk =  ! clk;  

  9   end 

 10 end  
 11  

 12 initial begin 

 13   $monitor ("Time = %d  clk = %b",$time, clk); 

 14    #100  $finish; 

 15 end 
 16  

 17 endmodule 

You could download file forever_example.v here 

   

  

The repeat statement 

The repeat loop executes < statement > a fixed < number > of times. 

   

  

syntax : repeat (< number >) < statement > 

   

  

http://www.asic-world.com/code/verilog_tutorial/forever_example.v


                                         
Verilog Programming Guide 

 

 
139 

 

 
  

   

  

 Example- repeat 

   

  

   

  1 module repeat_example(); 

  2 reg  [3:0] opcode; 

  3 reg  [15:0] data; 

  4 reg        temp; 
  5  

  6 always @ (opcode or data) 

  7 begin 

  8   if (opcode == 10) begin 

  9     // Perform rotate 

 10     repeat (8) begin  

 11        #1  temp = data[15]; 

 12       data = data << 1; 

 13       data[0] = temp;    

 14     end  

 15   end 

 16 end 

 17 // Simple test code 

 18 initial begin 

 19    $display (" TEMP  DATA"); 

 20    $monitor (" %b     %b ",temp, data); 

 21     #1  data = 18'hF0; 

 22     #1  opcode = 10; 

 23     #10  opcode = 0; 

 24     #1  $finish; 

 25 end 
 26  

 27 endmodule 

You could download file repeat_example.v here 

http://www.asic-world.com/code/verilog_tutorial/repeat_example.v


                                         
Verilog Programming Guide 

 

 
140 

 

   

  

 The while loop statement 

   

  

The while loop executes as long as an < expression > evaluates as true. This is the same 
as in any other programming language. 

   

  

syntax : while (< expression >) < statement > 

   

  

 Example- while 

   

  

   

  1 module while_example(); 
  2  

  3 reg [5:0] loc; 

  4 reg [7:0] data; 
  5  

  6 always @ (data or loc) 

  7 begin 

  8   loc = 0; 

  9   // If Data is 0, then loc is 32 (invalid value) 

 10   if (data == 0) begin 

 11     loc = 32; 

 12   end else begin 

 13     while (data[0] == 0) begin 

 14       loc = loc + 1; 

 15       data = data >> 1; 



                                         
Verilog Programming Guide 

 

 
141 

 

 16     end 

 17   end  

 18   $display ("DATA = %b   LOCATION = %d",data,loc); 

 19 end 
 20  

 21 initial begin 

 22    #1  data = 8'b11; 

 23    #1  data = 8'b100; 

 24    #1  data = 8'b1000; 

 25    #1  data = 8'b1000_0000; 

 26    #1  data = 8'b0; 

 27    #1  $finish; 

 28 end 
 29  

 30 endmodule 

You could download file while_example.v here 

   

  

 The for loop statement 

The for loop is the same as the for loop used in any other programming language. 

   

  

• Executes an < initial assignment > once at the start of the loop. 
• Executes the loop as long as an < expression > evaluates as true. 
• Executes a < step assignment > at the end of each pass through the loop. 

   

  

syntax : for (< initial assignment >; < expression >, < step assignment >) < statement > 

Note : verilog does not have ++ operator as in the case of C language. 

   

  

http://www.asic-world.com/code/verilog_tutorial/while_example.v


                                         
Verilog Programming Guide 

 

 
142 

 

 Example - For 

   

  

   

  1 module for_example(); 
  2  

  3 integer i; 

  4 reg [7:0] ram [0:255]; 
  5  

  6 initial begin 

  7   for (i = 0; i < 256; i = i + 1) begin 

  8      #1  $display(" Address = %g  Data = %h",i,ram[i]); 

  9     ram[i] <= 0; // Initialize the RAM with 0 

 10      #1  $display(" Address = %g  Data = %h",i,ram[i]); 

 11   end 

 12    #1  $finish; 

 13 end 
 14  

 15 endmodule 

You could download file for_example.v here 
 

////////////////////////////////Lesson #5///////////////////////////////////////// 

 

 
In this lesson, let’s explore the Test Benches.  

Go to the xx_Project_xx_DVD-> Verilog Getting Started->Tutorials_HDL and 
copy the Lesson 5 HDL folder to the users local drive. Go through the initial 
steps as outlined in Lesson 1. Those initial steps open ModelSim, Change 
Directory to the ModelSim Folder, Compile the source file, then start the 
simulation using the “do sim_ept_10m04_top.do” 

 
 

http://www.asic-world.com/code/verilog_tutorial/for_example.v


                                         
Verilog Programming Guide 

 

 
143 

 

 

This lesson will to into depth on Test Benches. It provides a Testbench and 
user code. The Testbench will exercise each item and display the results to the 
log window of ModelSim. The user code is organized as a module it includes  
non-synthesizable code that can only be used in a testbench. There are three 
files used in Lesson 5. 

• EPT_10M04_AF_S2_Top.v 

• tb_ept_10m04_top.v 

• tb_define.v 

The user code: 

 

 
 
 

 

The Testbench code contains the stimulus for the user code: 

 

 
 
 
 
 
 

The Always Block are used to describe events that should happen under certain 
conditions. The Lesson 4 Always Block is explored using the various 
instantiations on line 92 of the EPT_10M04_AF_S2_Top.v file. 



                                         
Verilog Programming Guide 

 

 
144 

 

 

 
 

 

 

  Sequential Logic using Procedural Coding 

To model sequential logic, a procedure block must be sensitive to positive edge or 
negative edge of clock. To model asynchronous reset, procedure block must be 
sensitive to both clock and reset. All the assignments to sequential logic should be 
made through nonblocking assignments. 

     

Sometimes it's tempting to have multiple edge triggering variables in the sensitive list: 
this is fine for simulation. But for synthesis this does not make sense, as in real life, flip-
flop can have only one clock, one reset and one preset (i.e. posedge clk or posedge 
reset or posedge preset). 

     

One common mistake the new beginner makes is using clock as the enable input to flip-
flop. This is fine for simulation, but for synthesis, this is not right. 

     

   

     

 Example - Bad coding - Using two clocks 

     

   

  1 module wrong_seq(); 



                                         
Verilog Programming Guide 

 

 
145 

 

  2  

  3 reg q; 

  4 reg clk1, clk2, d1, d2; 
  5  

  6 always @ (posedge clk1 or posedge clk2) 

  7 if (clk1) begin 

  8   q <= d1; 

  9 end else if (clk2) begin 

 10   q <= d2; 

 11 end 
 12  

 13 initial begin 

 14   $monitor ("CLK1 = %b CLK2 = %b D1 = %b D2 %b Q = %b",  
 15     clk1, clk2, d1, d2, q); 

 16   clk1 = 0; 

 17   clk2 = 0; 

 18   d1 = 0; 

 19   d2 = 1; 

 20    #10  $finish; 

 21 end 
 22  

 23 always 

 24   #1  clk1 = ~clk1; 
 25   

 26 always 

 27  #1.9 clk2 = ~clk2; 
 28  

 29 endmodule 

You could download file wrong_seq.v here 

     

 Example - D Flip-flop with async reset and async preset 

     

   

  1 module dff_async_reset_async_preset(); 
  2  

  3 reg clk,reset,preset,d; 

  4 reg  q; 
  5  

  6 always @ (posedge clk or posedge reset or posedge preset) 

http://www.asic-world.com/code/verilog_tutorial/wrong_seq.v


                                         
Verilog Programming Guide 

 

 
146 

 

  7 if (reset) begin 

  8   q <= 0; 

  9 end else if (preset) begin 

 10   q <= 1; 

 11 end else begin 

 12   q <= d; 

 13 end 
 14  

 15 // Testbench code here 

 16 initial begin 

 17   $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b", 
 18     clk,reset,preset,d,q); 

 19   clk    = 0; 

 20    #1  reset  = 0; 

 21   preset = 0; 

 22   d      = 0; 

 23    #1  reset = 1; 

 24    #2  reset = 0; 

 25    #2  preset = 1; 

 26    #2  preset = 0; 

 27   repeat (4) begin 

 28      #2  d      = ~d; 

 29   end 

 30    #2  $finish; 

 31 end 
 32  

 33 always 

 34   #1  clk = ~clk; 
 35  

 36 endmodule 

You could download file dff_async_reset_async_preset.v here 

     

   Example - D Flip-flop with sync reset and sync preset 

     

   

  1 module dff_sync_reset_sync_preset(); 
  2  

  3 reg clk,reset,preset,d; 

http://www.asic-world.com/code/verilog_tutorial/dff_async_reset_async_preset.v


                                         
Verilog Programming Guide 

 

