
Analog Monitor Project User Manual

Page 1

EARTH PEOPLE TECHNOLOGY, Inc

ANALOG MONITOR PROJECT FOR THE ARDUINO UNO

User Manual

The Analog Monitor Project is designed for EPT USB CPLD Development System. It

samples all six of the analog inputs of the Arduino Uno and displays each of the values

on the PC in real time.

Circuit designs, software and documentation are copyright © 2012-2013, Earth People

Technology, Inc

Microsoft and Windows are both registered trademarks of Microsoft Corporation.

Altera is a trademark of the Altera Corporation. All other trademarks referenced herein

are the property of their respective owners and no trademark rights to the same are

claimed.

Analog Monitor Project User Manual

Page 2

Table of Contents
1 Analog Monitor Project Introduction .. 4

1.1 Driver Installation ... 4
1.2 Software Installation ... 5

1.3 Active Host EndTerms ... 5
1.4 Active Transfer Library EndTerms .. 6

2 The Development Process ... 7
2.1 Designing a Simple Analog Monitor Project ... 8
2.2 Analog Monitor Project Equipment Needed .. 8
2.3 Analog Monitor Data Flow .. 9

3 Arduino Analog Monitor Code ... 11

 Create Data Sampler ... 11

3.1 .. 11
3.1.1 Select I/O’s for Fast Throughput on Arduino ... 11
3.1.2 Control Signals for the Analog Monitor ... 13

3.2 Coding the Arduino Analog Monitor ... 15
3.3 Building Arduino Project ... 20

3.4 Programming the Arduino .. 23
4 CPLD Active Transfer EndTerms Coding .. 25

4.1 Define the User Design. ... 25
4.2 Select the Input/Outputs ... 27
4.3 Registers and Parameters .. 29

4.4 Assignments ... 32
4.5 Reset Circuit ... 32

4.6 Input Registers .. 33
4.7 Start/Stop and Write Enable detection ... 34
4.8 EndTerm Selection ... 36

4.9 Upper/Lower Byte Selection .. 38
4.10 Transfer Control Register State Machine ... 40
4.11 USB Transfer State Machine .. 43
4.12 EndTerm Instantiation .. 46

4.13 Compile/Synthesize the Project .. 50
4.14 Synthesizing .. 54
4.15 Program the CPLD.. 57

5 PC: C# Project Design .. 61
5.1 Coding the C# Project .. 62

 C# Project Creation .. 62
5.1.1 ... 62

5.1.2 C# Project Environment Setup .. 65
5.1.3 C# Object Initialization ... 70
5.1.4 C# Project ListDevices .. 70

5.1.5 C# Project Open Device .. 72

Analog Monitor Project User Manual

Page 3

5.1.6 C# Project Callback Initialization ... 73

5.1.7 C# Project Controls ... 74
5.1.8 C# Project Buttons .. 75
5.1.9 C# Project EPTReadFunction Callback .. 81
5.1.10 C# Project Scale Factor Selection ... 91
5.1.11 C# Project Completion .. 95

5.2 PC: Compiling the Active Host Application .. 95

6 Connecting the Project Together ... 97

6.1 Testing the Project .. 100

Analog Monitor Project User Manual

Page 4

1 Analog Monitor Project Introduction
The Analog Monitor Project uses the Earth People Technology USB-CPLD

development system hardware and the Arduino Uno connected to a Windows PC. The

project software uses the Microsoft C# Express in conjunction with the Active Host dll.

This User Manual will guide the user to create the Arduino code that will sample each

of the Analog inputs and transfer the digitally converted sample to the CPLD. The user

will be given instructions on creating the CPLD code that accepts each sample from the

Arduino and transmits it via USB to the PC. The manual completes with instruction of

how to create the C# application that will decode each sample and display on the screen

along with the other five analog input samples.

This is an advanced project and not for beginners to the Arduino family. However, it

does serve as an introduction to advanced programming techniques using Verilog for

programming the CPLD and C# for programming the user interface on the PC. The first

two sections provide a background for the PC and CPLD libraries.

1.1 Driver Installation
Follow the instructions in the EPT USB CPLD Development System User Manual to

install all of the software and drivers for use with the hardware.

Analog Monitor Project User Manual

Page 5

If the driver has been installed correctly, you can go to the Device Manager and click on

the Universal Serial Bus controllers and see “USB Serial Converter A” and “USB Serial

Converter B”.

1.2 Software Installation
Follow the the instructions in the EPT USB CPLD Development System User Manual

to install the following software:

 Altera Quartus II

 Microsoft C# Express

 Arduino Wiring IDE

1.3 Active Host EndTerms
The Active Host SDK is provided as a dll which easily interfaces to application

software written in C#, C++ or C. It runs on the PC and provides transparent connection

from PC application code through the USB driver to the user CPLD code. The user code

connects to “Endterms” in the Active Host dll. These Host “Endterms” have

Analog Monitor Project User Manual

Page 6

complementary HDL “Endterms” in the Active Transfer Library. Users have seamless

bi-directional communications at their disposal in the form of:

 Trigger Endterm

 Transfer Endterm

 Block Endterm

User code writes to the Endterms as function calls. Just include the address of the

individual module (there are eight individually addressable modules of each Endterm).

Immediately after writing to the selected Endterm, the value is received at the HDL

Endterm in the CPLD.

Receiving data from the CPLD is made simple by Active Host. Active Host transfers

data from the CPLD as soon as it is available. It stores the transferred data into circular

buffer. When the transfer is complete, Active Host invokes a callback function which is

registered in the users application. This callback function provides a mechanism to

transparently receive data from the CPLD. The user application does not need to

schedule a read from the USB or call any blocking threads.

1.4 Active Transfer Library EndTerms
The Active Transfer Library is a portfolio of HDL modules that provides an easy to use

yet powerful USB transfer mechanism. The user HDL code communicates with

EndTerms in the form of modules. These EndTerm modules are commensurate with the

Active Host EndTerms. There are three types of EndTerms in the Active Transfer

Library:

 Trigger Endterm

 Transfer Endterm

 Block Endterm

They each have a simple interface that the user HDL code can use to send or receive

data across the USB. Writing to an EndTerm will cause the data to immediately arrive

Analog Monitor Project User Manual

Page 7

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

at the commensurate EndTerm in the Active Host/user application. The transfer through

the USB is transparent. User HDL code doesn’t need to set up Endpoints or respond to

Host initiated data requests. The whole process is easy yet powerful.

2 The Development Process
The development of the Analog Monitor Project starts with the Arduino. The user will

write the code to sample each Analog input using the 10 bit ADC, then assert the write

enable which initiates the read cycle on the EPT-570-AP board. The user will write the

Verilog code for the CPLD which stores each sample from the Arduino board, then

Analog Monitor Project User Manual

Page 8

initiates the write cycle to PC. Finally, the user will write the C# code to accept each

byte from the EPT-570-AP board and assemble the bytes into the original 10 bit word

and display it in the requisite textbox in a Windows Form.

2.1 Designing a Simple Analog Monitor Project
The Analog Monitor is an advanced project and not for beginners to the Arduino

family. However, it does serve as an introduction to advanced programming techniques

using Verilog for programming the CPLD and C# for programming the user interface

on the PC. The user should be familiar with the beginners projects for the Arduino Uno.

For an introduction to Verilog, go to:

www.asic-world.com/verilog/intro1.html#Introduction

For an introduction to C#, go to:

http://www.homeandlearn.co.uk/csharp/csharp.html

2.2 Analog Monitor Project Equipment Needed
The equipment you will need for the Analog Monitor project is

http://www.asic-world.com/verilog/intro1.html#Introduction
http://www.homeandlearn.co.uk/csharp/csharp.html

Analog Monitor Project User Manual

Page 9

 Earth People Technology EPT-570-AP-U2 board

 Arduino Uno Board

 PC running Windows 7 or equivalent, with 2 USB ports

 USB cable Type B

 USB cable Type Mini B

 6 pin 2.54 mm Male Header

 10 pin 2.54 mm Male Header

 12 inches of 18 guage Wire

 1 to 6 5VDC Power Supplies

 Six 1 to 2 Foot Red Banana to Clip Leads

 One 1 to 2 Foot Black Banana to Clip Lead

 Five Six Inch Red Banana to Banana Lead

 Five Six Inch Black Banana to Banana Lead

2.3 Analog Monitor Data Flow
The data flow for the Analog Monitor project is shown below. The Arduino initializes

its ports and variables then enters the main loop() function. In the main loop, each

analog channel is converted into a 10 bit word. The digitized value is set on the PORT

B & D pins. Next, the EndTerm address is set and the Write Enable signal is asserted.