 
147 

 

  4 reg  q; 
  5  

  6 always @ (posedge clk) 

  7 if (reset) begin 

  8   q <= 0; 

  9 end else if (preset) begin 

 10   q <= 1; 

 11 end else begin 

 12   q <= d; 

 13 end 
 14  

 15 // Testbench code here 

 16 initial begin 

 17   $monitor("CLK = %b RESET = %b PRESET = %b D = %b Q = %b", 
 18     clk,reset,preset,d,q); 

 19   clk    = 0; 

 20    #1  reset  = 0; 

 21   preset = 0; 

 22   d      = 0; 

 23    #1  reset = 1; 

 24    #2  reset = 0; 

 25    #2  preset = 1; 

 26    #2  preset = 0; 

 27   repeat (4) begin 

 28      #2  d      = ~d; 

 29   end 

 30    #2  $finish; 

 31 end 
 32  

 33 always 

 34   #1  clk = ~clk; 
 35  

 36 endmodule 

You could download file dff_sync_reset_sync_preset.v here 

     

   A procedure can't trigger itself 

  One cannot trigger the block with a variable that block assigns value 
or drives. 

http://www.asic-world.com/code/verilog_tutorial/dff_sync_reset_sync_preset.v


                                         
Verilog Programming Guide 

 

 
148 

 

     

   

  1 module trigger_itself(); 
  2  

  3 reg clk; 
  4  

  5 always @ (clk) 

  6    #5  clk =  ! clk;  
  7    

  8 // Testbench code here 

  9 initial begin 

 10   $monitor("TIME = %d  CLK = %b",$time,clk); 

 11   clk = 0; 

 12    #500  $display("TIME = %d  CLK = %b",$time,clk); 

 13   $finish; 

 14 end 
 15  

 16 endmodule 

You could download file trigger_itself.v here 

     

   Procedural Block Concurrency 

  If we have multiple always blocks inside one module, then all the 
blocks (i.e. all the always blocks and initial blocks) will start executing at time 0 and will 
continue to execute concurrently. Sometimes this leads to race conditions, if coding is 
not done properly. 

     

   

  1 module multiple_blocks (); 

  2 reg a,b; 

  3 reg c,d;  

  4 reg clk,reset; 

  5 // Combo Logic 

  6 always @ ( c) 

  7 begin 

  8   a = c; 

http://www.asic-world.com/code/verilog_tutorial/trigger_itself.v


                                         
Verilog Programming Guide 

 

 
149 

 

  9 end 

 10 // Seq Logic 

 11 always @ (posedge clk) 

 12 if (reset) begin 

 13   b <= 0; 

 14 end else begin 

 15   b <= a & d; 

 16 end 
 17  

 18 // Testbench code here 

 19 initial begin 

 20   $monitor("TIME = %d CLK = %b C = %b D = %b A = %b B = %b", 

 21     $time, clk,c,d,a,b); 

 22   clk = 0; 

 23   reset = 0; 

 24   c = 0; 

 25   d = 0; 

 26    #2  reset = 1; 

 27    #2  reset = 0; 

 28    #2  c = 1; 

 29    #2  d = 1; 

 30    #2  c = 0; 

 31    #5  $finish; 

 32 end 

 33 // Clock generator 

 34 always  

 35   #1  clk = ~clk; 
 36      

 37 endmodule 

You could download file multiple_blocks.v here 

     

   Race condition 

     

   

  1 module race_condition(); 

  2 reg b; 
  3  

  4 initial begin 

http://www.asic-world.com/code/verilog_tutorial/multiple_blocks.v


                                         
Verilog Programming Guide 

 

 
150 

 

  5   b = 0; 

  6 end   
  7      

  8 initial begin 

  9   b = 1; 

 10 end 
 11  

 12 endmodule 

You could download file race_condition.v here 

     

In the code above it is difficult to say the value of b, as both blocks are supposed to 
execute at same time. In Verilog, if care is not taken, a race condition is something that 
occurs very often. 

     

   Named Blocks 

     

Blocks can be named by adding : block_name after the keyword begin. Named blocks 
can be disabled using the 'disable' statement. 

     

   Example - Named Blocks 

     

   

  1 // This code find the lowest bit set 

  2 module named_block_disable(); 
  3  

  4 reg [31:0] bit_detect; 

  5 reg [5:0]  bit_position; 

  6 integer i; 
  7  

  8 always @ (bit_detect) 

http://www.asic-world.com/code/verilog_tutorial/race_condition.v


                                         
Verilog Programming Guide 

 

 
151 

 

  9 begin : BIT_DETECT 

 10   for (i = 0; i < 32 ; i = i + 1) begin 

 11      // If bit is set, latch the bit position 

 12      // Disable the execution of the block 

 13      if (bit_detect[i] == 1) begin 

 14         bit_position = i; 

 15         disable BIT_DETECT; 

 16      end  else begin 

 17         bit_position = 32; 

 18      end 

 19   end 

 20 end 
 21  

 22 // Testbench code here 

 23 initial begin 

 24   $monitor(" INPUT = %b  MIN_POSITION = %d", bit_detect, bit_position); 

 25    #1  bit_detect = 32'h1000_1000; 

 26    #1  bit_detect = 32'h1100_0000; 

 27    #1  bit_detect = 32'h1000_1010; 

 28    #10  $finish; 

 29 end 
 30  

 31 endmodule 

You could download file named_block_disable.v here 

     

  In the example above, BIT_DETECT is the named block and it is 
disabled whenever the bit position is detected. 

     
 

 

 Procedural blocks and timing controls. 

     

• Delay controls. 
• Edge-Sensitive Event controls. 
• Level-Sensitive Event controls-Wait statements. 
• Named Events. 

http://www.asic-world.com/code/verilog_tutorial/named_block_disable.v


                                         
Verilog Programming Guide 

 

 
152 

 

     

   Delay Controls 

 Delays the execution of a procedural statement by specific simulation time. 

  #< time > < statement >; 

     

   Example - clk_gen 

     

   

  1 module clk_gen (); 
  2  

  3 reg clk, reset;  
  4  

  5 initial begin 

  6   $monitor ("TIME = %g RESET = %b CLOCK = %b", $time, reset, clk); 

  7   clk = 0;  

  8   reset = 0;  

  9    #2  reset = 1;  

 10    #5  reset = 0;  

 11    #10  $finish; 

 12 end  
 13  

 14 always  

 15    #1  clk =  ! clk; 
 16  

 17 endmodule 

You could download file clk_gen.v here 

     

  Simulation Output 

     

TIME = 0  RESET = 0 CLOCK = 0 

http://www.asic-world.com/code/verilog_tutorial/clk_gen.v


                                         
Verilog Programming Guide 

 

 
153 

 

 TIME = 1  RESET = 0 CLOCK = 1 
 TIME = 2  RESET = 1 CLOCK = 0 
 TIME = 3  RESET = 1 CLOCK = 1 
 TIME = 4  RESET = 1 CLOCK = 0 
 TIME = 5  RESET = 1 CLOCK = 1 
 TIME = 6  RESET = 1 CLOCK = 0 
 TIME = 7  RESET = 0 CLOCK = 1 
 TIME = 8  RESET = 0 CLOCK = 0 
 TIME = 9  RESET = 0 CLOCK = 1 
 TIME = 10 RESET = 0 CLOCK = 0 
 TIME = 11 RESET = 0 CLOCK = 1 
 TIME = 12 RESET = 0 CLOCK = 0 
 TIME = 13 RESET = 0 CLOCK = 1 
 TIME = 14 RESET = 0 CLOCK = 0 
 TIME = 15 RESET = 0 CLOCK = 1 
 TIME = 16 RESET = 0 CLOCK = 0 
 

     

   Waveform 

     

   

     

   Edge sensitive Event Controls 

  Delays execution of the next statement until the specified transition 
on a signal. 

     

  syntax : @ (< posedge >|< negedge > signal) < statement >; 



                                         
Verilog Programming Guide 

 

 
154 

 

     

   

     

   Example - Edge Wait 

     

   

  1 module edge_wait_example(); 
  2  

  3 reg enable, clk, trigger; 
  4  

  5 always @ (posedge enable) 

  6 begin  

  7   trigger = 0; 

  8   // Wait for 5 clock cycles 

  9   repeat (5) begin 

 10     @ (posedge clk) ; 

 11   end 

 12   trigger = 1;  

 13 end 
 14  

 15 //Testbench code here 

 16 initial begin 

 17   $monitor ("TIME : %g CLK : %b ENABLE : %b TRIGGER : %b", 

 18     $time, clk,enable,trigger); 

 19   clk = 0; 

 20   enable = 0; 

 21    #5   enable = 1; 

 22    #1   enable = 0; 

 23    #10  enable = 1; 

 24    #1   enable = 0; 



                                         
Verilog Programming Guide 

 

 
155 

 

 25    #10  $finish; 

 26 end 
 27  

 28 always 

 29   #1  clk = ~clk; 
 30  

 31 endmodule 

You could download file edge_wait_example.v here 

     

  Simulator Output 

     

TIME : 0 CLK : 0 ENABLE : 0 TRIGGER : x 
 TIME : 1 CLK : 1 ENABLE : 0 TRIGGER : x 
 TIME : 2 CLK : 0 ENABLE : 0 TRIGGER : x 
 TIME : 3 CLK : 1 ENABLE : 0 TRIGGER : x 
 TIME : 4 CLK : 0 ENABLE : 0 TRIGGER : x 
 TIME : 5 CLK : 1 ENABLE : 1 TRIGGER : 0 
 TIME : 6 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 7 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 8 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 9 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 10 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 11 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 12 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 13 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 14 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 15 CLK : 1 ENABLE : 0 TRIGGER : 1 
 TIME : 16 CLK : 0 ENABLE : 1 TRIGGER : 0 
 TIME : 17 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 18 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 19 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 20 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 21 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 22 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 23 CLK : 1 ENABLE : 0 TRIGGER : 0 
 TIME : 24 CLK : 0 ENABLE : 0 TRIGGER : 0 
 TIME : 25 CLK : 1 ENABLE : 0 TRIGGER : 1 
 TIME : 26 CLK : 0 ENABLE : 0 TRIGGER : 1 
 

http://www.asic-world.com/code/verilog_tutorial/edge_wait_example.v


                                         
Verilog Programming Guide 

 

 
156 

 

     

   Level-Sensitive Even Controls ( Wait statements ) 

Delays execution of the next statement until < expression > evaluates to true 

  syntax : wait (< expression >) < statement >; 

     

   

     

   Example - Level Wait 

     

   

  1 module wait_example(); 
  2  

  3 reg mem_read, data_ready; 

  4 reg [7:0] data_bus, data; 
  5  

  6 always @ (mem_read or data_bus or data_ready) 

  7 begin 

  8   data = 0; 

  9   while (mem_read == 1'b1) begin 

 10     // #1 is very important to avoid infinite loop 

 11     wait (data_ready == 1)  #1  data = data_bus; 

 12   end 

 13 end 
 14  

 15 // Testbench Code here 

 16 initial begin 

 17  $monitor ("TIME = %g READ = %b READY = %b DATA = %b",  

 18    $time, mem_read, data_ready, data); 

 19  data_bus = 0; 

 20  mem_read = 0; 

 21  data_ready = 0; 



                                         
Verilog Programming Guide 

 

 
157 

 

 22   #10  data_bus = 8'hDE; 

 23   #10  mem_read = 1; 

 24   #20  data_ready = 1; 

 25   #1   mem_read = 1; 

 26   #1   data_ready = 0; 

 27   #10  data_bus = 8'hAD; 

 28   #10  mem_read = 1; 

 29   #20  data_ready = 1; 

 30   #1   mem_read = 1; 

 31   #1   data_ready = 0; 

 32   #10  $finish; 

 33 end 
 34  

 35 endmodule 

You could download file wait_example.v here 

     

  Simulator Output 

     

TIME = 0  READ = 0 READY = 0 DATA = 00000000 
 TIME = 20 READ = 1 READY = 0 DATA = 00000000 
 TIME = 40 READ = 1 READY = 1 DATA = 00000000 
 TIME = 41 READ = 1 READY = 1 DATA = 11011110 
 TIME = 42 READ = 1 READY = 0 DATA = 11011110 
 TIME = 82 READ = 1 READY = 1 DATA = 11011110 
 TIME = 83 READ = 1 READY = 1 DATA = 10101101 
 TIME = 84 READ = 1 READY = 0 DATA = 10101101 
 

     

   Intra-Assignment Timing Controls 

Intra-assignment controls always evaluate the right side expression immediately and 
assign the result after the delay or event control. 

     

http://www.asic-world.com/code/verilog_tutorial/wait_example.v


                                         
Verilog Programming Guide 

 

 
158 

 

In non-intra-assignment controls (delay or event control on the left side), the right side 
expression is evaluated after the delay or event control. 

     

   Example - Intra-Assignment 

     

   

  1 module intra_assign(); 
  2  

  3 reg a, b; 
  4  

  5 initial begin 

  6   $monitor("TIME = %g  A = %b  B = %b",$time, a , b); 

  7   a = 1;  

  8   b = 0;  

  9   a = #10 0;  

 10   b = a; 

 11    #20  $display("TIME = %g  A = %b  B = %b",$time, a , b); 

 12   $finish; 

 13 end  
 14  

 15 endmodule 

You could download file intra_assign.v here 

     

  Simulation Output 

     

 TIME = 0   A = 1  B = 0 
 TIME = 10  A = 0  B = 0 
 TIME = 30  A = 0  B = 0 
 

     

   Waveform 

http://www.asic-world.com/code/verilog_tutorial/intra_assign.v


                                         
Verilog Programming Guide 

 

 
159 

 

     

   

     

   Modeling Combo Logic with Continuous Assignments 

Whenever any signal changes on the right hand side, the entire right-hand side is re-
evaluated and the result is assigned to the left hand side. 

     

   Example - Tri-state Buffer 

     

   

  1 module tri_buf_using_assign(); 

  2 reg data_in, enable; 

  3 wire pad; 
  4  

  5 assign pad = (enable) ? data_in : 1'bz; 
  6  

  7 initial begin 

  8   $monitor ("TIME = %g ENABLE = %b DATA : %b PAD %b",  

  9     $time, enable, data_in, pad); 

 10    #1  enable = 0; 

 11    #1  data_in = 1; 

 12    #1  enable = 1; 

 13    #1  data_in = 0; 

 14    #1  enable = 0; 

 15    #1  $finish; 

 16 end 



                                         
Verilog Programming Guide 

 

 
160 

 

 17  

 18 endmodule 

You could download file tri_buf_using_assign.v here 

     

  Simulation Output 

     

 TIME = 0 ENABLE = x DATA : x PAD x 
 TIME = 1 ENABLE = 0 DATA : x PAD z 
 TIME = 2 ENABLE = 0 DATA : 1 PAD z 
 TIME = 3 ENABLE = 1 DATA : 1 PAD 1 
 TIME = 4 ENABLE = 1 DATA : 0 PAD 0 
 TIME = 5 ENABLE = 0 DATA : 0 PAD z 
 

     

   Waveform 

     

   

     

   Example - Mux 

     

   

  1 module mux_using_assign(); 

  2 reg data_in_0, data_in_1; 

http://www.asic-world.com/code/verilog_tutorial/tri_buf_using_assign.v


                                         
Verilog Programming Guide 

 

 
161 

 

  3 wire data_out; 

  4 reg  sel; 
  5  

  6 assign data_out = (sel) ? data_in_1 : data_in_0;  
  7  

  8 // Testbench code here 

  9 initial begin 

 10   $monitor("TIME = %g SEL = %b DATA0 = %b DATA1 = %b OUT = %b", 

 11     $time,sel,data_in_0,data_in_1,data_out); 

 12   data_in_0 = 0; 

 13   data_in_1 = 0; 

 14   sel = 0; 

 15    #10  sel = 1; 

 16    #10  $finish; 

 17 end 
 18  

 19 // Toggel data_in_0 at #1 

 20 always 

 21   #1  data_in_0 = ~data_in_0; 
 22  

 23 // Toggel data_in_1 at #2 

 24 always 

 25   #2  data_in_1 = ~data_in_1; 
 26  

 27 endmodule 

You could download file mux_using_assign.v here 

     

  Simulation Output 

     

TIME = 0 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0 
 TIME = 1 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1 
 TIME = 2 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0 
 TIME = 3 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1 
 TIME = 4 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0 
 TIME = 5 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1 
 TIME = 6 SEL = 0 DATA0 = 0 DATA1 = 1 OUT = 0 
 TIME = 7 SEL = 0 DATA0 = 1 DATA1 = 1 OUT = 1 
 TIME = 8 SEL = 0 DATA0 = 0 DATA1 = 0 OUT = 0 
 TIME = 9 SEL = 0 DATA0 = 1 DATA1 = 0 OUT = 1 

http://www.asic-world.com/code/verilog_tutorial/mux_using_assign.v


                                         
Verilog Programming Guide 

 

 
162 

 