The next instruction de-asserts the Write Enable and the next analog channel goes

through the same process. At the end of the loop, all six channels have been digitized

and the data sent to the CPLD

Analog Monitor Project User Manual

 Page
10

The CPLD does not need any initialization as the device is ready to operate soon after the power

is applied. The data flow in the EPT-570-AP starts with a wait loop for the Start_Stop_Control

signal to be asserted from the Control Register. Once this happens, the data flow will fall into the

wait loop for the Write Enable. When the Write Enable asserts, the State Machine leaves the

IDLE state and enters the START_TRANSFER state. In this state the EndTerm address will be

selected and the 10 bit digitized value is stored locally. The state machine will immediately

enter the FIRST_BYTE_EN state and initiate the lower byte (of the digitized value) transfer

across the USB. This state will wait for this first byte to be accepted by the Active Transfer

Library. Next, the FIRST_BYTE_RDY state is entered. In this state, the state machine will wait

for the Active Transfer Library to complete the transfer. Next, the upper byte of the digitized

value is transmitted across the USB in the same way as the lower byte in the

SECOND_BYTE_EN and SECOND_BYTE_RDY states. When the upper byte transfer is

complete, the state machine goes back into the IDLE state. The data flow waits in a loop for the

Write Enable to assert again and start the process again.

The C# data flow on the PC starts with the initialization of variables, controls, events, and read

callback functions. The Windows Form is displayed on the PC and the system registry is scanned

for any Earth People Technology devices. Any devices that are found are added to the drop down

box. The user must then select the available EPT device and click the Open control. This will

select the device and allocate all memory needed for the Active Host EndTerms. Next, the user

must click on the Start button. Clicking this button will send the control register value to the

EPT-570-AP board. This value is sent in a message. The CPLD Control Register State Machine

will decode this message and read the control register and assert the Start_Stop_Control signal.

Once this signal is asserted, the CPLD will send the lower byte and upper byte messages to the

Analog Monitor Project User Manual

 Page
11

Active Host EndTerms. When bytes are received, the read callback function is called. The read

callback will call the EPTParseReceive() function which calls the TransferOutReceive()

function. In this function, the EndTerm address is selected and the upper byte is stored in the

upper portion of a local variable. The next time the TransferOutReceive() is called, from the read

callback, the EndTerm is selected and the lower byte is stored into the local variable. At this

point the full digitized value is transferred from the CPLD EndTerm and is ready for display.

The textbox is selected by the EndTerm address and is updated with the collected digitized value.

The cycle repeats until the Stop button is pressed.

3 Arduino Analog Monitor Code
The first order of business is to layout the design. Start with the Arduino, and create a

simple analog signal sampler using the “analogRead()” function. Send the sampled

analog signal to the EPT-570_AP board using an address and an enable signal.

3.1 Select I/O’s for Fast Throughput on Arduino
PORTD is an 8 bit port that is used to connect the lower 8 bits of the sample to the input

of the EPT-570-AP. Bits 8 and 9 of the sample are connected to bits 4 and 5 of PORTB.

The address for the EndTerms is three bits and occupies bits 1, 2 and 3 of PORTB.

There is also a one bit control line which will be used to inform the CPLD that a byte is

ready to be written to the USB. This is bit 0 of PORTB.

Arduino Uno

Connects

To

EPT-570-AP

Signal Port Pin Connector Connector Pin Port Signal

ADC

Bits 7 to 0

D 7 to 0 IOL J8 7 to 0 LB_IOL analog_monitor_

lower_byte

ADC Bit 9 B 5 IOH J10 4 LB_IOH analog_monitor_

upper_byte(1)

ADC Bit 8 B 4 IOH J10 1 LB_SER analog_monitor_

upper_byte(0)

EndTerm

Address Bit 2

B 3 IOH J10 3 LB_IOH analog_monitor_

address(2)

EndTerm B 2 IOH J10 2 LB_IOH analog_monitor_

Analog Monitor Project User Manual

 Page
12

Address Bit 1 address(1)

EndTerm

Address Bit 0

B 1 IOH J10 1 LB_IOH analog_monitor_

address(0)

Write Enable B 0 IOH J10 0 LB_IOH analog_monitor_

en

Each port on the Arduino is controlled by three registers, which are also defined

variables in the Arduino language. The DDR register, determines whether the pin is an

INPUT or OUTPUT. The PORT register controls whether the pin is HIGH or LOW,

and the PIN register reads the state of INPUT pins set to input with pinMode(). The

maps of the ATmega328 chips show the ports.

DDR and PORT registers may be both written to, and read. PIN registers correspond to

the state of inputs and may only be read.

PORTD maps to Arduino digital pins 0 to 7

DDRD - The Port D Data Direction Register - read/write

PORTD - The Port D Data Register - read/write

PIND - The Port D Input Pins Register - read only

The ports and pins for the Analog Monitor Project project must be initialized in the

setup() function. The setup function will only run once, after each powerup or reset of

the Arduino board.

After the setup() function executes, the Arduino will enter the Loop() function and start

to perform the reading of the analog signals. And the PORTB bit 0 pin will be used to

latch the value on PORTD and PORTB pins into the CPLD.

Analog Monitor Project User Manual

 Page
13

3.1 Create Data Sampler
The analogRead() function is called to convert the analog signal on the given pin into a

10 bit digital word. The selections for the pin range from 0 to 5 for a total of six analog

inputs. These analog inputs are accessible from the AD connector on the UNO.

Calling the function analogRead(0) will convert the analog signal on the AD0 net into a

10 bit digital word. This word will be stored in a local variable in the Arduino code.

The next section will show the transmission of this value to the EPT-570-AP board.

Note that the ADC output can be selected to be either 8 bits or 10 bits. The ADLAR bit

in the ADMUX register will select if 10 bit or 8 bit precision is used. The ADC defaults

to 10 bit precision.

3.1.1 Control Signals for the Analog Monitor

The 10 bit digitized value from the analogRead() function is applied to the PORT B &

D pins. We will focus on keeping things fast on the Arduino. In order to do this, we will

use the port write function to transmit the sample to the EPT-570-AP.

Analog Monitor Project User Manual

 Page
14

Using port writes is faster than using the built in functions in Arduino Processing. We

will use the port write to transfer the 10 bit ADC sample and use it to set the address for

the Active Transfer Library EndTerm and for the write enable.

Here, notice that the PORTD is set to the value of AdcValue. This will naturally set the

the bottom 8 bits of AdcValue to PORTD. To set the bits 8 and 9 of AdcValue to

PORTB bits 4 and 5, we use a left shift of four bits. The left shift operator >> will shift

everything in AdcValue to the left by four bits. We only want bits 8 and 9, so we mask

off everything but bits 8 and 9, (AdcValue & 0x0300). Then apply the shift.

The Analog Monitor must assert an EndTerm Address and the Write Enable to cause

the EPT-570-AP to process the digitized value.

We will do this by first setting the address and the upper 2 bits of the digitized value on

the output pins of PORTB. Then set Write Enable high. Finally, set Write Enable low.

The signal timing shows the ADC Conversion Start for each ADC channel followed by

setting the control signals.

Analog Monitor Project User Manual

 Page
15

Each time the Write Enable asserts and de-asserts, the cycle repeats with the next

analogRead().

This continues for all six channels. The end of the loop() is reached, and the process

starts all over again.

3.2 Coding the Arduino Analog Monitor
Now that we have the Analog Monitor ports, analog read, address selection and write

enable defined , we can add all six channels in the loop() function and complete the

Analog Monitor. The first instruction in the loop() is a delay. This delay is useful

because the display to screen on the C# side takes several milliseconds. Because we are

using a high speed USB, the Arduino takes only a few instructions to write to the EPT-

570-AP. It will easily over fill the memory buffers in the C#. So, some delay is

necessary.

The next instructions are to read the analogRead(0) function using channel 0 and store

the value in the integer, AdcValue. The analogRead() function defaults to 10 bits. For

the Arduino, we want to transmit the AdcValue in the fewest instructions possible. So,

Analog Monitor Project User Manual

 Page
16

we will add the bottom byte of AdcValue to PORTD and the top two bits to pins 4 and

5 of PORTB. To do this, we have to shift bits 8 and 9 of AdcValue to bit 4 and 5 of

PORTB. The code requires the right shift by 4.

With PORTD set to the lower byte of AdcValue and the upper two bits shifted into

position, we will set PORTB to the address of the channel to transmit along with the

upper bits. At this point we will keep Write Enable low.

In the next instruction, we set the Write Enable high. Immediately following this

instruction, we set the Write Enable low. This will cause the entire 10 bit AdcValue to

transmit in the fewest instructions. The CPLD is clocked at 66 MHz which allows it to

transmit two bytes over the USB in less time than the Arduino. So, we let the CPLD do

the heavy lifting.

The Analog Monitor code will continue with samling the next channel and transmitting

its digitized value to the CPLD. Each iteration of the loop() function, samples all six

Uno analog channels and transmits them to the CPLD. The delay of 10 milliseconds

pauses the program each iteration.

Analog Monitor Project User Manual

 Page
17

So, the code looks like this:

Analog Monitor Project User Manual

 Page
18

Analog Monitor Project User Manual

 Page
19

Analog Monitor Project User Manual

 Page
20

The Arduino code runs open loop. This means that the C# code and the CPLD cannot

control or delay it. As soon as the code is loaded from flash, it initializes local variables,

ports, and registers and starts running the instructions in the loop() function. The loop

will continue to sample analog channels and transmit them to the EPT-570-AP until the

power is removed.

3.3 Building Arduino Project
Building the Arduino project is the process of converting (compiling) the code you just

wrote into machine level code that the processor can understand. The Arduino IDE is

the software tool that does the compiling. The machine level code is a set of basic

instructions that the processor uses to perform the functions the user code. Browse to

the \Projects_Arduino\Arduino_Analog_Monitor\ Arduino_Analog_Monitor_Code_U2\

folder of the UNO_ANALOG_MONITOR_PROJECT_CD. Locate the Arduino_

Analog_Monitor_Code_U2.ino file.

To compile your code,

 Open up the Arduino IDE

Analog Monitor Project User Manual

 Page
21

 Load your code into the Sketch.

Analog Monitor Project User Manual

 Page
22

 Click the Verify button

Analog Monitor Project User Manual

 Page
23

 The sketch will compile

 If there are no errors, the compiling will complete successfully

Now we are done with compiling and ready to program the Arduino

3.4 Programming the Arduino
Programming the Arduino is the process of downloading the user’s compiled code into

the Flash memory of the Atmel ATMega328 chip. Once the code is downloaded, the

Arduino IDE resets the chip and the processor starts executing out of Flash memory.

To program the Arduino

 Connect the USB cable from PC to Arduino

Analog Monitor Project User Manual

 Page
24

 Plug in your board and wait for Windows complete the driver installation

process.

 Next, click on Tools and select Serial Port, then click the available port.

 To load the code, click on the Upload button.

Analog Monitor Project User Manual

 Page
25

When the code has completed loading, the Arduino IDE will automatically command

the processor to start executing the code. The Arduino is now ready for the EPT-570-

AP.

4 CPLD Active Transfer EndTerms Coding
The EPT-570-AP will accept the digitized data sampled by the Arduino and transfer it

to the PC. It is designed to plug directly into the Arduino Uno and there is no need for

external wires to be added. The Active Transfer Library is used to send the data to the

PC. The Active Transfer EndTerms are used to connect the Active Transfer Library to

the user code. This makes it easy to transfer data to and from the PC via the USB. The

user needs to create a state machine to control the transfer between the incoming data

and the Active Transfer EndTerms.

4.1 Define the User Design.
In this step we will define the user’s code and include EndTerms and the EPT Active

Transfer Library. The Active Transfer Library contains a set of files with a “.vqm”

name extension which select particular operations to perform (e.g., byte transfer, block

transfer, trigger).. The active_transfer_library.vqm file must be included in the top level

file of the project. The EndTerms will connect to the active_transfer_library and

provide a path to connect user code to the library. All of these files are available on the

Earth People Technology Project CD.

Analog Monitor Project User Manual

 Page
26

ACTIVE TRANSFER
LIBRARY

TRIGGER ENDTERM

SINGLE TRANSFER
ENDTERM

BLOCK ENDTERM

USER CODE

We will build our CPLD project using Quartus II software from Altera. The primary file

defining the user’s CPLD project is named “EPT_570_AP_U2_Top.v”. It defines the

user code and connects the active_transfer_library and Endterms.

The Analog Monitor project needs to accept a 10 bit value that spans the J8 connector

and the J10 connector. Three bits select the Transfer EndTerm to transmit on and a

write enable bit is used to start a state machine which latches all values and transmits

the digitized value. Because the active_transfer_library runs at 66 MHz we will need to

add some code ensure that the slower Write Enable signal from the Arduino can latch

the data into the Transfer EndTerm.

Analog Monitor Project User Manual

 Page
27

The first thing to do is to create a top level file for the project. The top level file will

include the input and outputs for the CPLD. These are declared according to the Verilog

syntax rules. We won’t go through all the rules of Verilog here, but feel free to explore

the language more thoroughly at:

www.asic-world.com/verilog/intro1.html#Introduction

4.2 Select the Input/Outputs
We need to set the inputs and outputs for EPT_570_AP_U2_Top.v. The I/O nets will

stay the same for all EPT projects. All of the usable pins are connected to traces on the

EPT-570-AP board and serve specific functions. However, the pins that connect to the

Arduino can be set to either inputs or outputs. It is in the port section of the Verilog

module that the Arduino pins can be set. For the Analog Monitor project, we will read

from the J8 and J10 connectors. So, we set these as inputs. Since the analog inputs to

the Arduino are on the J9 connector, we will set it up as inputs. The following nets are

used to connect to the EPT-570-AP connectors.

Arduino Uno

Connects

To

EPT-570-AP

Signal Port Pin Connector Connector Pin Port Signal

ADC

Bits 7 to 0

D 7 to 0 IOL J8 7 to 0 LB_IOL analog_monitor_

lower_byte

ADC Bit 9 B 5 IOH J10 4 LB_IOH analog_monitor_

upper_byte(1)

ADC Bit 8 B 4 IOH J10 1 LB_SER analog_monitor_

upper_byte(0)

EndTerm

Address Bit 2

B 3 IOH J10 3 LB_IOH analog_monitor_

address(2)

EndTerm

Address Bit 1

B 2 IOH J10 2 LB_IOH analog_monitor_

address(1)

EndTerm

Address Bit 0

B 1 IOH J10 1 LB_IOH analog_monitor_

address(0)

Write Enable B 0 IOH J10 0 LB_IOH analog_monitor_

en

Each net is followed by the net type wire or reg. If it is a vector, the array description

must be added.

http://www.asic-world.com/verilog/intro1.html#Introduction

Analog Monitor Project User Manual

 Page
28

Analog Monitor Project User Manual

 Page
29

4.3 Registers and Parameters
Next, the parameter’s are defined. These are used as constants in the user code.

Analog Monitor Project User Manual

 Page
30

Next is the Internal Signal and Register Declarations.

Analog Monitor Project User Manual

 Page
31

Analog Monitor Project User Manual

 Page
32

4.4 Assignments
Next, add the assignments. These assignments will set the direction of the bus

transceivers that interface to the Arduino I/O’s. The transceivers also include an output

enable bit.

4.5 Reset Circuit
The reset signal is generated by a counter that starts counting upon power up. When the

counter reaches GLOBAL_RESET_COUNT.

Analog Monitor Project User Manual

 Page
33

4.6 Input Registers
The section labled “Register the Inputs” applies the inputs from the Arduino to clocked

registers. This will eliminate any noise on these inputs from propagating through to the

state machines of the CPLD.

Analog Monitor Project User Manual

 Page
34

4.7 Start/Stop and Write Enable detection
Next, we will add the transfer detection signal from the Arduino. This block will sample

the Write Enable signal and wait for it to go high.

It is also used to provide start/stop control for the CPLD code. This block will use four

registers to control the data and starting the state machine.

 transfer_write_reg –This is a latch register to hold the state of the Write Enable.

 transfer_write –This register is used to start the state machine and initiate the

multi byte write to the PC.

 transfer_write_data –This is a 10 bit register to hold the value of the analog

sample from the Arduino.

 transfer_address – 8 bit register to hold the EndTerm address from the Arduino.

The start_stop_cntrl signal is monitored every clock cycle. If it is sampled high, the

output enables of the 74LVC4245 transceivers are set low and the outputs become

Analog Monitor Project User Manual

 Page
35

active. When start_stop_cntrl goes low, the output enables of the 74LVC4245

transceivers are set high and sets the outputs to inactive.