 TIME = 10 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1 
 TIME = 11 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1 
 TIME = 12 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0 
 TIME = 13 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0 
 TIME = 14 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1 
 TIME = 15 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1 
 TIME = 16 SEL = 1 DATA0 = 0 DATA1 = 0 OUT = 0 
 TIME = 17 SEL = 1 DATA0 = 1 DATA1 = 0 OUT = 0 
 TIME = 18 SEL = 1 DATA0 = 0 DATA1 = 1 OUT = 1 
 TIME = 19 SEL = 1 DATA0 = 1 DATA1 = 1 OUT = 1 
 

     

   Waveform 

     

   

   

     

   $display, $strobe, $monitor 

These commands have the same syntax, and display text on the screen during 
simulation. They are much less convenient than waveform display tools like GTKWave. 
or Undertow or Debussy. $display and $strobe display once every time they are 
executed, whereas $monitor displays every time one of its parameters changes. The 
difference between $display and $strobe is that $strobe displays the parameters at the 
very end of the current simulation time unit rather than exactly when it is executed. The 
format string is like that in C/C++, and may contain format characters. Format 
characters include %d (decimal), %h (hexadecimal), %b (binary), %c (character), %s 



                                         
Verilog Programming Guide 

 

 
163 

 

(string) and %t (time), %m (hierarchy level). %5d, %5b etc. would give exactly 5 spaces 
for the number instead of the space needed. Append b, h, o to the task name to change 
default format to binary, octal or hexadecimal. 

     

   Syntax 

     

• $display ("format_string", par_1, par_2, ... ); 
• $strobe ("format_string", par_1, par_2, ... ); 
• $monitor ("format_string", par_1, par_2, ... ); 
• $displayb (as above but defaults to binary..); 
• $strobeh (as above but defaults to hex..); 
• $monitoro (as above but defaults to octal..); 

     

   $time, $stime, $realtime 

These return the current simulation time as a 64-bit integer, a 32-bit integer, and a real 
number, respectively. 

     

   $reset, $stop, $finish 

$reset resets the simulation back to time 0; $stop halts the simulator and puts it in 
interactive mode where the user can enter commands; $finish exits the simulator back 
to the operating system. 

     

   

     



                                         
Verilog Programming Guide 

 

 
164 

 

   $scope, $showscope 

$scope(hierarchy_name) sets the current hierarchical scope to hierarchy_name. 
$showscopes(n) lists all modules, tasks and block names in (and below, if n is set to 1) 
the current scope. 

     

   $random 

$random generates a random integer every time it is called. If the sequence is to be 
repeatable, the first time one invokes random giving it a numerical argument (a seed). 
Otherwise the seed is derived from the computer clock. 

     

   $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall 

These can dump variable changes to a simulation viewer like Debussy. The dump files 
are capable of dumping all the variables in a simulation. This is convenient for 
debugging, but can be very slow. 

     

   Syntax 

     

• $dumpfile("filename.vcd") 
• $dumpvar dumps all variables in the design. 
• $dumpvar(1, top) dumps all the variables in module top and below, but not 

modules instantiated in top. 
• $dumpvar(2, top) dumps all the variables in module top and 1 level below. 
• $dumpvar(n, top) dumps all the variables in module top and n-1 levels below. 
• $dumpvar(0, top) dumps all the variables in module top and all level below. 
• $dumpon initiates the dump. 
• $dumpoff stop dumping. 



                                         
Verilog Programming Guide 

 

 
165 

 

     

   $fopen, $fdisplay, $fstrobe $fmonitor and $fwrite 

  These commands write more selectively to files. 

     

• $fopen opens an output file and gives the open file a handle for use by the other 
commands. 

• $fclose closes the file and lets other programs access it. 
• $fdisplay and $fwrite write formatted data to a file whenever they are executed. 

They are the same except $fdisplay inserts a new line after every execution and 
$write does not. 

• $strobe also writes to a file when executed, but it waits until all other operations 
in the time step are complete before writing. Thus initial #1 a=1; b=0; 
$fstrobe(hand1, a,b); b=1; will write write 1 1 for a and b. 

• $monitor writes to a file whenever any of its arguments changes. 

     

   Syntax 

     

• handle1=$fopen("filenam1.suffix") 
• handle2=$fopen("filenam2.suffix") 
• $fstrobe(handle1, format, variable list) //strobe data into filenam1.suffix 
• $fdisplay(handle2, format, variable list) //write data into filenam2.suffix 
• $fwrite(handle2, format, variable list) //write data into filenam2.suffix all on one 

line. Put in the format string where a new line is desired. 

 

Writing a testbench is as complex as writing the RTL code itself. These days ASICs are 
getting more and more complex and thus verifying these complex ASIC has become a 
challenge. Typically 60-70% of time needed for any ASIC is spent on 



                                         
Verilog Programming Guide 

 

 
166 

 

verification/validation/testing. Even though the above facts are well known to most ASIC 
engineers, still engineers think that there is no glory in verification. 

     

     

     

 Memory Modeling 

To help modeling of memory, Verilog provides support for two dimensions arrays. 
Behavioral models of memories are modeled by declaring an array of register variables; 
any word in the array may be accessed using an index into the array. A temporary 
variable is required to access a discrete bit within the array. 

     

   Syntax 

  reg [wordsize:0] array_name [0:arraysize] 

     

   Examples 

     

   Declaration 

  reg [7:0] my_memory [0:255]; 

     

Here [7:0] is the memory width and [0:255] is the memory depth with the following 
parameters: 

• Width : 8 bits, little endian 



                                         
Verilog Programming Guide 

 

 
167 

 

• Depth : 256, address 0 corresponds to location 0 in the array. 

     

   Storing Values 

  my_memory[address] = data_in; 

     

   

     

   Reading Values 

  data_out = my_memory[address]; 

     

   Bit Read 

Sometimes there may be need to read just one bit. Unfortunately Verilog does not allow 
to read or write only one bit: the workaround for such a problem is as shown below. 

     

  data_out = my_memory[address]; 

     

  data_out_it_0 = data_out[0]; 

     

   Initializing Memories 



                                         
Verilog Programming Guide 

 

 
168 

 

A memory array may be initialized by reading memory pattern file from disk and storing 
it on the memory array. To do this, we use system tasks $readmemb and $readmemh. 
$readmemb is used for binary representation of memory content and $readmemh for 
hex representation. 

     

   Syntax 

  $readmemh("file_name",mem_array,start_addr,stop_addr); 

  Note : start_addr and stop_addr are optional. 

     

   Example - Simple memory 

     

   

 1 module  memory(); 

 2 reg [7:0] my_memory [0:255]; 
 3  

 4 initial begin 

 5  $readmemh("memory.list", my_memory); 

 6 end 

 7 endmodule 

You could download file memory.v here 

     

   Example - Memory.list file 

     

   

 1 //Comments are allowed  

 2 1100_1100   // This is first address i.e 8'h00 

 3 1010_1010   // This is second address i.e 8'h01 

 4 @ 55        // Jump to new address 8'h55 

http://www.asic-world.com/code/verilog_tutorial/memory.v


                                         
Verilog Programming Guide 

 

 
169 

 

 5 0101_1010   // This is address 8'h55 

 6 0110_1001   // This is address 8'h56 

You could download file memory.list here 

     

$readmemh system task can also be used for reading testbench vectors. I will cover this 
in detail in the test bench section ... when I find time. 

       

 Introduction to FSM 

State machines or FSM are the heart of any digital design; of course a counter is a 
simple form of FSM. When I was learning Verilog, I used to wonder "How do I code 
FSM in Verilog" and "What is the best way to code it". I will try to answer the first part of 
the question below and second part of the question can be found in the tidbits section. 

     

   State machine Types 

There are two types of state machines as classified by the types of outputs generated 
from each. The first is the Moore State Machine where the outputs are only a function of 
the present state, the second is the Mealy State Machine where one or more of the 
outputs are a function of the present state and one or more of the inputs. 

     

   Mealy Model 

     

http://www.asic-world.com/code/verilog_tutorial/memory.list


                                         
Verilog Programming Guide 

 

 
170 

 

   

     

   Moore Model 

     

   

     

  State machines can also be classified according to the state encoding 
used. Encoding style is also a critical factor which decides speed and gate complexity of 
the FSM. Binary, gray, one hot, one cold, and almost one hot are the different types of 
encoding styles used in coding FSM states. 

     

   Modeling State machines. 

  One thing that need to be kept in mind when coding FSM is that 
combinational logic and sequence logic should be in two different always blocks. In the 



                                         
Verilog Programming Guide 

 

 
171 

 

above two figures, next state logic is always the combinational logic. State Registers 
and Output logic are sequential logic. It is very important that any asynchronous signal 
to the next state logic be synchronized before being fed to the FSM. Always try to keep 
FSM in a separate Verilog file. 