This block will compare the input signal on analog_monitor_en to a high. The

analog_monitor_en is the registered version of LB_IOH[0]. When bit goes high, the

priority encoder goes into statement 1 and sets transfer_write_reg and transfer_write

high and latches the value on the analog_monitor_upper_byte and

analog_monitor_lower_byte to the transfer_write_data register. The

analog_monitor_address will be set to transfer_address. By setting transfer_write_reg

high, the priority encoder goes into statement 2 which will set transfer_write register to

low and stay in statement 2 of the priority encoder. When the analog_monitor_en

signal goes low, the encoder will reset transfer_write_reg and transfer_write to low. The

encoder goes back to waiting for the analog_monitor_en to assert high.

Analog Monitor Project User Manual

 Page
36

4.8 EndTerm Selection
The Analog Monitor Project includes the use of six Active Transfer EndTerms. Each

EndTerm must have an address.

When the user code is ready to transmit a byte to the EndTerm, he must assert the

start_transfer port of the module. Each of Active_Transfer EndTerms has its own

dedicated net to pass to the start_transfer port. These nets are:

Analog Monitor Project User Manual

 Page
37

This s a vector register with a range of 5 to 0. So, six individual signals can be asserted

to start the transfer to any of six Active_Transfer EndTerms. These nets are exclusively

selected by using the address passed from the Arduino. This selection is performed

using a case statement. We use an intermediate register vector to capture the address,

then later apply the storage vector results to the start_transfer_array. The

transfer_address vector is stored in the Transfer Detection block above. The EndTerm

selection is only performed when the USB Transfer state machine is in the

START_TRANSFER state.

Analog Monitor Project User Manual

 Page
38

4.9 Upper/Lower Byte Selection
The “Transfer Upper/Lower byte using selected Active Transfer EndTerm” block

selects the appropriate byte from the stored digitized sample and asserts the

start_transfer_array index. The EndTerm address was selected in the “Select the

Transfer EndTerm…” block.

This block will require three registers:

 first_byte_complete – used to indicate to the USB Transfer state machine that

the upper byte has been transferred to the Active Transfer EndTerm.

 second_byte_complete– used to indicate to the USB Transfer state machine that

the lower byte has been transferred to the Active Transfer EndTerm.

 start_transfer_array – this is a six bit vector used to accept the address of the

EndTerm selected in the “Select the Transfer EndTerm…” block (transfer_out).

Analog Monitor Project User Manual

 Page
39

The block is a conditional branch statement that uses the following states from the USB

Transfer state machine to branch:

1. After analog_monitor_en is asserted, the state machine will reach

state[FIRST_BYTE_EN]. In this state the signal, first_byte_complete, will go

high and the start_transfer_array is set to the EndTerm selected in the “Select

the Transfer EndTerm…” block. This is the transfer_out vector.

Each bit of start_transfer_array will coorespnd to exactly one EndTerm and keep

the rest de-asserted. In this conditional branch the selected EndTerm will

transfer the lower byte on its transfer_to_host port. The second_byte_complete

signal is used as a conditional branch to leave state[SECOND_BYTE_EN] and

enter state[SECOND_BYTE_RDY]. Byte selection is performed using an assign

statement to the transfer_out_byte:

2. EndTerm selection of transfer_out. The start_transfer_array allows only one bit

to be high at one time. This will allow only one EndTerm to transfer the upper

byte on its transfer_to_host port. The first_byte_complete signal is used as a

conditional branch to leave state[FIRST_BYTE_EN] and enter

state[FIRST_BYTE_RDY] in the USB Transfer state machine.

3. The next conditional branch is reached when first_byte_complete goes high and

state[FIRST_BYTE_EN] is high. In this state, the start_transfer_array is set to

zero.

4. The third conditional branch is reached when state[FIRST_BYTE_EN] is low

and signals that the upper byte transfer is complete and the state machine has

moved to another state.

Analog Monitor Project User Manual

 Page
40

5. The next conditional branch is reach when second_byte_complete is low and

state[SECOND_BYTE_EN] is high. In this state the signal

second_byte_complete will go high and the start_transfer_array will transfer the

lower byte on its transfer_to_host port. The second_byte_complete signal is

used as a conditional branch to leave state[SECOND_BYTE_EN] and enter

state[SECOND_BYTE_RDY].

6. The next conditional branch is reached when second_byte_complete goes high

and state[SECOND_BYTE_EN] is high. In this state, the start_transfer_array is

set to zero.

7. The third conditional branch is reached when state[SECOND_BYTE_EN] is

low and signals that the upper byte transfer is complete and the state machine

has moved to another state.

4.10 Transfer Control Register State Machine
The start_stop_cntrl signal is set by using the TRANSFER_CONTROL state machine

in the following section. So, if the start_stop_cntrl signal is set, the CPLD code will

enter the conditional branch code and wait for the Write Enable signal to assert.

Next, we add the TRANSFER_CONTROL state machine to read the Control Register

from the Host PC using the active_transfer EndTerm. This state machine will decode

the 8 bit control register only after a sequence of three 8 bit bytes in the order of 0x5a,

0xc3, 0x7e. The operation of the state machine is as follows.

1. The TRANSFER_CONTROL state machine will stay in the idle state of the

parallel encoder until a byte from the active_transfer transfer_to_device register

receives a 0x5a.

2. This will cause the transfer_control_state to be changed to

TRANSFER_CONTROL_HDR1.

3. The state machine will stay in the TRANSFER_CONTROL_HDR1 state until

the next byte is read from the active_transfer.

4. If the byte from transfer_to_device is a 0xc3, the transfer_control_state will be

changed to TRANSFER_CONTROL_HDR2.

5. If the byte from transfer_to_device is not a 0xc3, the transfer_control_state will

go back to idle.

Analog Monitor Project User Manual

 Page
41

6. In the TRANSFER_CONTROL_HDR2 state , the state machine will stay in this

state until the next byte from the active_transfer is received.

7. If the byte from transfer_to_device is a 0x7e, the transfer_control_state will be

changed to TRANSFER_DECODE_BYTE.

8. If the byte from transfer_to_device is not a 0x7e, the transfer_control_state will

go back to idle.

9. In the TRANSFER_DECODE_BYTE state , the state machine will stay in this

state until the next byte from the active_transfer.

10. The next byte transferred from active_transfer will be decoded as the Control

Register.

The bits of the Control Register are defined below.

Register Bits Description Assertion

Control 0 Start Stop Cntrl High

1 Not Used

2 LED Reset High

3 Switch Reset High

4 Transfer In Loop Back High

5 Not Used

6 Not Used

7 Not Used

7 Not Used

Analog Monitor Project User Manual

 Page
42

Analog Monitor Project User Manual

 Page
43

4.11 USB Transfer State Machine
The USB Transfer State Machine is quite a bit different than the Transfer Control state

machine. It is two always statement one-hot finite state machine. It is used here because

it provides high speed glitch free operation. One hot means that it has one register for

each state. The two always block setup allows a synchronous operation to be relegated

to moving the state machine to the next state.

Analog Monitor Project User Manual

 Page
44

An asynchronous always block is used to select which state will be the next state. All of

the outputs are handled in their own always blocks and separate from the state machine.

This asynchronous always block is the one which causes the state machines conditional

branches to update. If the conditional branches are not updated with the correct inputs,

then the next[…] statement will not get updated with the correct state and the state

machine could get stuck in the wrong state. So, each input into the state machine MUST

be entered into the sensitivity list of the “State Defiinitions” always block.

1. The state machine stays in state[IDLE] until the analog_monitor_en goes high.

When this signal goes high, the state machine goes into

Analog Monitor Project User Manual

 Page
45

state[START_TRANSFER]. This state causes the transfer_out to latch an

EndTerm selection based on the transfer_address. This state does not have a

conditional branch, so it immediately proceeds to state[FIRST_BYTE_EN].

2. In state[FIRST_BYTE_EN], the “Transfer Upper/Lower byte using selected

Active Transfer EndTerm” block will select the upper byte to transfer over the

USB. A conditional branch causes the state machine to stay in this state until

first_byte_complete goes high.

3. The next state is state[FIRST_BYTE_RDY]. Here the byte has been transferred

into the Active Transfer EndTerm selected by start_transfer_array. This state has

a conditional branch that waits until the byte has been transferred across the

USB and the Active Transfer Library is ready. It waits for transfer_busy_array

to be zero.

4. The state machine progresses to state[SECOND_BYTE_EN] and causes the

“Transfer Upper/Lower byte using selected Active Transfer EndTerm” block to

select the lower byte to transfer over the USB. A conditional branch causes the

state machine to stay in this state until second_byte_complete goes high. Upon

its assertion, the state machine proceeds to state[SECOND_BYTE_RDY].