     

  Using constants declaration like parameter or `define to define states 
of the FSM makes code more readable and easy to manage. 

     

   

     

   Example - Arbiter 

  We will be using the arbiter FSM to study FSM coding styles in 
Verilog. 

     

   



                                         
Verilog Programming Guide 

 

 
172 

 

     

   Verilog Code 

  FSM code should have three sections: 

•   Encoding style. 
• Combinational part. 
• Sequential part. 

     

   Encoding Style 

  There are many encoding styles around, some of which are: 

     

•   Binary Encoding 
• One Hot Encoding 
• One Cold Encoding 
• Almost One Hot Encoding 
• Almost One Cold Encoding 
• Gray Encoding 

     

  Of all the above types we normally use one hot and binary encoding. 

     

   One Hot Encoding 

     

   

 1 parameter  [4:0]  IDLE  = 5'b0_0001; 

 2 parameter  [4:0]  GNT0  = 5'b0_0010; 



                                         
Verilog Programming Guide 

 

 
173 

 

 3 parameter  [4:0]  GNT1  = 5'b0_0100; 

 4 parameter  [4:0]  GNT2  = 5'b0_1000; 

 5 parameter  [4:0]  GNT3  = 5'b1_0000; 

You could download file fsm_one_hot_params.v here 

     

   Binary Encoding 

     

   

 1 parameter  [2:0]  IDLE  = 3'b000; 

 2 parameter  [2:0]  GNT0  = 3'b001; 

 3 parameter  [2:0]  GNT1  = 3'b010; 

 4 parameter  [2:0]  GNT2  = 3'b011; 

 5 parameter  [2:0]  GNT3  = 3'b100; 

You could download file fsm_binary_params.v here 

     

   Gray Encoding 

     

   

 1 parameter  [2:0]  IDLE  = 3'b000; 

 2 parameter  [2:0]  GNT0  = 3'b001; 

 3 parameter  [2:0]  GNT1  = 3'b011; 

 4 parameter  [2:0]  GNT2  = 3'b010; 

 5 parameter  [2:0]  GNT3  = 3'b110; 

You could download file fsm_gray_params.v here 

     

     

Combinational Section 
This section can be modeled using functions, assign statements or using always blocks 
with a case statement. For the time being let's see the always block version 

http://www.asic-world.com/code/verilog_tutorial/fsm_one_hot_params.v
http://www.asic-world.com/code/verilog_tutorial/fsm_binary_params.v
http://www.asic-world.com/code/verilog_tutorial/fsm_gray_params.v


                                         
Verilog Programming Guide 

 

 
174 

 

     

   

  1 always @ (state or req_0 or req_1 or req_2 or req_3) 

  2 begin        

  3   next_state = 0; 

  4   case(state) 

  5     IDLE : if (req_0 == 1'b1) begin 

  6         next_state = GNT0; 

  7            end else if (req_1 == 1'b1) begin 
  8         next_state= GNT1; 

  9            end else if (req_2 == 1'b1) begin 
 10         next_state= GNT2; 

 11            end else if (req_3 == 1'b1) begin 
 12         next_state= GNT3; 

 13     end else begin 

 14         next_state = IDLE; 

 15            end    

 16     GNT0 : if (req_0 == 1'b0) begin 

 17         next_state = IDLE; 

 18            end else begin 

 19       next_state = GNT0; 

 20    end 

 21     GNT1 : if (req_1 == 1'b0) begin 

 22         next_state = IDLE; 

 23            end else begin 

 24       next_state = GNT1; 

 25    end 

 26     GNT2 : if (req_2 == 1'b0) begin 

 27         next_state = IDLE; 

 28            end else begin 

 29       next_state = GNT2; 

 30    end 

 31     GNT3 : if (req_3 == 1'b0) begin 

 32         next_state = IDLE; 

 33            end else begin 

 34       next_state = GNT3; 

 35    end 

 36    default : next_state = IDLE; 

 37   endcase 

 38 end 

You could download file fsm_combo.v here 

http://www.asic-world.com/code/verilog_tutorial/fsm_combo.v


                                         
Verilog Programming Guide 

 

 
175 

 

     

   

     

   Sequential Section 

This section has to be modeled using only edge sensitive logic such as always block 
with posedge or negedge of clock. 

     

   

  1 always @ (posedge clock) 

  2 begin : OUTPUT_LOGIC 

  3   if (reset == 1'b1) begin 

  4     gnt_0 <=  #1  1'b0; 

  5     gnt_1 <=  #1  1'b0; 

  6     gnt_2 <=  #1  1'b0; 

  7     gnt_3 <=  #1  1'b0; 

  8     state <=  #1  IDLE; 

  9   end else begin 

 10     state <=  #1  next_state; 

 11     case(state) 

 12        IDLE : begin 

 13                 gnt_0 <=  #1  1'b0; 

 14                 gnt_1 <=  #1  1'b0; 

 15                 gnt_2 <=  #1  1'b0; 

 16                 gnt_3 <=  #1  1'b0; 

 17         end 

 18    GNT0 : begin 

 19             gnt_0 <=  #1  1'b1; 

 20           end 

 21         GNT1 : begin 

 22                  gnt_1 <=  #1  1'b1; 

 23                end 

 24         GNT2 : begin 

 25                  gnt_2 <=  #1  1'b1; 

 26                end 

 27         GNT3 : begin 



                                         
Verilog Programming Guide 

 

 
176 

 

 28                  gnt_3 <=  #1  1'b1; 

 29                end 

 30      default : begin 

 31                  state <=  #1  IDLE; 

 32                end 

 33     endcase 

 34   end 

 35 end 

You could download file fsm_seq.v here 

     

   Full Code using binary encoding 

     

   

   1 module fsm_full( 

   2 clock , // Clock 

   3 reset , // Active high reset 

   4 req_0 , // Active high request from agent 0 

   5 req_1 , // Active high request from agent 1 

   6 req_2 , // Active high request from agent 2 

   7 req_3 , // Active high request from agent 3 

   8 gnt_0 , // Active high grant to agent 0 

   9 gnt_1 , // Active high grant to agent 1 

  10 gnt_2 , // Active high grant to agent 2 

  11 gnt_3   // Active high grant to agent 3 
  12 ); 

  13 // Port declaration here 

  14 input clock ; // Clock 

  15 input reset ; // Active high reset 

  16 input req_0 ; // Active high request from agent 0 

  17 input req_1 ; // Active high request from agent 1 

  18 input req_2 ; // Active high request from agent 2 

  19 input req_3 ; // Active high request from agent 3 

  20 output gnt_0 ; // Active high grant to agent 0 

  21 output gnt_1 ; // Active high grant to agent 1 

  22 output gnt_2 ; // Active high grant to agent 2 

  23 output gnt_3 ; // Active high grant to agent  
  24  

  25 // Internal Variables 

http://www.asic-world.com/code/verilog_tutorial/fsm_seq.v


                                         
Verilog Programming Guide 

 

 
177 

 

  26 reg    gnt_0 ; // Active high grant to agent 0 

  27 reg    gnt_1 ; // Active high grant to agent 1 

  28 reg    gnt_2 ; // Active high grant to agent 2 

  29 reg    gnt_3 ; // Active high grant to agent  
  30  

  31 parameter  [2:0]  IDLE  = 3'b000; 

  32 parameter  [2:0]  GNT0  = 3'b001; 

  33 parameter  [2:0]  GNT1  = 3'b010; 

  34 parameter  [2:0]  GNT2  = 3'b011; 

  35 parameter  [2:0]  GNT3  = 3'b100; 
  36  

  37 reg [2:0] state, next_state; 
  38  

  39 always @ (state or req_0 or req_1 or req_2 or req_3) 

  40 begin   

  41   next_state = 0; 

  42   case(state) 

  43     IDLE : if (req_0 == 1'b1) begin 

  44         next_state = GNT0; 

  45            end else if (req_1 == 1'b1) begin 
  46         next_state= GNT1; 

  47            end else if (req_2 == 1'b1) begin 
  48         next_state= GNT2; 

  49            end else if (req_3 == 1'b1) begin 
  50         next_state= GNT3; 

  51     end else begin 

  52         next_state = IDLE; 

  53            end    

  54     GNT0 : if (req_0 == 1'b0) begin 

  55         next_state = IDLE; 

  56            end else begin 

  57       next_state = GNT0; 

  58    end 

  59     GNT1 : if (req_1 == 1'b0) begin 

  60         next_state = IDLE; 

  61            end else begin 

  62       next_state = GNT1; 

  63    end 

  64     GNT2 : if (req_2 == 1'b0) begin 

  65         next_state = IDLE; 

  66            end else begin 

  67       next_state = GNT2; 

  68    end 



                                         
Verilog Programming Guide 

 

 
178 

 

  69     GNT3 : if (req_3 == 1'b0) begin 

  70         next_state = IDLE; 

  71            end else begin 

  72       next_state = GNT3; 

  73    end 

  74    default : next_state = IDLE; 

  75   endcase 

  76 end 
  77  

  78 always @ (posedge clock) 

  79 begin : OUTPUT_LOGIC 

  80   if (reset) begin 

  81     gnt_0 <=  #1  1'b0; 

  82     gnt_1 <=  #1  1'b0; 

  83     gnt_2 <=  #1  1'b0; 

  84     gnt_3 <=  #1  1'b0; 

  85     state <=  #1  IDLE; 

  86   end else begin 

  87     state <=  #1  next_state; 

  88     case(state) 

  89  IDLE : begin 

  90                 gnt_0 <=  #1  1'b0; 

  91                 gnt_1 <=  #1  1'b0; 

  92                 gnt_2 <=  #1  1'b0; 

  93                 gnt_3 <=  #1  1'b0; 

  94         end 

  95    GNT0 : begin 

  96             gnt_0 <=  #1  1'b1; 

  97           end 

  98         GNT1 : begin 

  99                  gnt_1 <=  #1  1'b1; 

 100                end 

 101         GNT2 : begin 

 102                  gnt_2 <=  #1  1'b1; 

 103                end 

 104         GNT3 : begin 

 105                  gnt_3 <=  #1  1'b1; 

 106                end 

 107      default : begin 

 108                  state <=  #1  IDLE; 

 109                end 

 110     endcase 

 111   end 



                                         
Verilog Programming Guide 

 

 
179 

 

 112 end 
 113  

 114 endmodule 

You could download file fsm_full.v here 

     

  Testbench 

   

  1 `include "fsm_full.v" 
  2  

  3 module fsm_full_tb(); 

  4 reg clock , reset ; 

  5 reg req_0 , req_1 ,  req_2 , req_3;  

  6 wire gnt_0 , gnt_1 , gnt_2 , gnt_3 ; 
  7  

  8 initial begin 

  9   $display("Time\t    R0 R1 R2 R3 G0 G1 G2 G3"); 

 10   $monitor("%g\t    %b  %b  %b  %b  %b  %b  %b  %b",  

 11     $time, req_0, req_1, req_2, req_3, gnt_0, gnt_1, gnt_2, gnt_3); 

 12   clock = 0; 

 13   reset = 0; 

 14   req_0 = 0; 

 15   req_1 = 0; 

 16   req_2 = 0; 

 17   req_3 = 0; 

 18    #10  reset = 1; 

 19    #10  reset = 0; 

 20    #10  req_0 = 1; 

 21    #20  req_0 = 0; 

 22    #10  req_1 = 1; 

 23    #20  req_1 = 0; 

 24    #10  req_2 = 1; 

 25    #20  req_2 = 0; 

 26    #10  req_3 = 1; 

 27    #20  req_3 = 0; 

 28    #10  $finish; 

 29 end 
 30  

 31 always 

 32   #2  clock = ~clock; 
 33  

http://www.asic-world.com/code/verilog_tutorial/fsm_full.v


                                         
Verilog Programming Guide 

 

 
180 

 

 34  

 35 fsm_full U_fsm_full( 

 36 clock , // Clock 

 37 reset , // Active high reset 

 38 req_0 , // Active high request from agent 0 

 39 req_1 , // Active high request from agent 1 

 40 req_2 , // Active high request from agent 2 

 41 req_3 , // Active high request from agent 3 

 42 gnt_0 , // Active high grant to agent 0 

 43 gnt_1 , // Active high grant to agent 1 

 44 gnt_2 , // Active high grant to agent 2 

 45 gnt_3   // Active high grant to agent 3 
 46 ); 

 47  

 48  

 49  

 50 endmodule 

You could download file fsm_full_tb.v here 

     

  Simulator Output 

Time     R0 R1 R2 R3 G0 G1 G2 G3 
 0     0  0  0  0  x  x  x  x 
 7     0  0  0  0  0  0  0  0 
 30     1  0  0  0  0  0  0  0 
 35     1  0  0  0  1  0  0  0 
 50     0  0  0  0  1  0  0  0 
 55     0  0  0  0  0  0  0  0 
 60     0  1  0  0  0  0  0  0 
 67     0  1  0  0  0  1  0  0 
 80     0  0  0  0  0  1  0  0 
 87     0  0  0  0  0  0  0  0 
 90     0  0  1  0  0  0  0  0 
 95     0  0  1  0  0  0  1  0 
 110     0  0  0  0  0  0  1  0 
 115     0  0  0  0  0  0  0  0 
 120     0  0  0  1  0  0  0  0 
 127     0  0  0  1  0  0  0  1 
 140     0  0  0  0  0  0  0  1 
 147     0  0  0  0  0  0  0  0 
 

  assign and deassign 

http://www.asic-world.com/code/verilog_tutorial/fsm_full_tb.v


                                         
Verilog Programming Guide 

 

 
181 

 

The assign and deassign procedural assignment statements allow continuous 
assignments to be placed onto registers for controlled periods of time. The assign 
procedural statement overrides procedural assignments to a register. The deassign 
procedural statement ends a continuous assignment to a register. 

     

Example - assign and deassign 

     

   

  1 module assign_deassign (); 
  2  

  3 reg clk,rst,d,preset; 

  4 wire q; 
  5  

  6 initial begin 

  7   $monitor("@%g clk %b rst %b preset %b d %b q %b",  

  8     $time, clk, rst, preset, d, q); 

  9   clk = 0; 

 10   rst = 0; 

 11   d  = 0; 

 12   preset = 0; 

 13    #10  rst = 1; 

 14    #10  rst = 0; 

 15   repeat (10) begin 

 16     @ (posedge clk); 

 17     d <= $random; 

 18     @ (negedge clk) ; 

 19     preset <= ~preset; 

 20   end 

 21    #1  $finish; 

 22 end 

 23 // Clock generator 

 24 always  #1  clk = ~clk; 
 25  

 26 // assign and deassign q of flip flop module 

 27 always @(preset) 

 28 if (preset) begin 

 29   assign U.q = 1; // assign procedural statement 

 30 end else begin 



                                         
Verilog Programming Guide 

 

 
182 

 

 31  deassign U.q;    // deassign procedural statement 

 32 end 
 33  

 34 d_ff U (clk,rst,d,q); 

 35  

 36 endmodule 
 37  

 38 // D Flip-Flop model 

 39 module d_ff (clk,rst,d,q); 

 40 input clk,rst,d; 

 41 output q; 

 42 reg q; 
 43  

 44 always @ (posedge clk) 

 45 if (rst) begin 

 46   q <= 0; 

 47 end else begin 

 48   q <= d; 

 49 end 
 50  

 51 endmodule 

You could download file assign_deassign.v here 

     

  Simulator Output 

     

@0  clk 0 rst 0 preset 0 d 0 q x 
 @1  clk 1 rst 0 preset 0 d 0 q 0 
 @2  clk 0 rst 0 preset 0 d 0 q 0 
 @3  clk 1 rst 0 preset 0 d 0 q 0 
 @4  clk 0 rst 0 preset 0 d 0 q 0 
 @5  clk 1 rst 0 preset 0 d 0 q 0 
 @6  clk 0 rst 0 preset 0 d 0 q 0 
 @7  clk 1 rst 0 preset 0 d 0 q 0 
 @8  clk 0 rst 0 preset 0 d 0 q 0 
 @9  clk 1 rst 0 preset 0 d 0 q 0 
 @10 clk 0 rst 1 preset 0 d 0 q 0 
 @11 clk 1 rst 1 preset 0 d 0 q 0 
 @12 clk 0 rst 1 preset 0 d 0 q 0 
 @13 clk 1 rst 1 preset 0 d 0 q 0 

http://www.asic-world.com/code/verilog_tutorial/assign_deassign.v


                                         
Verilog Programming Guide 

 

 
183 

 