5. In state[SECOND_BYTE_RDY] the byte has been transferred into the Active

Transfer EndTerm selected by start_transfer_array. This state has a conditional

branch that waits until the byte has been transferred across the USB and the

Active Transfer Library is ready. It waits for transfer_busy_array to be zero.

6. Upon successful completion of the second byte transfer, the state machine goes

back to the state[IDLE] and waits for analog_monitor_en to go high and start the

process over again.

Analog Monitor Project User Manual

 Page
46

4.12 EndTerm Instantiation
Next, up is the instantiation for the active_transfer_library. The ports include the input

and output pins and the two buses that connect the active modules. These buses are the

input UC_IN[23:0] and output UC_OUT[21:0].

Analog Monitor Project User Manual

 Page
47

Finally, we instantiate the EndTerms. For the Analog Monitor project, we only need

active_transfer and active_trigger EndTerms. The uc_out port for both modules must be

shared. Since they both drive this bus, a bus wide wired-or circuit is used so that they

don’t drive each other. The active_transfer EndTerm has a port for the address

(uc_addr). This allows the PC to address up to 8 different modules. Just add a three bit

address to this port and the PC must add this same address to communicate with this

module.

Next, we will instantiate six Active Transfer EndTerms. So, add the leaf instantiation

with the address fixed 1, 2, 3, 4, 5, 6, for each EndTerm. Add the start_transfer_array,

Analog Monitor Project User Manual

 Page
48

transfer_busy_array and transf_out_byte to control the transmission of the digitized

value across the USB.

Analog Monitor Project User Manual

 Page
49

Analog Monitor Project User Manual

 Page
50

The “endmodule” signifies the module is done and no more code is allowed beyond that

point.

Next, we are ready to compile and synthesize.

4.13 Compile/Synthesize the Project
The Quartus II application will compile/ synthesize the user code,

active_transfer_library, and the Active EndTerms. The result of this step is a file

containing the CPLD code with “*.pof”. First, we need to create a project in the

Quartus II environment. Follow the directions in the section: “Compiling, Synthesizing,

and Programming CPLD” of the User Manual.

Analog Monitor Project User Manual

 Page
51

Bring up Quartus II, then use Windows Explorer to browse to

c:/altera/xxx/quartus/qdesigns create a new directory called: “EPT_Analog_Monitor”.

Open Quartus II by clicking on the icon .

 Under Quartus, Select File->New Project Wizard. The Wizard will walk you through

setting up files and directories for your project.

Analog Monitor Project User Manual

 Page
52

Analog Monitor Project User Manual

 Page
53

At the Top-Level Entity page, browse to the

c:\altera\xxx\quartus\qdesigns\EPT_Analog_Monitor directory to store your project.

Type in a name for your project “EPT_570_AP_U2_Top”.

Follow the steps up to Add Files. At the Add Files box, click on the Browse button and

navigate to the project Analog Monitor install folder in the dialog box. Browse to the

\Projects_HDL\EPT_ Analog_Monitor \EPT_570_AP_U2_Top folder of the EPT USB-

CPLD Development System CD. Copy the files from the \src directory.

 Active_transfer.vqm

 Active_trigger.vqm

 Active_transfer_library.vqm

 eptWireOr.v

 ETP_570_AP_U2_Top.v

Add the files:

Select Next, at the Device Family group, select MAX II for Family. In the Available

Devices group, browse down to EPM570T100C5 for Name.

Analog Monitor Project User Manual

 Page
54

Select Next, leave defaults for the EDA Tool Settings.

Select Next, then select Finish. You are done with the project level selections.

4.14 Synthesizing
With the project created, we need to assign pins to the project. The signals defined in

the top level file (in this case: EPT_570_AP_U2_Top.v) will connect directly to pins on

the CPLD. The Pin Planner Tool from Quartus II will add the pins and check to verify

that our pin selections do not violate any restrictions of the device. In the case of this

example we will import pin assignments that created at an earlier time. Under

Assignments, Select Import Assignments.

At the Import Assignment dialog box, Browse to the

\Projects_HDL\EPT_Transfer_Test \Altera_EPM570_U2 folder of the EPT

ANALOG_MONITOR_PROJECT CD. Select the “EPT_570_AP_U2_Top.qsf” file.

Analog Monitor Project User Manual

 Page
55

Next, we need to add the Synopsys Design Constraint file. This file contains timing

constraints which forces the built in tool called TimeQuest Timing Analyzer to analyze

the path of the synthesized HDL code with setup and hold times of the internal registers.

It takes note of any path that may be too long to appropriately meet the timing

qualifications. For more information on TimeQuest Timing Analyzer, see

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf?GSA_pos=1&WT.oss_r=1&

WT.oss=TimeQuest Timing Analyzer

Browse to the \Projects_HDL\EPT_ Analog_Monitor \Altera_EPM570_U2 folder of the

EPT USB-CPLD Development System CD. Select the “EPT_570_AP_U2_Top.sdc”

file.

Copy the file and browse to c:\altera\xxx\quartus\qdesigns\EPT_Analog_Monitor

directory. Paste the file.

Analog Monitor Project User Manual

 Page
56

and select the Start Compilation button.

This will cause the compile and synthesization process. After successful completion, the

screen should look like the following:

Analog Monitor Project User Manual

 Page
57

If the synthesis fails, you will see the failure message in the message window. Note that

in addition to fatal errors, the compile process can produce “warnings” which do not

necessarily prevent execution of the code but which should be corrected eventually.

At this point the project has been successfully compiled, synthesized and a

programming file has been produced. See the next section on how to program the

CPLD.

4.15 Program the CPLD
The final step is programming the “*.pof” file into the CPLD.

 Connect the EPT-570-AP to the PC,

 Open up Quartus II,

 Open the programmer tool

If the project created in the previous sections is not open, open it. Click on the

Programmer button.

Analog Monitor Project User Manual

 Page
58

The Programmer Window will open up with the programming file selected. Click on the

Hardware Setup button in the upper left corner.

The Hardware Setup Window will open. In the “Available hardware items”, double

click on “EPT-Blaster v1.3b”.

Analog Monitor Project User Manual

 Page
59

If you successfully double clicked, the “Currently selected hardware:” dropdown box

will show the “EPT-Blaster v1.3b”.

Click the “Close” button.

Next, selet the checkbox under the “Program/Configure” of the Programmer Tool. The

checkboxes for the CFM and UFM will be selected automatically.

Analog Monitor Project User Manual

 Page
60

Click on the Start button to to start programming the CPLD. The Progress bar will

indicate the progress of programming.

When the programming is complete, the Progress bar will indicate success.

Analog Monitor Project User Manual

 Page
61

At this point, the EPT-570-AP is programmed and ready for use.

5 PC: C# Project Design
The final piece of the Analog Monitor Project is the PC application. This application

will fetch the data from the CPLD of the EPT-570-AP and display it on the screen. It

includes user code, windows form, and the Active_Host DLL.

The Active_Host DLL is designed to transfer data from the CPLD when it becomes

available. The data will be stored into local memory of the PC, and an event will be

triggered to inform the user code that data is available from the addressed module of the

CPLD. This method, from the user code on the PC, makes the data transfer transparent.

The data just appears in memory and the user code will direct the data to a textbox on

the Windows Form.

The Analog Monitor project will perform the following functions.

 Find EPT-570-AP Device.

 Open EPT-570-AP Device.

 Start the Arduino data collection process.

 Wait for data from EPT-570-AP.

 Decode byte position, upper or lower.

 Display data from EPT-570-AP in textbox.

Analog Monitor Project User Manual

 Page
62

5.1 Coding the C# Project
The user code is based on the .NET Framework and written in C#. The language is great

for beginners as it is a subset of the C++ language. It has the look and feel of the

familiar C language but adds the ease of use of classes, inheritance and method

overloading. C# is an event based language which changes the method of writing code

for this project. You will need to get some background knowledge in coding with C#

and the .NET Framework on the PC. For a better description of event based language

programming and C#, see the following for a turtorial

http://www.homeandlearn.co.uk/csharp/csharp.html

5.1.1 C# Project Creation

To start the project, use the wizard to create project called “EPT_Analog_Monitor”.

When the wizard completes, the C# Express main window will look like the following.

http://www.homeandlearn.co.uk/csharp/csharp.html

Analog Monitor Project User Manual

 Page
63

The setup statements create the namespace and the class for the project. There are

several other files that are created by the wizard such as Form1.Designer.cs,

Program.cs, Form1.resx. We don’t need to go into these support files, we will just focus

on the Form1.cs as this is where all the user code goes.