 @14 clk 0 rst 1 preset 0 d 0 q 0 
 @15 clk 1 rst 1 preset 0 d 0 q 0 
 @16 clk 0 rst 1 preset 0 d 0 q 0 
 @17 clk 1 rst 1 preset 0 d 0 q 0 
 @18 clk 0 rst 1 preset 0 d 0 q 0 
 @19 clk 1 rst 1 preset 0 d 0 q 0 
 @20 clk 0 rst 0 preset 0 d 0 q 0 
 @21 clk 1 rst 0 preset 0 d 0 q 0 
 @22 clk 0 rst 0 preset 1 d 0 q 1 
 @23 clk 1 rst 0 preset 1 d 1 q 1 
 @24 clk 0 rst 0 preset 0 d 1 q 1 
 @25 clk 1 rst 0 preset 0 d 1 q 1 
 @26 clk 0 rst 0 preset 1 d 1 q 1 
 @27 clk 1 rst 0 preset 1 d 1 q 1 
 @28 clk 0 rst 0 preset 0 d 1 q 1 
 @29 clk 1 rst 0 preset 0 d 1 q 1 
 @30 clk 0 rst 0 preset 1 d 1 q 1 
 @31 clk 1 rst 0 preset 1 d 1 q 1 
 @32 clk 0 rst 0 preset 0 d 1 q 1 
 @33 clk 1 rst 0 preset 0 d 1 q 1 
 @34 clk 0 rst 0 preset 1 d 1 q 1 
 @35 clk 1 rst 0 preset 1 d 0 q 1 
 @36 clk 0 rst 0 preset 0 d 0 q 1 
 @37 clk 1 rst 0 preset 0 d 1 q 0 
 @38 clk 0 rst 0 preset 1 d 1 q 1 
 @39 clk 1 rst 0 preset 1 d 1 q 1 
 @40 clk 0 rst 0 preset 0 d 1 q 1 

 

     

 force and release 

Another form of procedural continuous assignment is provided by the force and release 
procedural statements. These statements have a similar effect on the assign-deassign 
pair, but a force can be applied to nets as well as to registers. 

     

One can use force and release while doing gate level simulation to work around reset 
connectivity problems. Also can be used insert single and double bit errors on data read 
from memory. 



                                         
Verilog Programming Guide 

 

 
184 

 

     

 Example - force and release 

     

   

  1 module force_release (); 
  2  

  3 reg clk,rst,d,preset; 

  4 wire q; 
  5  

  6 initial begin 

  7   $monitor("@%g clk %b rst %b preset %b d %b q %b",  

  8     $time, clk, rst, preset, d, q); 

  9   clk = 0; 

 10   rst = 0; 

 11   d  = 0; 

 12   preset = 0; 

 13    #10  rst = 1; 

 14    #10  rst = 0; 

 15   repeat (10) begin 

 16     @ (posedge clk); 

 17     d <= $random; 

 18     @ (negedge clk) ; 

 19     preset <= ~preset; 

 20   end 

 21    #1  $finish; 

 22 end 

 23 // Clock generator 

 24 always  #1  clk = ~clk; 
 25  

 26 // force and release of flip flop module 

 27 always @(preset) 

 28 if (preset) begin 

 29   force U.q = preset; // force procedural statement 

 30 end else begin 

 31   release U.q;    // release procedural statement 

 32 end 
 33  

 34 d_ff U (clk,rst,d,q); 

 35  



                                         
Verilog Programming Guide 

 

 
185 

 

 36 endmodule 
 37  

 38 // D Flip-Flop model 

 39 module d_ff (clk,rst,d,q); 

 40 input clk,rst,d; 

 41 output q; 

 42 wire q; 

 43 reg q_reg; 
 44  

 45 assign q = q_reg; 
 46  

 47 always @ (posedge clk) 

 48 if (rst) begin 

 49   q_reg <= 0; 

 50 end else begin 

 51   q_reg <= d; 

 52 end 
 53  

 54 endmodule 

You could download file force_release.v here 

     

  Simulator Output 

     

 @0  clk 0 rst 0 preset 0 d 0 q x 
 @1  clk 1 rst 0 preset 0 d 0 q 0 
 @2  clk 0 rst 0 preset 0 d 0 q 0 
 @3  clk 1 rst 0 preset 0 d 0 q 0 
 @4  clk 0 rst 0 preset 0 d 0 q 0 
 @5  clk 1 rst 0 preset 0 d 0 q 0 
 @6  clk 0 rst 0 preset 0 d 0 q 0 
 @7  clk 1 rst 0 preset 0 d 0 q 0 
 @8  clk 0 rst 0 preset 0 d 0 q 0 
 @9  clk 1 rst 0 preset 0 d 0 q 0 
 @10 clk 0 rst 1 preset 0 d 0 q 0 
 @11 clk 1 rst 1 preset 0 d 0 q 0 
 @12 clk 0 rst 1 preset 0 d 0 q 0 
 @13 clk 1 rst 1 preset 0 d 0 q 0 
 @14 clk 0 rst 1 preset 0 d 0 q 0 
 @15 clk 1 rst 1 preset 0 d 0 q 0 

http://www.asic-world.com/code/verilog_tutorial/force_release.v


                                         
Verilog Programming Guide 

 

 
186 

 

 @16 clk 0 rst 1 preset 0 d 0 q 0 
 @17 clk 1 rst 1 preset 0 d 0 q 0 
 @18 clk 0 rst 1 preset 0 d 0 q 0 
 @19 clk 1 rst 1 preset 0 d 0 q 0 
 @20 clk 0 rst 0 preset 0 d 0 q 0 
 @21 clk 1 rst 0 preset 0 d 0 q 0 
 @22 clk 0 rst 0 preset 1 d 0 q 1 
 @23 clk 1 rst 0 preset 1 d 1 q 1 
 @24 clk 0 rst 0 preset 0 d 1 q 0 
 @25 clk 1 rst 0 preset 0 d 1 q 1 
 @26 clk 0 rst 0 preset 1 d 1 q 1 
 @27 clk 1 rst 0 preset 1 d 1 q 1 
 @28 clk 0 rst 0 preset 0 d 1 q 1 
 @29 clk 1 rst 0 preset 0 d 1 q 1 
 @30 clk 0 rst 0 preset 1 d 1 q 1 
 @31 clk 1 rst 0 preset 1 d 1 q 1 
 @32 clk 0 rst 0 preset 0 d 1 q 1 
 @33 clk 1 rst 0 preset 0 d 1 q 1 
 @34 clk 0 rst 0 preset 1 d 1 q 1 
 @35 clk 1 rst 0 preset 1 d 0 q 1 
 @36 clk 0 rst 0 preset 0 d 0 q 1 
 @37 clk 1 rst 0 preset 0 d 1 q 0 
 @38 clk 0 rst 0 preset 1 d 1 q 1 
 @39 clk 1 rst 0 preset 1 d 1 q 1 
 @40 clk 0 rst 0 preset 0 d 1 q 1 

    

     

 Introduction 

Let's assume that we have a design which requires us to have counters of various 
width, but with the same functionality. Maybe we can assume that we have a design 
which requires lots of instants of different depth and width of RAMs of similar 
functionality. Normally what we do is creating counters of different widths and then use 
them. The same rule applies to the RAM we talked about. 

     



                                         
Verilog Programming Guide 

 

 
187 

 

But Verilog provides a powerful way to overcome this problem: it provides us with 
something called parameter; these parameters are like constants local to that particular 
module. 

     

We can override the default values, either using defparam or by passing a new set of 
parameters during instantiation. We call this parameter overriding. 

     

   Parameters 

  A parameter is defined by Verilog as a constant value declared within the 
module structure. The value can be used to define a set of attributes for the module 
which can characterize its behavior as well as its physical representation. 

• Defined inside a module. 
• Local scope. 
• Maybe overridden at instantiation time. 

o If multiple parameters are defined, they must be overridden in the order 
they were defined. If an overriding value is not specified, the default 
parameter declaration values are used. 

• Maybe changed using the defparam statement. 

     

   

     

   Parameter Override using defparam 

     

   

  1 module secret_number; 

  2 parameter my_secret = 0; 



                                         
Verilog Programming Guide 

 

 
188 

 

  3  

  4 initial begin 

  5   $display("My secret number is %d", my_secret); 

  6 end 
  7      

  8 endmodule 
  9   

 10 module defparam_example(); 
 11      

 12 defparam U0.my_secret = 11; 

 13 defparam U1.my_secret = 22; 
 14      

 15 secret_number U0(); 

 16 secret_number U1(); 

 17      

 18 endmodule 

You could download file defparam_example.v here 

     

   Parameter Override during instantiating. 