Click on File->Save Project as. Browse to C:\Users\<user name>\Documents\Visual

Studio 2010\Projects, and click Select Folder. Click the Save button.

Locate the \Projects_ActiveHost_64Bit\EPT_Analog_Monitor\ folder in the

UNO_ANALOG_MONITOR_PROJECT_CD. Copy the following files:

 active_transfer_x64.cs

 Form1.cs

Analog Monitor Project User Manual

 Page
64

 Form1.Designer.cs

 Form1.resx

 Program.cs

 ScaleFactorMenu.cs

Open a Windows Explorer window and browse to

C:\Users\NelsonsTrfgr\Documents\Visual Studio 2010 \Projects \EPT_Analog_Monitor

\EPT_Analog_Monitor. Paste the files to this folder.

In the Solution Explorer Window, right click on the project name,

EPT_Analog_Monitor and select Add->Existing Item

Select the following files:

 active_transfer_x64.cs

 ScaleFactorMenu.cs

Analog Monitor Project User Manual

 Page
65

Click Add.

5.1.2 C# Project Environment Setup

The project environment must be set up correctly in order to produce an application that

runs correctly on the target platform. Visual C# Express defaults new projects to 32 bits.

If your OS is a 64 bit platform, use the following directions to set up a 64 bit project.

First, we need tell C# Express to produce 64 bit code if we are running on a x64

platform. Go to Tools->Settings and select Expert Settings

Go to Tools->Options, locate the “Show all settings” check box. Check the box.

Analog Monitor Project User Manual

 Page
66

In the window on the left, go to “Projects and Solutions”. Locate the “Show advanced

build configurations” check box. Check the box.

Go to Build->Configuration Manager.

Analog Monitor Project User Manual

 Page
67

In the Configuration Manager window, locate the “Active solution platform:” label,

select “New” from the drop down box.

In the New Solution Platform window, click on the drop down box under “Type or

select the new platform:” and select “x64”.

Analog Monitor Project User Manual

 Page
68

Click the Ok button. Verify that the “Active Solution Platform” and the “Platform” tab

are both showing “x64”.

Click Close.

Then, using the Solution Explorer, you can right click on the project, select Properties

and click on the Build tab on the right of the properties window.

Analog Monitor Project User Manual

 Page
69

Verify that the “Platform:” label has “Active (x64)” selected from the drop down box.

Next, unsafe code needs to be allowed so that C# can be passed pointer values from the

Active Host.

Locate the “Allow unsafe code” check box. Check the box

Analog Monitor Project User Manual

 Page
70

5.1.3 C# Object Initialization

Now we are ready to start coding.

Next, we add two classes for our device. One class stores the information useful for our

device for Transmit to the EndTerms such as, address of module, length of transfer etc.

The next class is used to store parameters for receiving data from the device.

The first function called when the Windows Form loads up is the EPT_Analog_Monitor

_Load(). This function is called automatically upon the completion of the Windows

Form, so there is no need to do anything to call it. Once this function is called, it in turn

calls the ListDevices().

5.1.4 C# Project ListDevices

The ListDevices() function calls the EPT_AH_Open() function to load up the

Analog Monitor Project User Manual

 Page
71

ActiveHost Dll. Next, it calls EPT_AH_QueryDevices() which searches through the

registry files to determine the number of EPT devices attached to the PC. Next,

EPT_AH_GetDeviceName() is called inside a for loop to return the ASCII name of

each device attached to the PC. It will automatically populate the combo box,

cmbDevList with all the EPT devices it finds.

Analog Monitor Project User Manual

 Page
72

5.1.5 C# Project Open Device

The user will select the device from the drop down combo box. This value can be sent

to the OpenDevice() function using the button Click of the Open button.

The device_index variable is used to store the index of the device selected from the

combo box. This variable is passed into the EPT_AH_OpenDeviceByIndex(). This

process is started by the user clicking on the “Open” button. If the function is

successful, the device name is displayed in the label, labelDeviceCnt. Next, the device

is made the active device and the call back function is registered using the

RegisterCallBack() function. Finally, the Open button is grayed out and the Close

button is made active.

Analog Monitor Project User Manual

 Page
73

5.1.6 C# Project Callback Initialization

Next, the callback function is populated. This function will be called from the Active

Host dll. When the EPT Device has transferred data to the PC, the callback function

will do something with the data and command.

Analog Monitor Project User Manual

 Page
74

Because the callback function communicates directly with the dll and must pass

pointers from the dll to the C#, marshaling must be used. Marshaling is an advanced C#

topic and will not be covered in this manual. We will let the callback function work in

the background and we only need to use the EPTParseReceive() function to handle

incoming data.

5.1.7 C# Project Controls

Controls such as buttons are added to the Form1.cs[Design] window which allow

turning on and off signals. These include

 btnOk

 btnCancel

 btnOpenDevice

 btnCloseDevice

 btnStart

 btnStop

 btnSetScaleFactor

 btnResetBlock1 .. 6

Textboxes are used to display information on the Windows form. These textboxes are:

Analog Monitor Project User Manual

 Page
75

 cmbDevList

 tbMonitor1

 tbMonitor2

 tbMonitor3

 tbMonitor4

 tbMonitor5

 tbMonitor6

5.1.8 C# Project Buttons

Although, the C# language is very similar to C Code, there are a few major differences.

The first is C# .NET environment is event based. A second is C# utilizes classes. This

guide will keep the details of these items hidden to keep things simple. However, a brief

introduction to events and classes will allow the beginner to create effective programs.

Event based programming means the software responds to events created by the user, a

timer event, external events such as serial communication into PC, internal events such

as the OS, or other events. The events we are concerned with for our example program

are button clicks or dropdown box clicks. The user events occur when the user clicks on

a button on the Windows Form or selects a radio button. We will add a button to our

example program to show how the button adds an event to the Windows Form and a

function that gets executed when the event occurs.

The easiest way to add a button to a form is to double click the Form1.cs in the Solution

Explorer. Click on the button to launch the Toolbox.

Analog Monitor Project User Manual

 Page
76

Locate the button on the Toolbox, grab and drag the button onto the Form1.cs [Design]

and drop it near the top.

Analog Monitor Project User Manual

 Page
77

Go to the Properties box and locate the (Name) cell. Change the name to

“btnOpenDevice”. Locate the Text cell, and change the name to Open.

Analog Monitor Project User Manual

 Page
78

Double click on the Open button. The C# Explorer will automatically switch to the

Form1.cs code view. The callback function will be inserted with the name of the button

along with “_click” appended to it. The parameter list includes (object sender,

System.EventArgs e). These two additions are required for the callback function to

initiate when the “click” event occurs.

Private void btnOpenDevice_click(object sender, System.EventArgs e)

There is one more addition to the project files. Double click on the Form1.Designer.cs

file in the Solution Explorer. Locate the following section of code.

This code sets up the button, size, placement, and text. It also declares the

“System.EventHandler()”. This statement sets the click method (which is a member of

Analog Monitor Project User Manual

 Page
79

the button class) of the btnOpenDevice button to call the EventHandler –

btnOpenDevice_Click. This is where the magic of the button click event happens.

When btnOpenDevice_Click is called, it calls the function “OpenDevice()”. This

function is defined in the dll and will connect to the device selected in the combo box.

This is a quick view of how to create, add files, and add controls to a C# project. The

user is encouraged to spend some time reviewing the online tutorial at

http://www.homeandlearn.co.uk/csharp/csharp.html to become intimately familiar with

Visual C# .NET programming. In the meantime, follow the examples from the Earth

People Technology to perform some simple reads and writes to the EPT USB-CPLD

Development System.

The btnOk and btnClose buttons are used to end the application. It calls the function

EPT_AH_CloseDeviceByIndex() to remove the device from the Active Host dll. The

buttons btnOpen and btnClose have their Enabled parameter set to true and false

respectively. The Enabled parameter controls whether the button is allowed to launch an

event or not. If it is not enabled, the button is grayed out. At the end of each click event,

the Application.Exit() method is called. This exits the form.

http://www.homeandlearn.co.uk/csharp/csharp.html

Analog Monitor Project User Manual

 Page
80

The btnStart and btnStop buttons are used to start and stop the EPT-570-AP USB

Trasnfer. They call the function EPT_AH_SendTransferControlByte() to set the bit 0 in

the control register. The function passes the control byte to the Active Host dll. They

both operate on the click event, which are setup in the Form1.Designer.cs file

The EPT_AH_SendTransferControlByte() requires two parameters, address and control

register. The address must correspond to the correct EndTerm in the EPT-570-AP code.