     

   

  1 module secret_number; 

  2 parameter my_secret = 0; 
  3  

  4 initial begin 

  5   $display("My secret number in module is %d", my_secret); 

  6 end 
  7  

  8 endmodule 
  9   

 10 module param_overide_instance_example(); 
 11  

 12 secret_number #(11) U0(); 

 13 secret_number #(22) U1(); 

 14      

 15 endmodule 

You could download file param_overide_instance_example.v here 

http://www.asic-world.com/code/verilog_tutorial/defparam_example.v
http://www.asic-world.com/code/verilog_tutorial/param_overide_instance_example.v


                                         
Verilog Programming Guide 

 

 
189 

 

     

   Passing more than one parameter 

     

   

  1 module  ram_sp_sr_sw (  

  2 clk         , // Clock Input 

  3 address     , // Address Input 

  4 data        , // Data bi-directional 

  5 cs          , // Chip Select 

  6 we          , // Write Enable/Read Enable 

  7 oe            // Output Enable 
  8 );  

  9  

 10 parameter DATA_WIDTH = 8 ; 

 11 parameter ADDR_WIDTH = 8 ; 

 12 parameter RAM_DEPTH = 1 << ADDR_WIDTH; 

 13 // Actual code of RAM here 
 14  

 15 endmodule 

You could download file param_more_then_one.v here 

     

When instantiating more than the one parameter, parameter values should be passed in 
the order they are declared in the sub module. 

     

   

 1 module  ram_controller ();//Some ports 
 2  

 3 // Controller Code 
 4   

 5 ram_sp_sr_sw #(16,8,256)  ram(clk,address,data,cs,we,oe); 

 6   

 7 endmodule 

You could download file param_more_then_one1.v here 
 

http://www.asic-world.com/code/verilog_tutorial/param_more_then_one.v
http://www.asic-world.com/code/verilog_tutorial/param_more_then_one1.v


                                         
Verilog Programming Guide 

 

 
190 

 

 N-Input Primitives 

The and, nand, or, nor, xor, and xnor primitives have one output and any number of inputs 

     

• The single output is the first terminal. 
• All other terminals are inputs. 

     

   Examples 

     

   

  1 module n_in_primitive(); 
  2  

  3 wire out1,out2,out3; 

  4 reg in1,in2,in3,in4; 
  5  

  6 // Two input AND gate 

  7 and u_and1 (out1, in1, in2); 

  8 // four input AND gate  

  9 and u_and2 (out2, in1, in2, in3, in4); 

 10 // three input XNOR gate  

 11 xnor u_xnor1 (out3, in1, in2, in3); 
 12  

 13 //Testbench Code 

 14 initial begin 

 15   $monitor ( 

 16   "in1 = %b in2 = %b in3 = %b in4 = %b out1 = %b out2 = %b out3 = %b", 
 17   in1, in2, in3, in4, out1, out2, out3); 

 18   in1 = 0; 

 19   in2 = 0; 

 20   in3 = 0; 

 21   in4 = 0; 

 22    #1  in1 = 1; 

 23    #1  in2 = 1; 

 24    #1  in3 = 1; 

 25    #1  in4 = 1; 



                                         
Verilog Programming Guide 

 

 
191 

 

 26    #1  $finish; 

 27 end 
 28  

 29 endmodule 

You could download file n_in_primitive.v here 

     

   in1 = 0 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 1 
 in1 = 1 in2 = 0 in3 = 0 in4 = 0 out1 = 0 out2 = 0 out3 = 0 
 in1 = 1 in2 = 1 in3 = 0 in4 = 0 out1 = 1 out2 = 0 out3 = 1 
 in1 = 1 in2 = 1 in3 = 1 in4 = 0 out1 = 1 out2 = 0 out3 = 0 
 in1 = 1 in2 = 1 in3 = 1 in4 = 1 out1 = 1 out2 = 1 out3 = 0 

 

     

     

 N-Output Primitives 

The buf and not primitives have any number of outputs and one input 

     

• The outputs are the first terminals listed. 
• The last terminal is the single input. 

     

   Examples 

     

   

  1 module n_out_primitive(); 
  2  

  3 wire out,out_0,out_1,out_2,out_3,out_a,out_b,out_c; 

  4 wire in; 
  5  

http://www.asic-world.com/code/verilog_tutorial/n_in_primitive.v


                                         
Verilog Programming Guide 

 

 
192 

 

  6 // one output Buffer gate 

  7 buf u_buf0 (out,in); 

  8 // four output Buffer gate  

  9 buf u_buf1 (out_0, out_1, out_2, out_3, in); 

 10 // three output Invertor gate  

 11 not u_not0 (out_a, out_b, out_c, in); 
 12   

 13 endmodule 

You could download file n_out_primitive.v here 
 

  

 

     

 Example - "fork-join" 

     

   

  1 module initial_fork_join(); 

  2 reg clk,reset,enable,data; 
  3  

  4 initial begin 

  5  $monitor("%g clk=%b reset=%b enable=%b data=%b",  

  6    $time, clk, reset, enable, data); 

  7  fork 

  8     #1   clk = 0; 

  9     #10  reset = 0; 

 10     #5   enable = 0; 

 11     #3   data = 0; 

 12  join 

 13   #1  $display ("%g Terminating simulation", $time); 

 14  $finish; 

 15 end 
 16  

 17 endmodule 

You could download file initial_fork_join.v here 

     

http://www.asic-world.com/code/verilog_tutorial/n_out_primitive.v
http://www.asic-world.com/code/verilog_tutorial/initial_fork_join.v


                                         
Verilog Programming Guide 

 

 
193 

 

Fork : clk gets its value after 1 time unit, reset after 10 time units, enable after 5 time units, 
data after 3 time units. All the statements are executed in parallel. 

     

Simulator Output 

     

0 clk=x reset=x enable=x data=x 
 1 clk=0 reset=x enable=x data=x 
 3 clk=0 reset=x enable=x data=0 
 5 clk=0 reset=x enable=0 data=0 
 10 clk=0 reset=0 enable=0 data=0 
 11 Terminating simulation 

 

     

   

     

 Sequential Statement Groups 

The begin - end keywords: 

     

• Group several statements together. 
• Cause the statements to be evaluated sequentially (one at a time) 

o Any timing within the sequential groups is relative to the previous 
statement. 

o Delays in the sequence accumulate (each delay is added to the previous 
delay) 

• Block finishes after the last statement in the block. 

     



                                         
Verilog Programming Guide 

 

 
194 

 

 Example - sequential 

     

   

  1 module sequential(); 
  2  

  3 reg a; 
  4  

  5 initial begin 

  6   $monitor ("%g a = %b", $time, a); 

  7    #10  a = 0; 

  8    #11  a = 1; 

  9    #12  a = 0; 

 10    #13  a = 1; 

 11    #14  $finish; 

 12 end 
 13  

 14 endmodule 

You could download file sequential.v here 

     

Simulator Output 

     

0 a = x 
 10 a = 0 
 21 a = 1 
 33 a = 0 
 46 a = 1 

 

     

 Parallel Statement Groups 

The fork - join keywords: 

     

http://www.asic-world.com/code/verilog_tutorial/sequential.v


                                         
Verilog Programming Guide 

 

 
195 

 

• Group several statements together. 
• Cause the statements to be evaluated in parallel (all at the same time). 

o Timing within parallel group is absolute to the beginning of the group. 
o Block finishes after the last statement completes (Statement with highest 

delay, it can be the first statement in the block). 

     

 Example - Parallel 

     

   

  1 module parallel(); 
  2  

  3 reg a; 
  4  

  5 initial  

  6 fork 

  7   $monitor ("%g a = %b", $time, a); 

  8    #10  a = 0; 

  9    #11  a = 1; 

 10    #12  a = 0; 

 11    #13  a = 1; 

 12    #14  $finish; 

 13 join 
 14  

 15 endmodule 

You could download file parallel.v here 

     

Simulator Output 

     

0 a = x 
 10 a = 0 
 11 a = 1 
 12 a = 0 
 13 a = 1 

http://www.asic-world.com/code/verilog_tutorial/parallel.v


                                         
Verilog Programming Guide 

 

 
196 

 

 

     

 Example - Mixing "begin-end" and "fork - join" 

     

   

  1 module fork_join(); 
  2  

  3 reg clk,reset,enable,data; 
  4  

  5 initial  begin 

  6   $display ("Starting simulation"); 

  7   $monitor("%g clk=%b reset=%b enable=%b data=%b",  

  8     $time, clk, reset, enable, data); 

  9   fork : FORK_VAL 

 10      #1  clk = 0; 

 11      #5  reset = 0; 

 12      #5  enable = 0; 

 13      #2  data = 0; 

 14   join 

 15    #10  $display ("%g Terminating simulation", $time); 

 16   $finish; 

 17 end 
 18  

 19 endmodule 

You could download file fork_join.v here 

     

Simulator Output 

     

0 clk=x reset=x enable=x data=x 
 1 clk=0 reset=x enable=x data=x 
 2 clk=0 reset=x enable=x data=0 
 5 clk=0 reset=0 enable=0 data=0 
 15 Terminating simulation 

 

http://www.asic-world.com/code/verilog_tutorial/fork_join.v


                                         
Verilog Programming Guide 

 

 
197 

 

 

     

    

 