The button SetScaleFactor will call the ScaleFactorMenuOpenWindow(). This code is

explained later. It will set up textboxes, buttons, and labels at runtime for use in

retreiving the scale factors for each analog channel.

The buttons RstMonitorX (X = 1 to 6) are used to call the textbox clear method. When

this is envoked the text in the textbox will be cleared.

Analog Monitor Project User Manual

 Page
81

5.1.9 C# Project EPTReadFunction Callback

When EPTReadFunction() callback is called and passed parameters from the Active

Host dll, it populates the EPTReceiveData object. It then calls EPTParseReceive()

function. This function uses a case statement to call the TransferOutReceive() function.

TransferOutReceive() is the function that decodes the message, selects the EndTerm

address, reads and stores the upper byte, reads and stores the lower byte, and updates

the textboxes with the digitized values from the Arduino analog conversion. When a

transfer message has been received from the EPT-570-AP, the TransferOutReceive()

function uses the EPTReceiveData object address to conditionally branch to a set of

statements. This is done using a switch/case statement.

Analog Monitor Project User Manual

 Page
82

The switch will select one of the case statements based on the following collection of

address’s:

 TRANSFER_OUT_ADDRESS_1

 TRANSFER_OUT_ADDRESS_2

 TRANSFER_OUT_ADDRESS_3

 TRANSFER_OUT_ADDRESS_4

 TRANSFER_OUT_ADDRESS_5

 TRANSFER_OUT_ADDRESS_6

When the code enters the TRANSFER_OUT_ADDRESS_x case statement for the first

time, the DisplayAddress_x should be set to the same address as

EPTReceiveData.Address. The FirstDisplayByte should be high. This will cause the

first if statement to be entered.

Analog Monitor Project User Manual

 Page
83

When it is entered, three things happen:

1. the AnalogValue is cleared to zero. This is done to clear out any value that was

previously in there.

2. The FirstDisplayByte is set to false so that the next time the case statement

TRANSFER_OUT_ADDRESS_x is entered, the lower byte will be added to the

first 8 bits of AnalogValue.

3. The byte buffer EPTReceiveData.cBlockBuf[0] is right shifted by eight bits. It is

then added to AnalogValue. This will store the upper byte from the EPT-570-AP

to the upper 8 bits of AnalogValue.

When the third statement in the if statement has completed, the case statement is exited

and the thread is ended.

The next time the ReadCallback is called, the switch conditional is entered again.

Analog Monitor Project User Manual

 Page
84

This time the EPTReceiveData.Address will again be equal to

TRANSFER_OUT_ADDRESS_x and FirstDisplayByte will be low. So, again the first

case statement will be entered.

The second if conditional branch will be entered.

Analog Monitor Project User Manual

 Page
85

When it is entered, the following occurs:

1. The WriteRcvChar is cleared to zero. This is done to clear out any value that

was previously in there. This variable is used to collect the modified

AnalogValue and send it a thread to be written to the Textbox.

2. The FirstDisplayByte is set to true so that the next time the case statement

TRANSFER_OUT_ADDRESS_x is entered, the upper byte will be added to the

first 8 bits of AnalogValue.

3. The byte buffer EPTReceiveData.cBlockBuf[0] is added to AnalogValue. This

will store the lower byte from the EPT-570-AP to the lower 8 bits of

AnalogValue.

4. The ScaleFactorx variable is checked for nonzero value. If is zero, the

AnalogValue is converted to a string and stored in WriteRcvChar. This will pass

the raw counts from the output of the Arduino ADC channel into WriteRcvChar.

If the ScaleFactorx is nonzero, that tells the code that a scale factor is present

and the code must multiply this value by the raw counts from the Arduino ADC

channel. This is done by using a float value labeled: FloatValue. This value is

set to the result of AnalogValue multiplied by the ScaleFactorx.

5. The results of the scalefactor conditional branch is converted to a string then

stored in WriteRcvChar.

Analog Monitor Project User Manual

 Page
86

6. The next several statements update the DisplayAddress_x variables. It sets the

current DisplayAddress_x to false and sets the next incremented

DisplayAddress_x to true. This is done so that the C# code can be synchronized

with the code on the Arduino.

7. Next, the WriteRcvChar value is sent to the thread that will populate the

textbox. Calling a thread is similar to calling a function. However, when you call

a function in the traditional C language, the calling instruction is halted while

the function instructions are executed. When the function is complete, the

execution is handed back to the calling instruction and it continues to execute

and the next instruction after that is executed and so on. When a thread is

commanded to execute, the Windows OS will execute instructions for the

function in the thread and simultaneously continue execution of instructions in

the calling code. The Windows OS allows hundreds of threads to execute

simultaneously. It maintains the memory and execution requirements for each

thread transparently to the user. C# is brilliant because you can easily call a

thread and forget about it. It handles everything for you, it even cleans up the

memory after the thread has completed. So, to launch our “write to textbox”

thread, use the ParameterizedThreadStart() function. This allows us to pass an

object, “WriteRcvChar” to the function.

8. Finally, the textbox, “tbMonitor_x” is updated. This is done by using the

Invoke-Method instruction. A method is a function in a class. In winforms,

Invoke is used to call a method on the UI thread – without it can cause an

exception by updating the UI from another thread. Effectively, what Invoke does

is ensure that the code you are calling occures on the thread that the control

“lives on” effectively preventing cross threaded exceptions. Further, the .NET

framework creates multiple threads when using winforms. The textboxes “live”

on a controls thread, while your code to update the textbox “lives” on a user-

background thread. These two threads are not synchronized. So, your code must

ask the textbox thread (called the UI thread) politely if it could update the text

Analog Monitor Project User Manual

 Page
87

characters in the box. The UI thread will decide when it is ready to stop and

handle the request from the background thread.

Once the Invoke—Method has been called the EPTTransferOut thread is complete and

the textbox will be updated with the 10 bit digitized sample from the Arduino selected

channel.

Then repeat the above steps for the rest of the five channels.

Analog Monitor Project User Manual

 Page
88

Analog Monitor Project User Manual

 Page
89

Now that we have the code to perform the decode, store the digitized value and display

to textbox, we need to add error correction code. This code is added to handle the case

in which we start up the Analog Monitor C# code and we don’t know what channel or

which byte (upper/lower) is being received.

We add two conditional branches to the case statement of

TRANSFER_OUT_ADDRESS_x. These two branches will handle the case when

DisplayAddress_x is low. This means that for the EPTReceiveData.Address received,

the DisplayAddress_x was not set to the correct address previously.

We will need several variables to accomplish error correction. These variables are:

Analog Monitor Project User Manual

 Page
90

The DisplayAddress_x variables are used to check whether the Arduino channel

number and the C# code are in sync. The FirstPreviousActualAddr and

SecondPreviousActualAddr are used to record the previous two Arduino channel

selections. The FirstPreciousCalcAddr and SecondPreviousCalcAdddr are used to

record the address’s that the C# code calculates in response to

EPTReceiveData.Address and conditional branches.

In the first error correction branch, EPTReceiveData.Address will select a case

statement with TRANSFER_OUT_ADDRESS_x but the DisplayAddress_y is not the

same value. The FirsDisplayByte is high, so the following happens.

1. Each time a byte is received, SecondPreviousActualAddr is set to

FirstPreviousActualAddr. Also, FirstPreviousActualAddr is set to

EPTReceiveData.Address. This ensures that the older address is in the Second…

and the newest address is in First…

2. Set FirstPreviousCalcAddr to EPTReceiveData.Address.

3. Set FirstDisplayByte to false or low.

4. Set AnalogValue to zero

5. Set DisplayAddress_x to high. This will select the current address of

EPTReceiveData.Address. This assumes that the current selection of

EPTReceiveData.Address is the upper byte of the digitized value and the

following selection of EPTReceiveData.Address will be the lower byte. If that is

the case then we will be in sync with the Arduino channel selection and no

further error correction will be needed.

In the second error correction branch, EPTReceiveData.Address will select a case

statement with TRANSFER_OUT_ADDRESS_x but the DisplayAddress_y is not the

same value. The FirsDisplayByte is low, so the following happens.

1. Set SecondPreviousCalcAddr equal to the incremetn of

EPTReceiveData.Address. This makes the assumption that the next byte

transferred will be the upper byte of the digitized value and that means that the

address will be incremented.

Analog Monitor Project User Manual

 Page
91

2. FirstDisplayByte is set to true.

3. AnalogValue is set to zero.

4. A conditional branch is used to check if the FirstPreviousActualAddr is equal to

FirstPreviousCalcAddr. Also SecondPreviousActualAddr is checked for

equivalency with SecondPreviousCalcAddr. This is done to check the history of

the address’s that have been used to get to this conditional branch. If the history

is congruent, then the DisplayAddress_x will be set to the next address. If the

history is not congruent, DisplayAddress_x will be set to the current address.

This is all that is necessary to synchronize the Arudino channel selection and the C#

display functions. Use the table below to verify that the error correction code will

synchronize with the Arduino channel no matter what the channel is or whether the C#

code is receiving the upper digitized byte or lower digitized bye.

5.1.10 C# Project Scale Factor Selection

When both the upper and lower bytes have been received from the EPT-570-AP, the

AnalogValue has the ADC counts from the Arduino channel. But this is just a digital

representation of the analog signal sampled at the ADC input. To convert this into a real

voltage, we have to multiply the raw counts by the scale factor. First we need to

calculate what the scale factor should be. This is accomplished by taking the full scale

deflection of the ADC, this means the maximum voltage the ADC can take, for the

Arduino Uno it is 5 Volts. Then divide this number by the total number of counts of the

ADC, for the Arduino Uno’s 10 bit ADC, this is 2
10

 = 1024. So, the scale factor is

5V/1024Counts. Our scale factor is 0.0048828 Volts/Counts. To set the scale factor for

each Arduino channel digitized value, we added all the code to file ScaleFactorMenu.cs.

The top of the file declares the namespace to add the code to, and the class that is

belongs to.

Analog Monitor Project User Manual

 Page
92

This code is activated when the

button is clicked. It calls the ScaleFactorMenuOpenWindow() function.

The code will expand the WinForm and add textboxes, buttons, and labels at run time.

The code looks the same as if we used the ‘drag and drop’ method from the Visual

Studio Toolbox.

Each textbox is setup with the following code.

Each button and label is setup with the following code.

Analog Monitor Project User Manual

 Page
93

When all of the textboxes, buttons, and lables are set up, the

ScaleFactorMenuSetAnchor() function is called. This makes sure that all controls are

pinned to the top left corner of the Winform. If the user resizes the window, all of the

controls: textboxes, buttons, and labels will get resized along with the main Winform.

When the window is complete at runtime it will look like:

To add a value to the ScaleFactor_x textbox, just type in the number. The “KeyPress”

event will be raised by typing in the textbox. We add a subsctiption to this event. When

the event occurs, we execute our code to retreive the scale factor value.

For more information about events and how to subscribe to them, see this web page.

http://www.homeandlearn.co.uk/csharp/csharp_s9p1.html

http://www.homeandlearn.co.uk/csharp/csharp_s9p1.html

Analog Monitor Project User Manual

 Page
94

When we execute our code, the ScaleFactorX is set equal to the string value of the

textbox, ScaleFactorXTextBox.Text. This means the number retrieved from the textbox

is in the wrong format, ie a string. So, we need to convert the string into a float value for

use as a scale factor. To do this, use the “Convert.ToDouble” method. Then recast the

double as a float, ScaleFactorX =

(float)Convert.ToDouble(ScaleFactorXTextBox.Text);

Repeat this KeyPress event for all six ScaleFactor textboxes.

Once the ScaleFactor is updated, it will be multiplied by the AnalogValue for the

appropriate channel on the next display textbox update for the given channel.

Analog Monitor Project User Manual

 Page
95

The ScaleFactorExitButton_Click event calls the shutdown of the ScaleFactor Menu. It

disposes of textboxes, buttons, and labels and resets the Winform to its original

dimensions.

5.1.11 C# Project Completion

This is all that is needed for the Analog Monitor project. The Arduino will generate a 10

bit digitized word for each channel. It then transmits that word to the CPLD using the

Write_Enable, Address and data pins. The CPLD transmits each 10 bit word to the PC

using the Active_Transfer EndTerm, Active_Transfer Library, and One Hot State

Machine. The dll reads the 10 bit word into local memory. It then calls the Callback

function, EPTReadFunction. Each 10 bit value is finally displayed to screen using the

TransferOutReceive() function.

5.2 PC: Compiling the Active Host Application
Building the Analog_Monitor project will compile the code in the project and produce

an executable file. It will link all of the functions declared in the opening of the

Analog_Monitor Class with the Active Host dll. The project will also automatically link

the FTD2XX.dll to the object code.

To build the project, go to Debug->Build Solution.

Analog Monitor Project User Manual

 Page
96

The C# Express compiler will start the building process. If there are no errors with code

syntax, function usage, or linking, then the environment responds with “Build

Succeeded”.

If the build fails, you will have to examine each error in the “Error List” and fix it

accordingly. If you cannot fix the error using troubleshooting methods, post a topic in

the Earth People Technology Forum. All topics will be answered by a member of the

technical staff as soon as possible.

5.2.1 Adding the DLL’s to the Project

Locate the UNO_ANALOG_MONITOR_PROJECT_CD installed on your PC. Browse

to the Projects_ActiveHost folder (choose either the 32 bit or 64 bit version, depending

on whether your OS is 32 or 64 bit). Open the Bin folder, copy the following files:

 ActiveHostXX.dll

 ftd2xxXX.dll

and paste them in the EPT_Analog_Monitor\EPT_Analog_Monitor\bin\x64\Release

folder of your EPT_Analog_Monitor project.

Analog Monitor Project User Manual

 Page
97

At this point, the environment has produced an executable file and is ready for testing.

Next, we will connect everything together and see it collect data and display it.

6 Connecting the Project Together
Now we will connect the Arduino, EPT 570-AP-U2, and the PC to make an Analog

Monitor. First, connect a USB cable from a USB port on the PC to the Arduino. Second,

connect a USB cable from a open USB port on the PC to the EPT 570-AP-U2.

Next, let’s connect the Six 5VDC Power Supplies to the analog inputs of the Arduino.

We will do the by using the following parts:

 6 Pin 2.54 mm Male Header

 10 Pin 2.54 mm Male Header

 Six 5VDC Power Supplies

 Five Black Banana Lead jumpers to connect the Power Supplies together

 One Black Banana Clip Lead to connect the Power Supplies to the Arduino

 Six Red Banana Clip Leads to connect the Power Supplies to the Arduino

Connect the 10 Pin 2.54 mm Male Header into the J12 connector of the EPT-570-AP

board. Next, connect the 6 Pin 2.54 mm Male Header into the J9 connector of the EPT-

570-AP board. Connect the black banana jumpers between the grounds of all the

supplies. Connect the black banana clip lead to one of the power supply grounds and

Pin 7 of J12. Connect one red banana clip lead to each of the power supply positive

outputs and connect to one of the pins on the J9 connector.

Analog Monitor Project User Manual

 Page
98

Next, open the Arduino IDE and select File->Open and select your sketch created

earlier, Arduino_Analog_Monitor_Code_U2.ino.

Analog Monitor Project User Manual

 Page
99

Select the file and click Open. The sketch will now populate the Arduino IDE window.

Compile and Download the sketch into the Arduino microcontroller using the Upload

button.

The Arduino IDE will compile the project, then transmit the machine level code into the

ATMega328 SRAM to start the program.

The CPLD should already be programmed with its Analog Monitor Project.

Open the EPT Analog Monitor on the PC by browsing to the Analog Monitor project

folder. Locate the executable in the \bin\x64\Release folder.

Analog Monitor Project User Manual

 Page
100

Initiate the application by double clicking the application icon in the \Release folder of

the project. The application will open and automatically load the Active Host dll. The

application will locate the EPT 570-AP-U2 device. Next, the combo box at the top will

be populated with the name of the device.

Select the EPT 570-AP device and click the Open button. If the Active Host application

connects to the device, a label will indicate “Device Connected”.

6.1 Testing the Project
To test our Analog Monitor project, just click on the Start button. As soon as the device

connects, the data from the Arduino will appear in the received data textBox.

Analog Monitor Project User Manual

 Page
101

Turn on all six of the 5VDC Power Supplies. Click on the “Set Scale Factors” button.

Type the scale factor for each Monitor textbox in the corresponding ScaleFactor

textbox. The scale factor is 5V/1024Counts. Our scale factor is 0.0048828

Volts/Counts.

Analog Monitor Project User Manual

 Page
102

And that’s all there is to the Analog Monitor Project. It’s up to the user to use this

project as a base to create much larger projects. You can easily make a volt meter using

this project by turning off the Random number generator in the Arduino and reading the

Analog Pins. Also, reformat the textBox display that it shows in decimal instead of the

Hexadecimal display.

